Files @ r28572:dd3e6f760743
Branch filter:

Location: cpp/openttd-patchpack/source/src/core/bitmath_func.hpp - annotation

Rubidium
Update: nlohmann/json to 3.11.3
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r9111:983de9c5a848
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r19821:021f5f9159cc
r7971:5de6852fd5c5
r19821:021f5f9159cc
r19821:021f5f9159cc
r19821:021f5f9159cc
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r19821:021f5f9159cc
r7971:5de6852fd5c5
r20003:9265a12ac9cf
r20003:9265a12ac9cf
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r9575:665324c39b56
r27737:728d55b97775
r7971:5de6852fd5c5
r16132:0ba842e17bf1
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r15610:623a23fb6560
r15610:623a23fb6560
r7971:5de6852fd5c5
r9773:820f87546490
r9773:820f87546490
r9773:820f87546490
r9773:820f87546490
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r9773:820f87546490
r19821:021f5f9159cc
r9773:820f87546490
r7971:5de6852fd5c5
r19821:021f5f9159cc
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r20003:9265a12ac9cf
r20003:9265a12ac9cf
r9773:820f87546490
r7971:5de6852fd5c5
r9575:665324c39b56
r28524:a03869bfc147
r7971:5de6852fd5c5
r16132:0ba842e17bf1
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r15610:623a23fb6560
r19821:021f5f9159cc
r7971:5de6852fd5c5
r19821:021f5f9159cc
r19821:021f5f9159cc
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r19821:021f5f9159cc
r7971:5de6852fd5c5
r20003:9265a12ac9cf
r20003:9265a12ac9cf
r19821:021f5f9159cc
r19821:021f5f9159cc
r7971:5de6852fd5c5
r9575:665324c39b56
r28524:a03869bfc147
r7971:5de6852fd5c5
r16132:0ba842e17bf1
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r19821:021f5f9159cc
r19821:021f5f9159cc
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r20003:9265a12ac9cf
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r9575:665324c39b56
r28524:a03869bfc147
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r20003:9265a12ac9cf
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r9575:665324c39b56
r28524:a03869bfc147
r7971:5de6852fd5c5
r16132:0ba842e17bf1
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r20003:9265a12ac9cf
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r9575:665324c39b56
r28524:a03869bfc147
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r19821:021f5f9159cc
r7971:5de6852fd5c5
r20003:9265a12ac9cf
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r9575:665324c39b56
r28524:a03869bfc147
r7971:5de6852fd5c5
r16132:0ba842e17bf1
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28518:ca5098bf21c9
r28518:ca5098bf21c9
r28518:ca5098bf21c9
r28518:ca5098bf21c9
r28518:ca5098bf21c9
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r28517:a50813eb32a8
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r9575:665324c39b56
r28524:a03869bfc147
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r9575:665324c39b56
r28512:cb7396c4e0bc
r7971:5de6852fd5c5
r28512:cb7396c4e0bc
r28512:cb7396c4e0bc
r28512:cb7396c4e0bc
r28512:cb7396c4e0bc
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r7971:5de6852fd5c5
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r28524:a03869bfc147
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r28524:a03869bfc147
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r14450:8f83ebfe28cc
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r28074:fffdbfe84aad
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r25784:3baf56e102e0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r27737:728d55b97775
r8132:f5cfeb0d46c0
r27737:728d55b97775
r27737:728d55b97775
r18067:b0b21f9aa12b
r18067:b0b21f9aa12b
r23807:df6e9493be0f
r23807:df6e9493be0f
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r27737:728d55b97775
r8132:f5cfeb0d46c0
r11890:4c16f6226852
r10065:d212881a03ae
r27737:728d55b97775
r10065:d212881a03ae
r8132:f5cfeb0d46c0
r10065:d212881a03ae
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r27737:728d55b97775
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r8132:f5cfeb0d46c0
r7971:5de6852fd5c5
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file bitmath_func.hpp Functions related to bit mathematics. */

#ifndef BITMATH_FUNC_HPP
#define BITMATH_FUNC_HPP

/**
 * Fetch \a n bits from \a x, started at bit \a s.
 *
 * This function can be used to fetch \a n bits from the value \a x. The
 * \a s value set the start position to read. The start position is
 * count from the LSB and starts at \c 0. The result starts at a
 * LSB, as this isn't just an and-bitmask but also some
 * bit-shifting operations. GB(0xFF, 2, 1) will so
 * return 0x01 (0000 0001) instead of
 * 0x04 (0000 0100).
 *
 * @param x The value to read some bits.
 * @param s The start position to read some bits.
 * @param n The number of bits to read.
 * @pre n < sizeof(T) * 8
 * @pre s + n <= sizeof(T) * 8
 * @return The selected bits, aligned to a LSB.
 */
template <typename T>
debug_inline constexpr static uint GB(const T x, const uint8_t s, const uint8_t n)
{
	return (x >> s) & (((T)1U << n) - 1);
}

/**
 * Set \a n bits in \a x starting at bit \a s to \a d
 *
 * This function sets \a n bits from \a x which started as bit \a s to the value of
 * \a d. The parameters \a x, \a s and \a n works the same as the parameters of
 * #GB. The result is saved in \a x again. Unused bits in the window
 * provided by n are set to 0 if the value of \a d isn't "big" enough.
 * This is not a bug, its a feature.
 *
 * @note Parameter \a x must be a variable as the result is saved there.
 * @note To avoid unexpected results the value of \a d should not use more
 *       space as the provided space of \a n bits (log2)
 * @param x The variable to change some bits
 * @param s The start position for the new bits
 * @param n The size/window for the new bits
 * @param d The actually new bits to save in the defined position.
 * @pre n < sizeof(T) * 8
 * @pre s + n <= sizeof(T) * 8
 * @return The new value of \a x
 */
template <typename T, typename U>
constexpr T SB(T &x, const uint8_t s, const uint8_t n, const U d)
{
	x &= (T)(~((((T)1U << n) - 1) << s));
	x |= (T)(d << s);
	return x;
}

/**
 * Add \a i to \a n bits of \a x starting at bit \a s.
 *
 * This adds the value of \a i on \a n bits of \a x starting at bit \a s. The parameters \a x,
 * \a s, \a i are similar to #GB. Besides, \ a x must be a variable as the result are
 * saved there. An overflow does not affect the following bits of the given
 * bit window and is simply ignored.
 *
 * @note Parameter x must be a variable as the result is saved there.
 * @param x The variable to add some bits at some position
 * @param s The start position of the addition
 * @param n The size/window for the addition
 * @pre n < sizeof(T) * 8
 * @pre s + n <= sizeof(T) * 8
 * @param i The value to add at the given start position in the given window.
 * @return The new value of \a x
 */
template <typename T, typename U>
constexpr T AB(T &x, const uint8_t s, const uint8_t n, const U i)
{
	const T mask = ((((T)1U << n) - 1) << s);
	x = (T)((x & ~mask) | ((x + (i << s)) & mask));
	return x;
}

/**
 * Checks if a bit in a value is set.
 *
 * This function checks if a bit inside a value is set or not.
 * The \a y value specific the position of the bit, started at the
 * LSB and count from \c 0.
 *
 * @param x The value to check
 * @param y The position of the bit to check, started from the LSB
 * @pre y < sizeof(T) * 8
 * @return True if the bit is set, false else.
 */
template <typename T>
debug_inline constexpr bool HasBit(const T x, const uint8_t y)
{
	return (x & ((T)1U << y)) != 0;
}

/**
 * Set a bit in a variable.
 *
 * This function sets a bit in a variable. The variable is changed
 * and the value is also returned. Parameter y defines the bit and
 * starts at the LSB with 0.
 *
 * @param x The variable to set a bit
 * @param y The bit position to set
 * @pre y < sizeof(T) * 8
 * @return The new value of the old value with the bit set
 */
template <typename T>
constexpr T SetBit(T &x, const uint8_t y)
{
	return x = (T)(x | ((T)1U << y));
}

/**
 * Sets several bits in a variable.
 *
 * This macro sets several bits in a variable. The bits to set are provided
 * by a value. The new value is also returned.
 *
 * @param x The variable to set some bits
 * @param y The value with set bits for setting them in the variable
 * @return The new value of x
 */
#define SETBITS(x, y) ((x) |= (y))

/**
 * Clears a bit in a variable.
 *
 * This function clears a bit in a variable. The variable is
 * changed and the value is also returned. Parameter y defines the bit
 * to clear and starts at the LSB with 0.
 *
 * @param x The variable to clear the bit
 * @param y The bit position to clear
 * @pre y < sizeof(T) * 8
 * @return The new value of the old value with the bit cleared
 */
template <typename T>
constexpr T ClrBit(T &x, const uint8_t y)
{
	return x = (T)(x & ~((T)1U << y));
}

/**
 * Clears several bits in a variable.
 *
 * This macro clears several bits in a variable. The bits to clear are
 * provided by a value. The new value is also returned.
 *
 * @param x The variable to clear some bits
 * @param y The value with set bits for clearing them in the variable
 * @return The new value of x
 */
#define CLRBITS(x, y) ((x) &= ~(y))

/**
 * Toggles a bit in a variable.
 *
 * This function toggles a bit in a variable. The variable is
 * changed and the value is also returned. Parameter y defines the bit
 * to toggle and starts at the LSB with 0.
 *
 * @param x The variable to toggle the bit
 * @param y The bit position to toggle
 * @pre y < sizeof(T) * 8
 * @return The new value of the old value with the bit toggled
 */
template <typename T>
constexpr T ToggleBit(T &x, const uint8_t y)
{
	return x = (T)(x ^ ((T)1U << y));
}

/**
 * Search the first set bit in a value.
 * When no bit is set, it returns 0.
 *
 * @param x The value to search.
 * @return The position of the first bit set.
 */
template <typename T>
constexpr uint8_t FindFirstBit(T x)
{
	if (x == 0) return 0;

	if constexpr (std::is_enum_v<T>) {
		return std::countr_zero<std::underlying_type_t<T>>(x);
	} else {
		return std::countr_zero(x);
	}
}

/**
 * Search the last set bit in a value.
 * When no bit is set, it returns 0.
 *
 * @param x The value to search.
 * @return The position of the last bit set.
 */
template <typename T>
constexpr uint8_t FindLastBit(T x)
{
	if (x == 0) return 0;

	return std::numeric_limits<T>::digits - std::countl_zero(x) - 1;
}

/**
 * Clear the first bit in an integer.
 *
 * This function returns a value where the first bit (from LSB)
 * is cleared.
 * So, 110100 returns 110000, 000001 returns 000000, etc.
 *
 * @param value The value to clear the first bit
 * @return The new value with the first bit cleared
 */
template <typename T>
constexpr T KillFirstBit(T value)
{
	return value &= (T)(value - 1);
}

/**
 * Counts the number of set bits in a variable.
 *
 * @param value the value to count the number of bits in.
 * @return the number of bits.
 */
template <typename T>
constexpr uint CountBits(T value)
{
	if constexpr (std::is_enum_v<T>) {
		return std::popcount<std::underlying_type_t<T>>(value);
	} else {
		return std::popcount(value);
	}
}

/**
 * Test whether \a value has exactly 1 bit set
 *
 * @param value the value to test.
 * @return does \a value have exactly 1 bit set?
 */
template <typename T>
constexpr bool HasExactlyOneBit(T value)
{
	return value != 0 && (value & (value - 1)) == 0;
}

/**
 * Test whether \a value has at most 1 bit set
 *
 * @param value the value to test.
 * @return does \a value have at most 1 bit set?
 */
template <typename T>
constexpr bool HasAtMostOneBit(T value)
{
	return (value & (value - 1)) == 0;
}

 /**
 * Iterable ensemble of each set bit in a value.
 * @tparam Tbitpos Type of the position variable.
 * @tparam Tbitset Type of the bitset value.
 */
template <typename Tbitpos = uint, typename Tbitset = uint>
struct SetBitIterator {
	struct Iterator {
		typedef Tbitpos value_type;
		typedef value_type *pointer;
		typedef value_type &reference;
		typedef size_t difference_type;
		typedef std::forward_iterator_tag iterator_category;

		explicit Iterator(Tbitset bitset) : bitset(bitset), bitpos(static_cast<Tbitpos>(0))
		{
			this->Validate();
		}

		bool operator==(const Iterator &other) const
		{
			return this->bitset == other.bitset && (this->bitset == 0 || this->bitpos == other.bitpos);
		}
		bool operator!=(const Iterator &other) const { return !(*this == other); }
		Tbitpos operator*() const { return this->bitpos; }
		Iterator & operator++() { this->Next(); this->Validate(); return *this; }

	private:
		Tbitset bitset;
		Tbitpos bitpos;
		void Validate()
		{
			while (this->bitset != 0 && (this->bitset & 1) == 0) this->Next();
		}
		void Next()
		{
			this->bitset = static_cast<Tbitset>(this->bitset >> 1);
			this->bitpos++;
		}
	};

	SetBitIterator(Tbitset bitset) : bitset(bitset) {}
	Iterator begin() { return Iterator(this->bitset); }
	Iterator end() { return Iterator(static_cast<Tbitset>(0)); }
	bool empty() { return this->begin() == this->end(); }

private:
	Tbitset bitset;
};

#if defined(__APPLE__)
	/* Make endian swapping use Apple's macros to increase speed
	 * (since it will use hardware swapping if available).
	 * Even though they should return uint16_t and uint32_t, we get
	 * warnings if we don't cast those (why?) */
#	define BSWAP32(x) (static_cast<uint32_t>(CFSwapInt32(x)))
#	define BSWAP16(x) (static_cast<uint16_t>(CFSwapInt16(x)))
#elif defined(_MSC_VER)
	/* MSVC has intrinsics for swapping, resulting in faster code */
#	define BSWAP32(x) (_byteswap_ulong(x))
#	define BSWAP16(x) (_byteswap_ushort(x))
#else
	/**
	 * Perform a 32 bits endianness bitswap on x.
	 * @param x the variable to bitswap
	 * @return the bitswapped value.
	 */
	static inline uint32_t BSWAP32(uint32_t x)
	{
#if !defined(__ICC) && defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4)  && __GNUC_MINOR__ >= 3))
		/* GCC >= 4.3 provides a builtin, resulting in faster code */
		return static_cast<uint32_t>(__builtin_bswap32(static_cast<int32_t>(x)));
#else
		return ((x >> 24) & 0xFF) | ((x >> 8) & 0xFF00) | ((x << 8) & 0xFF0000) | ((x << 24) & 0xFF000000);
#endif /* defined(__GNUC__) */
	}

	/**
	 * Perform a 16 bits endianness bitswap on x.
	 * @param x the variable to bitswap
	 * @return the bitswapped value.
	 */
	static inline uint16_t BSWAP16(uint16_t x)
	{
		return (x >> 8) | (x << 8);
	}
#endif /* __APPLE__ */

#endif /* BITMATH_FUNC_HPP */