Changeset - r27416:8a08da0bf98e
[Not reviewed]
master
0 5 4
Rubidium - 16 months ago 2023-05-20 09:50:13
rubidium@openttd.org
Codechange: update to fmt 10.0.0 and add formatting support for chrono and std types
4 files changed:
0 comments (0 inline, 0 general)
src/3rdparty/fmt/CMakeLists.txt
Show inline comments
 
add_files(
 
    chrono.h
 
    core.h
 
    format.h
 
    format-inl.h
 
    ostream.h
 
    ranges.h
 
    std.h
 
)
src/3rdparty/fmt/LICENSE.rst
Show inline comments
 
Copyright (c) 2012 - present, Victor Zverovich
 
Copyright (c) 2012 - present, Victor Zverovich and {fmt} contributors
 

	
 
Permission is hereby granted, free of charge, to any person obtaining
 
a copy of this software and associated documentation files (the
 
"Software"), to deal in the Software without restriction, including
 
without limitation the rights to use, copy, modify, merge, publish,
 
distribute, sublicense, and/or sell copies of the Software, and to
src/3rdparty/fmt/chrono.h
Show inline comments
 
new file 100644
 
// Formatting library for C++ - chrono support
 
//
 
// Copyright (c) 2012 - present, Victor Zverovich
 
// All rights reserved.
 
//
 
// For the license information refer to format.h.
 

	
 
#ifndef FMT_CHRONO_H_
 
#define FMT_CHRONO_H_
 

	
 
#include <algorithm>
 
#include <chrono>
 
#include <cmath>    // std::isfinite
 
#include <cstring>  // std::memcpy
 
#include <ctime>
 
#include <iterator>
 
#include <locale>
 
#include <ostream>
 
#include <type_traits>
 

	
 
#include "format.h"
 

	
 
FMT_BEGIN_NAMESPACE
 

	
 
// Check if std::chrono::local_t is available.
 
#ifndef FMT_USE_LOCAL_TIME
 
#  ifdef __cpp_lib_chrono
 
#    define FMT_USE_LOCAL_TIME (__cpp_lib_chrono >= 201907L)
 
#  else
 
#    define FMT_USE_LOCAL_TIME 0
 
#  endif
 
#endif
 

	
 
// Check if std::chrono::utc_timestamp is available.
 
#ifndef FMT_USE_UTC_TIME
 
#  ifdef __cpp_lib_chrono
 
#    define FMT_USE_UTC_TIME (__cpp_lib_chrono >= 201907L)
 
#  else
 
#    define FMT_USE_UTC_TIME 0
 
#  endif
 
#endif
 

	
 
// Enable tzset.
 
#ifndef FMT_USE_TZSET
 
// UWP doesn't provide _tzset.
 
#  if FMT_HAS_INCLUDE("winapifamily.h")
 
#    include <winapifamily.h>
 
#  endif
 
#  if defined(_WIN32) && (!defined(WINAPI_FAMILY) || \
 
                          (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP))
 
#    define FMT_USE_TZSET 1
 
#  else
 
#    define FMT_USE_TZSET 0
 
#  endif
 
#endif
 

	
 
// Enable safe chrono durations, unless explicitly disabled.
 
#ifndef FMT_SAFE_DURATION_CAST
 
#  define FMT_SAFE_DURATION_CAST 1
 
#endif
 
#if FMT_SAFE_DURATION_CAST
 

	
 
// For conversion between std::chrono::durations without undefined
 
// behaviour or erroneous results.
 
// This is a stripped down version of duration_cast, for inclusion in fmt.
 
// See https://github.com/pauldreik/safe_duration_cast
 
//
 
// Copyright Paul Dreik 2019
 
namespace safe_duration_cast {
 

	
 
template <typename To, typename From,
 
          FMT_ENABLE_IF(!std::is_same<From, To>::value &&
 
                        std::numeric_limits<From>::is_signed ==
 
                            std::numeric_limits<To>::is_signed)>
 
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
 
  ec = 0;
 
  using F = std::numeric_limits<From>;
 
  using T = std::numeric_limits<To>;
 
  static_assert(F::is_integer, "From must be integral");
 
  static_assert(T::is_integer, "To must be integral");
 

	
 
  // A and B are both signed, or both unsigned.
 
  if (detail::const_check(F::digits <= T::digits)) {
 
    // From fits in To without any problem.
 
  } else {
 
    // From does not always fit in To, resort to a dynamic check.
 
    if (from < (T::min)() || from > (T::max)()) {
 
      // outside range.
 
      ec = 1;
 
      return {};
 
    }
 
  }
 
  return static_cast<To>(from);
 
}
 

	
 
/**
 
 * converts From to To, without loss. If the dynamic value of from
 
 * can't be converted to To without loss, ec is set.
 
 */
 
template <typename To, typename From,
 
          FMT_ENABLE_IF(!std::is_same<From, To>::value &&
 
                        std::numeric_limits<From>::is_signed !=
 
                            std::numeric_limits<To>::is_signed)>
 
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
 
  ec = 0;
 
  using F = std::numeric_limits<From>;
 
  using T = std::numeric_limits<To>;
 
  static_assert(F::is_integer, "From must be integral");
 
  static_assert(T::is_integer, "To must be integral");
 

	
 
  if (detail::const_check(F::is_signed && !T::is_signed)) {
 
    // From may be negative, not allowed!
 
    if (fmt::detail::is_negative(from)) {
 
      ec = 1;
 
      return {};
 
    }
 
    // From is positive. Can it always fit in To?
 
    if (detail::const_check(F::digits > T::digits) &&
 
        from > static_cast<From>(detail::max_value<To>())) {
 
      ec = 1;
 
      return {};
 
    }
 
  }
 

	
 
  if (detail::const_check(!F::is_signed && T::is_signed &&
 
                          F::digits >= T::digits) &&
 
      from > static_cast<From>(detail::max_value<To>())) {
 
    ec = 1;
 
    return {};
 
  }
 
  return static_cast<To>(from);  // Lossless conversion.
 
}
 

	
 
template <typename To, typename From,
 
          FMT_ENABLE_IF(std::is_same<From, To>::value)>
 
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
 
  ec = 0;
 
  return from;
 
}  // function
 

	
 
// clang-format off
 
/**
 
 * converts From to To if possible, otherwise ec is set.
 
 *
 
 * input                            |    output
 
 * ---------------------------------|---------------
 
 * NaN                              | NaN
 
 * Inf                              | Inf
 
 * normal, fits in output           | converted (possibly lossy)
 
 * normal, does not fit in output   | ec is set
 
 * subnormal                        | best effort
 
 * -Inf                             | -Inf
 
 */
 
// clang-format on
 
template <typename To, typename From,
 
          FMT_ENABLE_IF(!std::is_same<From, To>::value)>
 
FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) {
 
  ec = 0;
 
  using T = std::numeric_limits<To>;
 
  static_assert(std::is_floating_point<From>::value, "From must be floating");
 
  static_assert(std::is_floating_point<To>::value, "To must be floating");
 

	
 
  // catch the only happy case
 
  if (std::isfinite(from)) {
 
    if (from >= T::lowest() && from <= (T::max)()) {
 
      return static_cast<To>(from);
 
    }
 
    // not within range.
 
    ec = 1;
 
    return {};
 
  }
 

	
 
  // nan and inf will be preserved
 
  return static_cast<To>(from);
 
}  // function
 

	
 
template <typename To, typename From,
 
          FMT_ENABLE_IF(std::is_same<From, To>::value)>
 
FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) {
 
  ec = 0;
 
  static_assert(std::is_floating_point<From>::value, "From must be floating");
 
  return from;
 
}
 

	
 
/**
 
 * safe duration cast between integral durations
 
 */
 
template <typename To, typename FromRep, typename FromPeriod,
 
          FMT_ENABLE_IF(std::is_integral<FromRep>::value),
 
          FMT_ENABLE_IF(std::is_integral<typename To::rep>::value)>
 
To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
 
                      int& ec) {
 
  using From = std::chrono::duration<FromRep, FromPeriod>;
 
  ec = 0;
 
  // the basic idea is that we need to convert from count() in the from type
 
  // to count() in the To type, by multiplying it with this:
 
  struct Factor
 
      : std::ratio_divide<typename From::period, typename To::period> {};
 

	
 
  static_assert(Factor::num > 0, "num must be positive");
 
  static_assert(Factor::den > 0, "den must be positive");
 

	
 
  // the conversion is like this: multiply from.count() with Factor::num
 
  // /Factor::den and convert it to To::rep, all this without
 
  // overflow/underflow. let's start by finding a suitable type that can hold
 
  // both To, From and Factor::num
 
  using IntermediateRep =
 
      typename std::common_type<typename From::rep, typename To::rep,
 
                                decltype(Factor::num)>::type;
 

	
 
  // safe conversion to IntermediateRep
 
  IntermediateRep count =
 
      lossless_integral_conversion<IntermediateRep>(from.count(), ec);
 
  if (ec) return {};
 
  // multiply with Factor::num without overflow or underflow
 
  if (detail::const_check(Factor::num != 1)) {
 
    const auto max1 = detail::max_value<IntermediateRep>() / Factor::num;
 
    if (count > max1) {
 
      ec = 1;
 
      return {};
 
    }
 
    const auto min1 =
 
        (std::numeric_limits<IntermediateRep>::min)() / Factor::num;
 
    if (detail::const_check(!std::is_unsigned<IntermediateRep>::value) &&
 
        count < min1) {
 
      ec = 1;
 
      return {};
 
    }
 
    count *= Factor::num;
 
  }
 

	
 
  if (detail::const_check(Factor::den != 1)) count /= Factor::den;
 
  auto tocount = lossless_integral_conversion<typename To::rep>(count, ec);
 
  return ec ? To() : To(tocount);
 
}
 

	
 
/**
 
 * safe duration_cast between floating point durations
 
 */
 
template <typename To, typename FromRep, typename FromPeriod,
 
          FMT_ENABLE_IF(std::is_floating_point<FromRep>::value),
 
          FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)>
 
To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
 
                      int& ec) {
 
  using From = std::chrono::duration<FromRep, FromPeriod>;
 
  ec = 0;
 
  if (std::isnan(from.count())) {
 
    // nan in, gives nan out. easy.
 
    return To{std::numeric_limits<typename To::rep>::quiet_NaN()};
 
  }
 
  // maybe we should also check if from is denormal, and decide what to do about
 
  // it.
 

	
 
  // +-inf should be preserved.
 
  if (std::isinf(from.count())) {
 
    return To{from.count()};
 
  }
 

	
 
  // the basic idea is that we need to convert from count() in the from type
 
  // to count() in the To type, by multiplying it with this:
 
  struct Factor
 
      : std::ratio_divide<typename From::period, typename To::period> {};
 

	
 
  static_assert(Factor::num > 0, "num must be positive");
 
  static_assert(Factor::den > 0, "den must be positive");
 

	
 
  // the conversion is like this: multiply from.count() with Factor::num
 
  // /Factor::den and convert it to To::rep, all this without
 
  // overflow/underflow. let's start by finding a suitable type that can hold
 
  // both To, From and Factor::num
 
  using IntermediateRep =
 
      typename std::common_type<typename From::rep, typename To::rep,
 
                                decltype(Factor::num)>::type;
 

	
 
  // force conversion of From::rep -> IntermediateRep to be safe,
 
  // even if it will never happen be narrowing in this context.
 
  IntermediateRep count =
 
      safe_float_conversion<IntermediateRep>(from.count(), ec);
 
  if (ec) {
 
    return {};
 
  }
 

	
 
  // multiply with Factor::num without overflow or underflow
 
  if (detail::const_check(Factor::num != 1)) {
 
    constexpr auto max1 = detail::max_value<IntermediateRep>() /
 
                          static_cast<IntermediateRep>(Factor::num);
 
    if (count > max1) {
 
      ec = 1;
 
      return {};
 
    }
 
    constexpr auto min1 = std::numeric_limits<IntermediateRep>::lowest() /
 
                          static_cast<IntermediateRep>(Factor::num);
 
    if (count < min1) {
 
      ec = 1;
 
      return {};
 
    }
 
    count *= static_cast<IntermediateRep>(Factor::num);
 
  }
 

	
 
  // this can't go wrong, right? den>0 is checked earlier.
 
  if (detail::const_check(Factor::den != 1)) {
 
    using common_t = typename std::common_type<IntermediateRep, intmax_t>::type;
 
    count /= static_cast<common_t>(Factor::den);
 
  }
 

	
 
  // convert to the to type, safely
 
  using ToRep = typename To::rep;
 

	
 
  const ToRep tocount = safe_float_conversion<ToRep>(count, ec);
 
  if (ec) {
 
    return {};
 
  }
 
  return To{tocount};
 
}
 
}  // namespace safe_duration_cast
 
#endif
 

	
 
// Prevents expansion of a preceding token as a function-style macro.
 
// Usage: f FMT_NOMACRO()
 
#define FMT_NOMACRO
 

	
 
namespace detail {
 
template <typename T = void> struct null {};
 
inline null<> localtime_r FMT_NOMACRO(...) { return null<>(); }
 
inline null<> localtime_s(...) { return null<>(); }
 
inline null<> gmtime_r(...) { return null<>(); }
 
inline null<> gmtime_s(...) { return null<>(); }
 

	
 
inline const std::locale& get_classic_locale() {
 
  static const auto& locale = std::locale::classic();
 
  return locale;
 
}
 

	
 
template <typename CodeUnit> struct codecvt_result {
 
  static constexpr const size_t max_size = 32;
 
  CodeUnit buf[max_size];
 
  CodeUnit* end;
 
};
 
template <typename CodeUnit>
 
constexpr const size_t codecvt_result<CodeUnit>::max_size;
 

	
 
template <typename CodeUnit>
 
void write_codecvt(codecvt_result<CodeUnit>& out, string_view in_buf,
 
                   const std::locale& loc) {
 
#if FMT_CLANG_VERSION
 
#  pragma clang diagnostic push
 
#  pragma clang diagnostic ignored "-Wdeprecated"
 
  auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc);
 
#  pragma clang diagnostic pop
 
#else
 
  auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc);
 
#endif
 
  auto mb = std::mbstate_t();
 
  const char* from_next = nullptr;
 
  auto result = f.in(mb, in_buf.begin(), in_buf.end(), from_next,
 
                     std::begin(out.buf), std::end(out.buf), out.end);
 
  if (result != std::codecvt_base::ok)
 
    FMT_THROW(format_error("failed to format time"));
 
}
 

	
 
template <typename OutputIt>
 
auto write_encoded_tm_str(OutputIt out, string_view in, const std::locale& loc)
 
    -> OutputIt {
 
  if (detail::is_utf8() && loc != get_classic_locale()) {
 
    // char16_t and char32_t codecvts are broken in MSVC (linkage errors) and
 
    // gcc-4.
 
#if FMT_MSC_VERSION != 0 || \
 
    (defined(__GLIBCXX__) && !defined(_GLIBCXX_USE_DUAL_ABI))
 
    // The _GLIBCXX_USE_DUAL_ABI macro is always defined in libstdc++ from gcc-5
 
    // and newer.
 
    using code_unit = wchar_t;
 
#else
 
    using code_unit = char32_t;
 
#endif
 

	
 
    using unit_t = codecvt_result<code_unit>;
 
    unit_t unit;
 
    write_codecvt(unit, in, loc);
 
    // In UTF-8 is used one to four one-byte code units.
 
    unicode_to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>
 
        u;
 
    if (!u.convert({unit.buf, to_unsigned(unit.end - unit.buf)}))
 
      FMT_THROW(format_error("failed to format time"));
 
    return copy_str<char>(u.c_str(), u.c_str() + u.size(), out);
 
  }
 
  return copy_str<char>(in.data(), in.data() + in.size(), out);
 
}
 

	
 
template <typename Char, typename OutputIt,
 
          FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
 
auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
 
    -> OutputIt {
 
  codecvt_result<Char> unit;
 
  write_codecvt(unit, sv, loc);
 
  return copy_str<Char>(unit.buf, unit.end, out);
 
}
 

	
 
template <typename Char, typename OutputIt,
 
          FMT_ENABLE_IF(std::is_same<Char, char>::value)>
 
auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
 
    -> OutputIt {
 
  return write_encoded_tm_str(out, sv, loc);
 
}
 

	
 
template <typename Char>
 
inline void do_write(buffer<Char>& buf, const std::tm& time,
 
                     const std::locale& loc, char format, char modifier) {
 
  auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf);
 
  auto&& os = std::basic_ostream<Char>(&format_buf);
 
  os.imbue(loc);
 
  using iterator = std::ostreambuf_iterator<Char>;
 
  const auto& facet = std::use_facet<std::time_put<Char, iterator>>(loc);
 
  auto end = facet.put(os, os, Char(' '), &time, format, modifier);
 
  if (end.failed()) FMT_THROW(format_error("failed to format time"));
 
}
 

	
 
template <typename Char, typename OutputIt,
 
          FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
 
auto write(OutputIt out, const std::tm& time, const std::locale& loc,
 
           char format, char modifier = 0) -> OutputIt {
 
  auto&& buf = get_buffer<Char>(out);
 
  do_write<Char>(buf, time, loc, format, modifier);
 
  return get_iterator(buf, out);
 
}
 

	
 
template <typename Char, typename OutputIt,
 
          FMT_ENABLE_IF(std::is_same<Char, char>::value)>
 
auto write(OutputIt out, const std::tm& time, const std::locale& loc,
 
           char format, char modifier = 0) -> OutputIt {
 
  auto&& buf = basic_memory_buffer<Char>();
 
  do_write<char>(buf, time, loc, format, modifier);
 
  return write_encoded_tm_str(out, string_view(buf.data(), buf.size()), loc);
 
}
 

	
 
}  // namespace detail
 

	
 
FMT_BEGIN_EXPORT
 

	
 
/**
 
  Converts given time since epoch as ``std::time_t`` value into calendar time,
 
  expressed in local time. Unlike ``std::localtime``, this function is
 
  thread-safe on most platforms.
 
 */
 
inline std::tm localtime(std::time_t time) {
 
  struct dispatcher {
 
    std::time_t time_;
 
    std::tm tm_;
 

	
 
    dispatcher(std::time_t t) : time_(t) {}
 

	
 
    bool run() {
 
      using namespace fmt::detail;
 
      return handle(localtime_r(&time_, &tm_));
 
    }
 

	
 
    bool handle(std::tm* tm) { return tm != nullptr; }
 

	
 
    bool handle(detail::null<>) {
 
      using namespace fmt::detail;
 
      return fallback(localtime_s(&tm_, &time_));
 
    }
 

	
 
    bool fallback(int res) { return res == 0; }
 

	
 
#if !FMT_MSC_VERSION
 
    bool fallback(detail::null<>) {
 
      using namespace fmt::detail;
 
      std::tm* tm = std::localtime(&time_);
 
      if (tm) tm_ = *tm;
 
      return tm != nullptr;
 
    }
 
#endif
 
  };
 
  dispatcher lt(time);
 
  // Too big time values may be unsupported.
 
  if (!lt.run()) FMT_THROW(format_error("time_t value out of range"));
 
  return lt.tm_;
 
}
 

	
 
#if FMT_USE_LOCAL_TIME
 
template <typename Duration>
 
inline auto localtime(std::chrono::local_time<Duration> time) -> std::tm {
 
  return localtime(std::chrono::system_clock::to_time_t(
 
      std::chrono::current_zone()->to_sys(time)));
 
}
 
#endif
 

	
 
/**
 
  Converts given time since epoch as ``std::time_t`` value into calendar time,
 
  expressed in Coordinated Universal Time (UTC). Unlike ``std::gmtime``, this
 
  function is thread-safe on most platforms.
 
 */
 
inline std::tm gmtime(std::time_t time) {
 
  struct dispatcher {
 
    std::time_t time_;
 
    std::tm tm_;
 

	
 
    dispatcher(std::time_t t) : time_(t) {}
 

	
 
    bool run() {
 
      using namespace fmt::detail;
 
      return handle(gmtime_r(&time_, &tm_));
 
    }
 

	
 
    bool handle(std::tm* tm) { return tm != nullptr; }
 

	
 
    bool handle(detail::null<>) {
 
      using namespace fmt::detail;
 
      return fallback(gmtime_s(&tm_, &time_));
 
    }
 

	
 
    bool fallback(int res) { return res == 0; }
 

	
 
#if !FMT_MSC_VERSION
 
    bool fallback(detail::null<>) {
 
      std::tm* tm = std::gmtime(&time_);
 
      if (tm) tm_ = *tm;
 
      return tm != nullptr;
 
    }
 
#endif
 
  };
 
  dispatcher gt(time);
 
  // Too big time values may be unsupported.
 
  if (!gt.run()) FMT_THROW(format_error("time_t value out of range"));
 
  return gt.tm_;
 
}
 

	
 
inline std::tm gmtime(
 
    std::chrono::time_point<std::chrono::system_clock> time_point) {
 
  return gmtime(std::chrono::system_clock::to_time_t(time_point));
 
}
 

	
 
FMT_BEGIN_DETAIL_NAMESPACE
 

	
 
// DEPRECATED!
 
template <typename Char>
 
FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
 
                               format_specs<Char>& specs) -> const Char* {
 
  FMT_ASSERT(begin != end, "");
 
  auto align = align::none;
 
  auto p = begin + code_point_length(begin);
 
  if (end - p <= 0) p = begin;
 
  for (;;) {
 
    switch (to_ascii(*p)) {
 
    case '<':
 
      align = align::left;
 
      break;
 
    case '>':
 
      align = align::right;
 
      break;
 
    case '^':
 
      align = align::center;
 
      break;
 
    }
 
    if (align != align::none) {
 
      if (p != begin) {
 
        auto c = *begin;
 
        if (c == '}') return begin;
 
        if (c == '{') {
 
          throw_format_error("invalid fill character '{'");
 
          return begin;
 
        }
 
        specs.fill = {begin, to_unsigned(p - begin)};
 
        begin = p + 1;
 
      } else {
 
        ++begin;
 
      }
 
      break;
 
    } else if (p == begin) {
 
      break;
 
    }
 
    p = begin;
 
  }
 
  specs.align = align;
 
  return begin;
 
}
 

	
 
// Writes two-digit numbers a, b and c separated by sep to buf.
 
// The method by Pavel Novikov based on
 
// https://johnnylee-sde.github.io/Fast-unsigned-integer-to-time-string/.
 
inline void write_digit2_separated(char* buf, unsigned a, unsigned b,
 
                                   unsigned c, char sep) {
 
  unsigned long long digits =
 
      a | (b << 24) | (static_cast<unsigned long long>(c) << 48);
 
  // Convert each value to BCD.
 
  // We have x = a * 10 + b and we want to convert it to BCD y = a * 16 + b.
 
  // The difference is
 
  //   y - x = a * 6
 
  // a can be found from x:
 
  //   a = floor(x / 10)
 
  // then
 
  //   y = x + a * 6 = x + floor(x / 10) * 6
 
  // floor(x / 10) is (x * 205) >> 11 (needs 16 bits).
 
  digits += (((digits * 205) >> 11) & 0x000f00000f00000f) * 6;
 
  // Put low nibbles to high bytes and high nibbles to low bytes.
 
  digits = ((digits & 0x00f00000f00000f0) >> 4) |
 
           ((digits & 0x000f00000f00000f) << 8);
 
  auto usep = static_cast<unsigned long long>(sep);
 
  // Add ASCII '0' to each digit byte and insert separators.
 
  digits |= 0x3030003030003030 | (usep << 16) | (usep << 40);
 

	
 
  constexpr const size_t len = 8;
 
  if (const_check(is_big_endian())) {
 
    char tmp[len];
 
    std::memcpy(tmp, &digits, len);
 
    std::reverse_copy(tmp, tmp + len, buf);
 
  } else {
 
    std::memcpy(buf, &digits, len);
 
  }
 
}
 

	
 
template <typename Period> FMT_CONSTEXPR inline const char* get_units() {
 
  if (std::is_same<Period, std::atto>::value) return "as";
 
  if (std::is_same<Period, std::femto>::value) return "fs";
 
  if (std::is_same<Period, std::pico>::value) return "ps";
 
  if (std::is_same<Period, std::nano>::value) return "ns";
 
  if (std::is_same<Period, std::micro>::value) return "µs";
 
  if (std::is_same<Period, std::milli>::value) return "ms";
 
  if (std::is_same<Period, std::centi>::value) return "cs";
 
  if (std::is_same<Period, std::deci>::value) return "ds";
 
  if (std::is_same<Period, std::ratio<1>>::value) return "s";
 
  if (std::is_same<Period, std::deca>::value) return "das";
 
  if (std::is_same<Period, std::hecto>::value) return "hs";
 
  if (std::is_same<Period, std::kilo>::value) return "ks";
 
  if (std::is_same<Period, std::mega>::value) return "Ms";
 
  if (std::is_same<Period, std::giga>::value) return "Gs";
 
  if (std::is_same<Period, std::tera>::value) return "Ts";
 
  if (std::is_same<Period, std::peta>::value) return "Ps";
 
  if (std::is_same<Period, std::exa>::value) return "Es";
 
  if (std::is_same<Period, std::ratio<60>>::value) return "m";
 
  if (std::is_same<Period, std::ratio<3600>>::value) return "h";
 
  return nullptr;
 
}
 

	
 
enum class numeric_system {
 
  standard,
 
  // Alternative numeric system, e.g. 十二 instead of 12 in ja_JP locale.
 
  alternative
 
};
 

	
 
// Glibc extensions for formatting numeric values.
 
enum class pad_type {
 
  unspecified,
 
  // Do not pad a numeric result string.
 
  none,
 
  // Pad a numeric result string with zeros even if the conversion specifier
 
  // character uses space-padding by default.
 
  zero,
 
  // Pad a numeric result string with spaces.
 
  space,
 
};
 

	
 
template <typename OutputIt>
 
auto write_padding(OutputIt out, pad_type pad, int width) -> OutputIt {
 
  if (pad == pad_type::none) return out;
 
  return std::fill_n(out, width, pad == pad_type::space ? ' ' : '0');
 
}
 

	
 
template <typename OutputIt>
 
auto write_padding(OutputIt out, pad_type pad) -> OutputIt {
 
  if (pad != pad_type::none) *out++ = pad == pad_type::space ? ' ' : '0';
 
  return out;
 
}
 

	
 
// Parses a put_time-like format string and invokes handler actions.
 
template <typename Char, typename Handler>
 
FMT_CONSTEXPR const Char* parse_chrono_format(const Char* begin,
 
                                              const Char* end,
 
                                              Handler&& handler) {
 
  if (begin == end || *begin == '}') return begin;
 
  if (*begin != '%') FMT_THROW(format_error("invalid format"));
 
  auto ptr = begin;
 
  pad_type pad = pad_type::unspecified;
 
  while (ptr != end) {
 
    auto c = *ptr;
 
    if (c == '}') break;
 
    if (c != '%') {
 
      ++ptr;
 
      continue;
 
    }
 
    if (begin != ptr) handler.on_text(begin, ptr);
 
    ++ptr;  // consume '%'
 
    if (ptr == end) FMT_THROW(format_error("invalid format"));
 
    c = *ptr;
 
    switch (c) {
 
    case '_':
 
      pad = pad_type::space;
 
      ++ptr;
 
      break;
 
    case '-':
 
      pad = pad_type::none;
 
      ++ptr;
 
      break;
 
    case '0':
 
      pad = pad_type::zero;
 
      ++ptr;
 
      break;
 
    }
 
    if (ptr == end) FMT_THROW(format_error("invalid format"));
 
    c = *ptr++;
 
    switch (c) {
 
    case '%':
 
      handler.on_text(ptr - 1, ptr);
 
      break;
 
    case 'n': {
 
      const Char newline[] = {'\n'};
 
      handler.on_text(newline, newline + 1);
 
      break;
 
    }
 
    case 't': {
 
      const Char tab[] = {'\t'};
 
      handler.on_text(tab, tab + 1);
 
      break;
 
    }
 
    // Year:
 
    case 'Y':
 
      handler.on_year(numeric_system::standard);
 
      break;
 
    case 'y':
 
      handler.on_short_year(numeric_system::standard);
 
      break;
 
    case 'C':
 
      handler.on_century(numeric_system::standard);
 
      break;
 
    case 'G':
 
      handler.on_iso_week_based_year();
 
      break;
 
    case 'g':
 
      handler.on_iso_week_based_short_year();
 
      break;
 
    // Day of the week:
 
    case 'a':
 
      handler.on_abbr_weekday();
 
      break;
 
    case 'A':
 
      handler.on_full_weekday();
 
      break;
 
    case 'w':
 
      handler.on_dec0_weekday(numeric_system::standard);
 
      break;
 
    case 'u':
 
      handler.on_dec1_weekday(numeric_system::standard);
 
      break;
 
    // Month:
 
    case 'b':
 
    case 'h':
 
      handler.on_abbr_month();
 
      break;
 
    case 'B':
 
      handler.on_full_month();
 
      break;
 
    case 'm':
 
      handler.on_dec_month(numeric_system::standard);
 
      break;
 
    // Day of the year/month:
 
    case 'U':
 
      handler.on_dec0_week_of_year(numeric_system::standard);
 
      break;
 
    case 'W':
 
      handler.on_dec1_week_of_year(numeric_system::standard);
 
      break;
 
    case 'V':
 
      handler.on_iso_week_of_year(numeric_system::standard);
 
      break;
 
    case 'j':
 
      handler.on_day_of_year();
 
      break;
 
    case 'd':
 
      handler.on_day_of_month(numeric_system::standard);
 
      break;
 
    case 'e':
 
      handler.on_day_of_month_space(numeric_system::standard);
 
      break;
 
    // Hour, minute, second:
 
    case 'H':
 
      handler.on_24_hour(numeric_system::standard, pad);
 
      break;
 
    case 'I':
 
      handler.on_12_hour(numeric_system::standard, pad);
 
      break;
 
    case 'M':
 
      handler.on_minute(numeric_system::standard, pad);
 
      break;
 
    case 'S':
 
      handler.on_second(numeric_system::standard, pad);
 
      break;
 
    // Other:
 
    case 'c':
 
      handler.on_datetime(numeric_system::standard);
 
      break;
 
    case 'x':
 
      handler.on_loc_date(numeric_system::standard);
 
      break;
 
    case 'X':
 
      handler.on_loc_time(numeric_system::standard);
 
      break;
 
    case 'D':
 
      handler.on_us_date();
 
      break;
 
    case 'F':
 
      handler.on_iso_date();
 
      break;
 
    case 'r':
 
      handler.on_12_hour_time();
 
      break;
 
    case 'R':
 
      handler.on_24_hour_time();
 
      break;
 
    case 'T':
 
      handler.on_iso_time();
 
      break;
 
    case 'p':
 
      handler.on_am_pm();
 
      break;
 
    case 'Q':
 
      handler.on_duration_value();
 
      break;
 
    case 'q':
 
      handler.on_duration_unit();
 
      break;
 
    case 'z':
 
      handler.on_utc_offset(numeric_system::standard);
 
      break;
 
    case 'Z':
 
      handler.on_tz_name();
 
      break;
 
    // Alternative representation:
 
    case 'E': {
 
      if (ptr == end) FMT_THROW(format_error("invalid format"));
 
      c = *ptr++;
 
      switch (c) {
 
      case 'Y':
 
        handler.on_year(numeric_system::alternative);
 
        break;
 
      case 'y':
 
        handler.on_offset_year();
 
        break;
 
      case 'C':
 
        handler.on_century(numeric_system::alternative);
 
        break;
 
      case 'c':
 
        handler.on_datetime(numeric_system::alternative);
 
        break;
 
      case 'x':
 
        handler.on_loc_date(numeric_system::alternative);
 
        break;
 
      case 'X':
 
        handler.on_loc_time(numeric_system::alternative);
 
        break;
 
      case 'z':
 
        handler.on_utc_offset(numeric_system::alternative);
 
        break;
 
      default:
 
        FMT_THROW(format_error("invalid format"));
 
      }
 
      break;
 
    }
 
    case 'O':
 
      if (ptr == end) FMT_THROW(format_error("invalid format"));
 
      c = *ptr++;
 
      switch (c) {
 
      case 'y':
 
        handler.on_short_year(numeric_system::alternative);
 
        break;
 
      case 'm':
 
        handler.on_dec_month(numeric_system::alternative);
 
        break;
 
      case 'U':
 
        handler.on_dec0_week_of_year(numeric_system::alternative);
 
        break;
 
      case 'W':
 
        handler.on_dec1_week_of_year(numeric_system::alternative);
 
        break;
 
      case 'V':
 
        handler.on_iso_week_of_year(numeric_system::alternative);
 
        break;
 
      case 'd':
 
        handler.on_day_of_month(numeric_system::alternative);
 
        break;
 
      case 'e':
 
        handler.on_day_of_month_space(numeric_system::alternative);
 
        break;
 
      case 'w':
 
        handler.on_dec0_weekday(numeric_system::alternative);
 
        break;
 
      case 'u':
 
        handler.on_dec1_weekday(numeric_system::alternative);
 
        break;
 
      case 'H':
 
        handler.on_24_hour(numeric_system::alternative, pad);
 
        break;
 
      case 'I':
 
        handler.on_12_hour(numeric_system::alternative, pad);
 
        break;
 
      case 'M':
 
        handler.on_minute(numeric_system::alternative, pad);
 
        break;
 
      case 'S':
 
        handler.on_second(numeric_system::alternative, pad);
 
        break;
 
      case 'z':
 
        handler.on_utc_offset(numeric_system::alternative);
 
        break;
 
      default:
 
        FMT_THROW(format_error("invalid format"));
 
      }
 
      break;
 
    default:
 
      FMT_THROW(format_error("invalid format"));
 
    }
 
    begin = ptr;
 
  }
 
  if (begin != ptr) handler.on_text(begin, ptr);
 
  return ptr;
 
}
 

	
 
template <typename Derived> struct null_chrono_spec_handler {
 
  FMT_CONSTEXPR void unsupported() {
 
    static_cast<Derived*>(this)->unsupported();
 
  }
 
  FMT_CONSTEXPR void on_year(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_short_year(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_offset_year() { unsupported(); }
 
  FMT_CONSTEXPR void on_century(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_iso_week_based_year() { unsupported(); }
 
  FMT_CONSTEXPR void on_iso_week_based_short_year() { unsupported(); }
 
  FMT_CONSTEXPR void on_abbr_weekday() { unsupported(); }
 
  FMT_CONSTEXPR void on_full_weekday() { unsupported(); }
 
  FMT_CONSTEXPR void on_dec0_weekday(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_dec1_weekday(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_abbr_month() { unsupported(); }
 
  FMT_CONSTEXPR void on_full_month() { unsupported(); }
 
  FMT_CONSTEXPR void on_dec_month(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_day_of_year() { unsupported(); }
 
  FMT_CONSTEXPR void on_day_of_month(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_day_of_month_space(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_24_hour(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_12_hour(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_minute(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_second(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_datetime(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_loc_date(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_loc_time(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_us_date() { unsupported(); }
 
  FMT_CONSTEXPR void on_iso_date() { unsupported(); }
 
  FMT_CONSTEXPR void on_12_hour_time() { unsupported(); }
 
  FMT_CONSTEXPR void on_24_hour_time() { unsupported(); }
 
  FMT_CONSTEXPR void on_iso_time() { unsupported(); }
 
  FMT_CONSTEXPR void on_am_pm() { unsupported(); }
 
  FMT_CONSTEXPR void on_duration_value() { unsupported(); }
 
  FMT_CONSTEXPR void on_duration_unit() { unsupported(); }
 
  FMT_CONSTEXPR void on_utc_offset(numeric_system) { unsupported(); }
 
  FMT_CONSTEXPR void on_tz_name() { unsupported(); }
 
};
 

	
 
struct tm_format_checker : null_chrono_spec_handler<tm_format_checker> {
 
  FMT_NORETURN void unsupported() { FMT_THROW(format_error("no format")); }
 

	
 
  template <typename Char>
 
  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
 
  FMT_CONSTEXPR void on_year(numeric_system) {}
 
  FMT_CONSTEXPR void on_short_year(numeric_system) {}
 
  FMT_CONSTEXPR void on_offset_year() {}
 
  FMT_CONSTEXPR void on_century(numeric_system) {}
 
  FMT_CONSTEXPR void on_iso_week_based_year() {}
 
  FMT_CONSTEXPR void on_iso_week_based_short_year() {}
 
  FMT_CONSTEXPR void on_abbr_weekday() {}
 
  FMT_CONSTEXPR void on_full_weekday() {}
 
  FMT_CONSTEXPR void on_dec0_weekday(numeric_system) {}
 
  FMT_CONSTEXPR void on_dec1_weekday(numeric_system) {}
 
  FMT_CONSTEXPR void on_abbr_month() {}
 
  FMT_CONSTEXPR void on_full_month() {}
 
  FMT_CONSTEXPR void on_dec_month(numeric_system) {}
 
  FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) {}
 
  FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) {}
 
  FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) {}
 
  FMT_CONSTEXPR void on_day_of_year() {}
 
  FMT_CONSTEXPR void on_day_of_month(numeric_system) {}
 
  FMT_CONSTEXPR void on_day_of_month_space(numeric_system) {}
 
  FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_second(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_datetime(numeric_system) {}
 
  FMT_CONSTEXPR void on_loc_date(numeric_system) {}
 
  FMT_CONSTEXPR void on_loc_time(numeric_system) {}
 
  FMT_CONSTEXPR void on_us_date() {}
 
  FMT_CONSTEXPR void on_iso_date() {}
 
  FMT_CONSTEXPR void on_12_hour_time() {}
 
  FMT_CONSTEXPR void on_24_hour_time() {}
 
  FMT_CONSTEXPR void on_iso_time() {}
 
  FMT_CONSTEXPR void on_am_pm() {}
 
  FMT_CONSTEXPR void on_utc_offset(numeric_system) {}
 
  FMT_CONSTEXPR void on_tz_name() {}
 
};
 

	
 
inline const char* tm_wday_full_name(int wday) {
 
  static constexpr const char* full_name_list[] = {
 
      "Sunday",   "Monday", "Tuesday", "Wednesday",
 
      "Thursday", "Friday", "Saturday"};
 
  return wday >= 0 && wday <= 6 ? full_name_list[wday] : "?";
 
}
 
inline const char* tm_wday_short_name(int wday) {
 
  static constexpr const char* short_name_list[] = {"Sun", "Mon", "Tue", "Wed",
 
                                                    "Thu", "Fri", "Sat"};
 
  return wday >= 0 && wday <= 6 ? short_name_list[wday] : "???";
 
}
 

	
 
inline const char* tm_mon_full_name(int mon) {
 
  static constexpr const char* full_name_list[] = {
 
      "January", "February", "March",     "April",   "May",      "June",
 
      "July",    "August",   "September", "October", "November", "December"};
 
  return mon >= 0 && mon <= 11 ? full_name_list[mon] : "?";
 
}
 
inline const char* tm_mon_short_name(int mon) {
 
  static constexpr const char* short_name_list[] = {
 
      "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 
      "Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
 
  };
 
  return mon >= 0 && mon <= 11 ? short_name_list[mon] : "???";
 
}
 

	
 
template <typename T, typename = void>
 
struct has_member_data_tm_gmtoff : std::false_type {};
 
template <typename T>
 
struct has_member_data_tm_gmtoff<T, void_t<decltype(T::tm_gmtoff)>>
 
    : std::true_type {};
 

	
 
template <typename T, typename = void>
 
struct has_member_data_tm_zone : std::false_type {};
 
template <typename T>
 
struct has_member_data_tm_zone<T, void_t<decltype(T::tm_zone)>>
 
    : std::true_type {};
 

	
 
#if FMT_USE_TZSET
 
inline void tzset_once() {
 
  static bool init = []() -> bool {
 
    _tzset();
 
    return true;
 
  }();
 
  ignore_unused(init);
 
}
 
#endif
 

	
 
// Converts value to Int and checks that it's in the range [0, upper).
 
template <typename T, typename Int, FMT_ENABLE_IF(std::is_integral<T>::value)>
 
inline Int to_nonnegative_int(T value, Int upper) {
 
  FMT_ASSERT(std::is_unsigned<Int>::value ||
 
                 (value >= 0 && to_unsigned(value) <= to_unsigned(upper)),
 
             "invalid value");
 
  (void)upper;
 
  return static_cast<Int>(value);
 
}
 
template <typename T, typename Int, FMT_ENABLE_IF(!std::is_integral<T>::value)>
 
inline Int to_nonnegative_int(T value, Int upper) {
 
  if (value < 0 || value > static_cast<T>(upper))
 
    FMT_THROW(format_error("invalid value"));
 
  return static_cast<Int>(value);
 
}
 

	
 
constexpr long long pow10(std::uint32_t n) {
 
  return n == 0 ? 1 : 10 * pow10(n - 1);
 
}
 

	
 
// Counts the number of fractional digits in the range [0, 18] according to the
 
// C++20 spec. If more than 18 fractional digits are required then returns 6 for
 
// microseconds precision.
 
template <long long Num, long long Den, int N = 0,
 
          bool Enabled = (N < 19) && (Num <= max_value<long long>() / 10)>
 
struct count_fractional_digits {
 
  static constexpr int value =
 
      Num % Den == 0 ? N : count_fractional_digits<Num * 10, Den, N + 1>::value;
 
};
 

	
 
// Base case that doesn't instantiate any more templates
 
// in order to avoid overflow.
 
template <long long Num, long long Den, int N>
 
struct count_fractional_digits<Num, Den, N, false> {
 
  static constexpr int value = (Num % Den == 0) ? N : 6;
 
};
 

	
 
// Format subseconds which are given as an integer type with an appropriate
 
// number of digits.
 
template <typename Char, typename OutputIt, typename Duration>
 
void write_fractional_seconds(OutputIt& out, Duration d, int precision = -1) {
 
  constexpr auto num_fractional_digits =
 
      count_fractional_digits<Duration::period::num,
 
                              Duration::period::den>::value;
 

	
 
  using subsecond_precision = std::chrono::duration<
 
      typename std::common_type<typename Duration::rep,
 
                                std::chrono::seconds::rep>::type,
 
      std::ratio<1, detail::pow10(num_fractional_digits)>>;
 

	
 
  const auto fractional =
 
      d - std::chrono::duration_cast<std::chrono::seconds>(d);
 
  const auto subseconds =
 
      std::chrono::treat_as_floating_point<
 
          typename subsecond_precision::rep>::value
 
          ? fractional.count()
 
          : std::chrono::duration_cast<subsecond_precision>(fractional).count();
 
  auto n = static_cast<uint32_or_64_or_128_t<long long>>(subseconds);
 
  const int num_digits = detail::count_digits(n);
 

	
 
  int leading_zeroes = (std::max)(0, num_fractional_digits - num_digits);
 
  if (precision < 0) {
 
    FMT_ASSERT(!std::is_floating_point<typename Duration::rep>::value, "");
 
    if (std::ratio_less<typename subsecond_precision::period,
 
                        std::chrono::seconds::period>::value) {
 
      *out++ = '.';
 
      out = std::fill_n(out, leading_zeroes, '0');
 
      out = format_decimal<Char>(out, n, num_digits).end;
 
    }
 
  } else {
 
    *out++ = '.';
 
    leading_zeroes = (std::min)(leading_zeroes, precision);
 
    out = std::fill_n(out, leading_zeroes, '0');
 
    int remaining = precision - leading_zeroes;
 
    if (remaining != 0 && remaining < num_digits) {
 
      n /= to_unsigned(detail::pow10(to_unsigned(num_digits - remaining)));
 
      out = format_decimal<Char>(out, n, remaining).end;
 
      return;
 
    }
 
    out = format_decimal<Char>(out, n, num_digits).end;
 
    remaining -= num_digits;
 
    out = std::fill_n(out, remaining, '0');
 
  }
 
}
 

	
 
// Format subseconds which are given as a floating point type with an
 
// appropriate number of digits. We cannot pass the Duration here, as we
 
// explicitly need to pass the Rep value in the chrono_formatter.
 
template <typename Duration>
 
void write_floating_seconds(memory_buffer& buf, Duration duration,
 
                            int num_fractional_digits = -1) {
 
  using rep = typename Duration::rep;
 
  FMT_ASSERT(std::is_floating_point<rep>::value, "");
 

	
 
  auto val = duration.count();
 

	
 
  if (num_fractional_digits < 0) {
 
    // For `std::round` with fallback to `round`:
 
    // On some toolchains `std::round` is not available (e.g. GCC 6).
 
    using namespace std;
 
    num_fractional_digits =
 
        count_fractional_digits<Duration::period::num,
 
                                Duration::period::den>::value;
 
    if (num_fractional_digits < 6 && static_cast<rep>(round(val)) != val)
 
      num_fractional_digits = 6;
 
  }
 

	
 
  format_to(std::back_inserter(buf), FMT_STRING("{:.{}f}"),
 
            std::fmod(val * static_cast<rep>(Duration::period::num) /
 
                          static_cast<rep>(Duration::period::den),
 
                      static_cast<rep>(60)),
 
            num_fractional_digits);
 
}
 

	
 
template <typename OutputIt, typename Char,
 
          typename Duration = std::chrono::seconds>
 
class tm_writer {
 
 private:
 
  static constexpr int days_per_week = 7;
 

	
 
  const std::locale& loc_;
 
  const bool is_classic_;
 
  OutputIt out_;
 
  const Duration* subsecs_;
 
  const std::tm& tm_;
 

	
 
  auto tm_sec() const noexcept -> int {
 
    FMT_ASSERT(tm_.tm_sec >= 0 && tm_.tm_sec <= 61, "");
 
    return tm_.tm_sec;
 
  }
 
  auto tm_min() const noexcept -> int {
 
    FMT_ASSERT(tm_.tm_min >= 0 && tm_.tm_min <= 59, "");
 
    return tm_.tm_min;
 
  }
 
  auto tm_hour() const noexcept -> int {
 
    FMT_ASSERT(tm_.tm_hour >= 0 && tm_.tm_hour <= 23, "");
 
    return tm_.tm_hour;
 
  }
 
  auto tm_mday() const noexcept -> int {
 
    FMT_ASSERT(tm_.tm_mday >= 1 && tm_.tm_mday <= 31, "");
 
    return tm_.tm_mday;
 
  }
 
  auto tm_mon() const noexcept -> int {
 
    FMT_ASSERT(tm_.tm_mon >= 0 && tm_.tm_mon <= 11, "");
 
    return tm_.tm_mon;
 
  }
 
  auto tm_year() const noexcept -> long long { return 1900ll + tm_.tm_year; }
 
  auto tm_wday() const noexcept -> int {
 
    FMT_ASSERT(tm_.tm_wday >= 0 && tm_.tm_wday <= 6, "");
 
    return tm_.tm_wday;
 
  }
 
  auto tm_yday() const noexcept -> int {
 
    FMT_ASSERT(tm_.tm_yday >= 0 && tm_.tm_yday <= 365, "");
 
    return tm_.tm_yday;
 
  }
 

	
 
  auto tm_hour12() const noexcept -> int {
 
    const auto h = tm_hour();
 
    const auto z = h < 12 ? h : h - 12;
 
    return z == 0 ? 12 : z;
 
  }
 

	
 
  // POSIX and the C Standard are unclear or inconsistent about what %C and %y
 
  // do if the year is negative or exceeds 9999. Use the convention that %C
 
  // concatenated with %y yields the same output as %Y, and that %Y contains at
 
  // least 4 characters, with more only if necessary.
 
  auto split_year_lower(long long year) const noexcept -> int {
 
    auto l = year % 100;
 
    if (l < 0) l = -l;  // l in [0, 99]
 
    return static_cast<int>(l);
 
  }
 

	
 
  // Algorithm:
 
  // https://en.wikipedia.org/wiki/ISO_week_date#Calculating_the_week_number_from_a_month_and_day_of_the_month_or_ordinal_date
 
  auto iso_year_weeks(long long curr_year) const noexcept -> int {
 
    const auto prev_year = curr_year - 1;
 
    const auto curr_p =
 
        (curr_year + curr_year / 4 - curr_year / 100 + curr_year / 400) %
 
        days_per_week;
 
    const auto prev_p =
 
        (prev_year + prev_year / 4 - prev_year / 100 + prev_year / 400) %
 
        days_per_week;
 
    return 52 + ((curr_p == 4 || prev_p == 3) ? 1 : 0);
 
  }
 
  auto iso_week_num(int tm_yday, int tm_wday) const noexcept -> int {
 
    return (tm_yday + 11 - (tm_wday == 0 ? days_per_week : tm_wday)) /
 
           days_per_week;
 
  }
 
  auto tm_iso_week_year() const noexcept -> long long {
 
    const auto year = tm_year();
 
    const auto w = iso_week_num(tm_yday(), tm_wday());
 
    if (w < 1) return year - 1;
 
    if (w > iso_year_weeks(year)) return year + 1;
 
    return year;
 
  }
 
  auto tm_iso_week_of_year() const noexcept -> int {
 
    const auto year = tm_year();
 
    const auto w = iso_week_num(tm_yday(), tm_wday());
 
    if (w < 1) return iso_year_weeks(year - 1);
 
    if (w > iso_year_weeks(year)) return 1;
 
    return w;
 
  }
 

	
 
  void write1(int value) {
 
    *out_++ = static_cast<char>('0' + to_unsigned(value) % 10);
 
  }
 
  void write2(int value) {
 
    const char* d = digits2(to_unsigned(value) % 100);
 
    *out_++ = *d++;
 
    *out_++ = *d;
 
  }
 
  void write2(int value, pad_type pad) {
 
    unsigned int v = to_unsigned(value) % 100;
 
    if (v >= 10) {
 
      const char* d = digits2(v);
 
      *out_++ = *d++;
 
      *out_++ = *d;
 
    } else {
 
      out_ = detail::write_padding(out_, pad);
 
      *out_++ = static_cast<char>('0' + v);
 
    }
 
  }
 

	
 
  void write_year_extended(long long year) {
 
    // At least 4 characters.
 
    int width = 4;
 
    if (year < 0) {
 
      *out_++ = '-';
 
      year = 0 - year;
 
      --width;
 
    }
 
    uint32_or_64_or_128_t<long long> n = to_unsigned(year);
 
    const int num_digits = count_digits(n);
 
    if (width > num_digits) out_ = std::fill_n(out_, width - num_digits, '0');
 
    out_ = format_decimal<Char>(out_, n, num_digits).end;
 
  }
 
  void write_year(long long year) {
 
    if (year >= 0 && year < 10000) {
 
      write2(static_cast<int>(year / 100));
 
      write2(static_cast<int>(year % 100));
 
    } else {
 
      write_year_extended(year);
 
    }
 
  }
 

	
 
  void write_utc_offset(long offset, numeric_system ns) {
 
    if (offset < 0) {
 
      *out_++ = '-';
 
      offset = -offset;
 
    } else {
 
      *out_++ = '+';
 
    }
 
    offset /= 60;
 
    write2(static_cast<int>(offset / 60));
 
    if (ns != numeric_system::standard) *out_++ = ':';
 
    write2(static_cast<int>(offset % 60));
 
  }
 
  template <typename T, FMT_ENABLE_IF(has_member_data_tm_gmtoff<T>::value)>
 
  void format_utc_offset_impl(const T& tm, numeric_system ns) {
 
    write_utc_offset(tm.tm_gmtoff, ns);
 
  }
 
  template <typename T, FMT_ENABLE_IF(!has_member_data_tm_gmtoff<T>::value)>
 
  void format_utc_offset_impl(const T& tm, numeric_system ns) {
 
#if defined(_WIN32) && defined(_UCRT)
 
#  if FMT_USE_TZSET
 
    tzset_once();
 
#  endif
 
    long offset = 0;
 
    _get_timezone(&offset);
 
    if (tm.tm_isdst) {
 
      long dstbias = 0;
 
      _get_dstbias(&dstbias);
 
      offset += dstbias;
 
    }
 
    write_utc_offset(-offset, ns);
 
#else
 
    if (ns == numeric_system::standard) return format_localized('z');
 

	
 
    // Extract timezone offset from timezone conversion functions.
 
    std::tm gtm = tm;
 
    std::time_t gt = std::mktime(&gtm);
 
    std::tm ltm = gmtime(gt);
 
    std::time_t lt = std::mktime(&ltm);
 
    long offset = gt - lt;
 
    write_utc_offset(offset, ns);
 
#endif
 
  }
 

	
 
  template <typename T, FMT_ENABLE_IF(has_member_data_tm_zone<T>::value)>
 
  void format_tz_name_impl(const T& tm) {
 
    if (is_classic_)
 
      out_ = write_tm_str<Char>(out_, tm.tm_zone, loc_);
 
    else
 
      format_localized('Z');
 
  }
 
  template <typename T, FMT_ENABLE_IF(!has_member_data_tm_zone<T>::value)>
 
  void format_tz_name_impl(const T&) {
 
    format_localized('Z');
 
  }
 

	
 
  void format_localized(char format, char modifier = 0) {
 
    out_ = write<Char>(out_, tm_, loc_, format, modifier);
 
  }
 

	
 
 public:
 
  tm_writer(const std::locale& loc, OutputIt out, const std::tm& tm,
 
            const Duration* subsecs = nullptr)
 
      : loc_(loc),
 
        is_classic_(loc_ == get_classic_locale()),
 
        out_(out),
 
        subsecs_(subsecs),
 
        tm_(tm) {}
 

	
 
  OutputIt out() const { return out_; }
 

	
 
  FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
 
    out_ = copy_str<Char>(begin, end, out_);
 
  }
 

	
 
  void on_abbr_weekday() {
 
    if (is_classic_)
 
      out_ = write(out_, tm_wday_short_name(tm_wday()));
 
    else
 
      format_localized('a');
 
  }
 
  void on_full_weekday() {
 
    if (is_classic_)
 
      out_ = write(out_, tm_wday_full_name(tm_wday()));
 
    else
 
      format_localized('A');
 
  }
 
  void on_dec0_weekday(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard) return write1(tm_wday());
 
    format_localized('w', 'O');
 
  }
 
  void on_dec1_weekday(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard) {
 
      auto wday = tm_wday();
 
      write1(wday == 0 ? days_per_week : wday);
 
    } else {
 
      format_localized('u', 'O');
 
    }
 
  }
 

	
 
  void on_abbr_month() {
 
    if (is_classic_)
 
      out_ = write(out_, tm_mon_short_name(tm_mon()));
 
    else
 
      format_localized('b');
 
  }
 
  void on_full_month() {
 
    if (is_classic_)
 
      out_ = write(out_, tm_mon_full_name(tm_mon()));
 
    else
 
      format_localized('B');
 
  }
 

	
 
  void on_datetime(numeric_system ns) {
 
    if (is_classic_) {
 
      on_abbr_weekday();
 
      *out_++ = ' ';
 
      on_abbr_month();
 
      *out_++ = ' ';
 
      on_day_of_month_space(numeric_system::standard);
 
      *out_++ = ' ';
 
      on_iso_time();
 
      *out_++ = ' ';
 
      on_year(numeric_system::standard);
 
    } else {
 
      format_localized('c', ns == numeric_system::standard ? '\0' : 'E');
 
    }
 
  }
 
  void on_loc_date(numeric_system ns) {
 
    if (is_classic_)
 
      on_us_date();
 
    else
 
      format_localized('x', ns == numeric_system::standard ? '\0' : 'E');
 
  }
 
  void on_loc_time(numeric_system ns) {
 
    if (is_classic_)
 
      on_iso_time();
 
    else
 
      format_localized('X', ns == numeric_system::standard ? '\0' : 'E');
 
  }
 
  void on_us_date() {
 
    char buf[8];
 
    write_digit2_separated(buf, to_unsigned(tm_mon() + 1),
 
                           to_unsigned(tm_mday()),
 
                           to_unsigned(split_year_lower(tm_year())), '/');
 
    out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
 
  }
 
  void on_iso_date() {
 
    auto year = tm_year();
 
    char buf[10];
 
    size_t offset = 0;
 
    if (year >= 0 && year < 10000) {
 
      copy2(buf, digits2(static_cast<size_t>(year / 100)));
 
    } else {
 
      offset = 4;
 
      write_year_extended(year);
 
      year = 0;
 
    }
 
    write_digit2_separated(buf + 2, static_cast<unsigned>(year % 100),
 
                           to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()),
 
                           '-');
 
    out_ = copy_str<Char>(std::begin(buf) + offset, std::end(buf), out_);
 
  }
 

	
 
  void on_utc_offset(numeric_system ns) { format_utc_offset_impl(tm_, ns); }
 
  void on_tz_name() { format_tz_name_impl(tm_); }
 

	
 
  void on_year(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard)
 
      return write_year(tm_year());
 
    format_localized('Y', 'E');
 
  }
 
  void on_short_year(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard)
 
      return write2(split_year_lower(tm_year()));
 
    format_localized('y', 'O');
 
  }
 
  void on_offset_year() {
 
    if (is_classic_) return write2(split_year_lower(tm_year()));
 
    format_localized('y', 'E');
 
  }
 

	
 
  void on_century(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard) {
 
      auto year = tm_year();
 
      auto upper = year / 100;
 
      if (year >= -99 && year < 0) {
 
        // Zero upper on negative year.
 
        *out_++ = '-';
 
        *out_++ = '0';
 
      } else if (upper >= 0 && upper < 100) {
 
        write2(static_cast<int>(upper));
 
      } else {
 
        out_ = write<Char>(out_, upper);
 
      }
 
    } else {
 
      format_localized('C', 'E');
 
    }
 
  }
 

	
 
  void on_dec_month(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard)
 
      return write2(tm_mon() + 1);
 
    format_localized('m', 'O');
 
  }
 

	
 
  void on_dec0_week_of_year(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard)
 
      return write2((tm_yday() + days_per_week - tm_wday()) / days_per_week);
 
    format_localized('U', 'O');
 
  }
 
  void on_dec1_week_of_year(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard) {
 
      auto wday = tm_wday();
 
      write2((tm_yday() + days_per_week -
 
              (wday == 0 ? (days_per_week - 1) : (wday - 1))) /
 
             days_per_week);
 
    } else {
 
      format_localized('W', 'O');
 
    }
 
  }
 
  void on_iso_week_of_year(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard)
 
      return write2(tm_iso_week_of_year());
 
    format_localized('V', 'O');
 
  }
 

	
 
  void on_iso_week_based_year() { write_year(tm_iso_week_year()); }
 
  void on_iso_week_based_short_year() {
 
    write2(split_year_lower(tm_iso_week_year()));
 
  }
 

	
 
  void on_day_of_year() {
 
    auto yday = tm_yday() + 1;
 
    write1(yday / 100);
 
    write2(yday % 100);
 
  }
 
  void on_day_of_month(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard) return write2(tm_mday());
 
    format_localized('d', 'O');
 
  }
 
  void on_day_of_month_space(numeric_system ns) {
 
    if (is_classic_ || ns == numeric_system::standard) {
 
      auto mday = to_unsigned(tm_mday()) % 100;
 
      const char* d2 = digits2(mday);
 
      *out_++ = mday < 10 ? ' ' : d2[0];
 
      *out_++ = d2[1];
 
    } else {
 
      format_localized('e', 'O');
 
    }
 
  }
 

	
 
  void on_24_hour(numeric_system ns, pad_type pad) {
 
    if (is_classic_ || ns == numeric_system::standard)
 
      return write2(tm_hour(), pad);
 
    format_localized('H', 'O');
 
  }
 
  void on_12_hour(numeric_system ns, pad_type pad) {
 
    if (is_classic_ || ns == numeric_system::standard)
 
      return write2(tm_hour12(), pad);
 
    format_localized('I', 'O');
 
  }
 
  void on_minute(numeric_system ns, pad_type pad) {
 
    if (is_classic_ || ns == numeric_system::standard)
 
      return write2(tm_min(), pad);
 
    format_localized('M', 'O');
 
  }
 

	
 
  void on_second(numeric_system ns, pad_type pad) {
 
    if (is_classic_ || ns == numeric_system::standard) {
 
      write2(tm_sec(), pad);
 
      if (subsecs_) {
 
        if (std::is_floating_point<typename Duration::rep>::value) {
 
          auto buf = memory_buffer();
 
          write_floating_seconds(buf, *subsecs_);
 
          if (buf.size() > 1) {
 
            // Remove the leading "0", write something like ".123".
 
            out_ = std::copy(buf.begin() + 1, buf.end(), out_);
 
          }
 
        } else {
 
          write_fractional_seconds<Char>(out_, *subsecs_);
 
        }
 
      }
 
    } else {
 
      // Currently no formatting of subseconds when a locale is set.
 
      format_localized('S', 'O');
 
    }
 
  }
 

	
 
  void on_12_hour_time() {
 
    if (is_classic_) {
 
      char buf[8];
 
      write_digit2_separated(buf, to_unsigned(tm_hour12()),
 
                             to_unsigned(tm_min()), to_unsigned(tm_sec()), ':');
 
      out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
 
      *out_++ = ' ';
 
      on_am_pm();
 
    } else {
 
      format_localized('r');
 
    }
 
  }
 
  void on_24_hour_time() {
 
    write2(tm_hour());
 
    *out_++ = ':';
 
    write2(tm_min());
 
  }
 
  void on_iso_time() {
 
    on_24_hour_time();
 
    *out_++ = ':';
 
    on_second(numeric_system::standard, pad_type::unspecified);
 
  }
 

	
 
  void on_am_pm() {
 
    if (is_classic_) {
 
      *out_++ = tm_hour() < 12 ? 'A' : 'P';
 
      *out_++ = 'M';
 
    } else {
 
      format_localized('p');
 
    }
 
  }
 

	
 
  // These apply to chrono durations but not tm.
 
  void on_duration_value() {}
 
  void on_duration_unit() {}
 
};
 

	
 
struct chrono_format_checker : null_chrono_spec_handler<chrono_format_checker> {
 
  bool has_precision_integral = false;
 

	
 
  FMT_NORETURN void unsupported() { FMT_THROW(format_error("no date")); }
 

	
 
  template <typename Char>
 
  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
 
  FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_second(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_12_hour_time() {}
 
  FMT_CONSTEXPR void on_24_hour_time() {}
 
  FMT_CONSTEXPR void on_iso_time() {}
 
  FMT_CONSTEXPR void on_am_pm() {}
 
  FMT_CONSTEXPR void on_duration_value() const {
 
    if (has_precision_integral) {
 
      FMT_THROW(format_error("precision not allowed for this argument type"));
 
    }
 
  }
 
  FMT_CONSTEXPR void on_duration_unit() {}
 
};
 

	
 
template <typename T,
 
          FMT_ENABLE_IF(std::is_integral<T>::value&& has_isfinite<T>::value)>
 
inline bool isfinite(T) {
 
  return true;
 
}
 

	
 
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
 
inline T mod(T x, int y) {
 
  return x % static_cast<T>(y);
 
}
 
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
 
inline T mod(T x, int y) {
 
  return std::fmod(x, static_cast<T>(y));
 
}
 

	
 
// If T is an integral type, maps T to its unsigned counterpart, otherwise
 
// leaves it unchanged (unlike std::make_unsigned).
 
template <typename T, bool INTEGRAL = std::is_integral<T>::value>
 
struct make_unsigned_or_unchanged {
 
  using type = T;
 
};
 

	
 
template <typename T> struct make_unsigned_or_unchanged<T, true> {
 
  using type = typename std::make_unsigned<T>::type;
 
};
 

	
 
#if FMT_SAFE_DURATION_CAST
 
// throwing version of safe_duration_cast
 
template <typename To, typename FromRep, typename FromPeriod>
 
To fmt_safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) {
 
  int ec;
 
  To to = safe_duration_cast::safe_duration_cast<To>(from, ec);
 
  if (ec) FMT_THROW(format_error("cannot format duration"));
 
  return to;
 
}
 
#endif
 

	
 
template <typename Rep, typename Period,
 
          FMT_ENABLE_IF(std::is_integral<Rep>::value)>
 
inline std::chrono::duration<Rep, std::milli> get_milliseconds(
 
    std::chrono::duration<Rep, Period> d) {
 
  // this may overflow and/or the result may not fit in the
 
  // target type.
 
#if FMT_SAFE_DURATION_CAST
 
  using CommonSecondsType =
 
      typename std::common_type<decltype(d), std::chrono::seconds>::type;
 
  const auto d_as_common = fmt_safe_duration_cast<CommonSecondsType>(d);
 
  const auto d_as_whole_seconds =
 
      fmt_safe_duration_cast<std::chrono::seconds>(d_as_common);
 
  // this conversion should be nonproblematic
 
  const auto diff = d_as_common - d_as_whole_seconds;
 
  const auto ms =
 
      fmt_safe_duration_cast<std::chrono::duration<Rep, std::milli>>(diff);
 
  return ms;
 
#else
 
  auto s = std::chrono::duration_cast<std::chrono::seconds>(d);
 
  return std::chrono::duration_cast<std::chrono::milliseconds>(d - s);
 
#endif
 
}
 

	
 
template <typename Char, typename Rep, typename OutputIt,
 
          FMT_ENABLE_IF(std::is_integral<Rep>::value)>
 
OutputIt format_duration_value(OutputIt out, Rep val, int) {
 
  return write<Char>(out, val);
 
}
 

	
 
template <typename Char, typename Rep, typename OutputIt,
 
          FMT_ENABLE_IF(std::is_floating_point<Rep>::value)>
 
OutputIt format_duration_value(OutputIt out, Rep val, int precision) {
 
  auto specs = format_specs<Char>();
 
  specs.precision = precision;
 
  specs.type = precision >= 0 ? presentation_type::fixed_lower
 
                              : presentation_type::general_lower;
 
  return write<Char>(out, val, specs);
 
}
 

	
 
template <typename Char, typename OutputIt>
 
OutputIt copy_unit(string_view unit, OutputIt out, Char) {
 
  return std::copy(unit.begin(), unit.end(), out);
 
}
 

	
 
template <typename OutputIt>
 
OutputIt copy_unit(string_view unit, OutputIt out, wchar_t) {
 
  // This works when wchar_t is UTF-32 because units only contain characters
 
  // that have the same representation in UTF-16 and UTF-32.
 
  utf8_to_utf16 u(unit);
 
  return std::copy(u.c_str(), u.c_str() + u.size(), out);
 
}
 

	
 
template <typename Char, typename Period, typename OutputIt>
 
OutputIt format_duration_unit(OutputIt out) {
 
  if (const char* unit = get_units<Period>())
 
    return copy_unit(string_view(unit), out, Char());
 
  *out++ = '[';
 
  out = write<Char>(out, Period::num);
 
  if (const_check(Period::den != 1)) {
 
    *out++ = '/';
 
    out = write<Char>(out, Period::den);
 
  }
 
  *out++ = ']';
 
  *out++ = 's';
 
  return out;
 
}
 

	
 
class get_locale {
 
 private:
 
  union {
 
    std::locale locale_;
 
  };
 
  bool has_locale_ = false;
 

	
 
 public:
 
  get_locale(bool localized, locale_ref loc) : has_locale_(localized) {
 
    if (localized)
 
      ::new (&locale_) std::locale(loc.template get<std::locale>());
 
  }
 
  ~get_locale() {
 
    if (has_locale_) locale_.~locale();
 
  }
 
  operator const std::locale&() const {
 
    return has_locale_ ? locale_ : get_classic_locale();
 
  }
 
};
 

	
 
template <typename FormatContext, typename OutputIt, typename Rep,
 
          typename Period>
 
struct chrono_formatter {
 
  FormatContext& context;
 
  OutputIt out;
 
  int precision;
 
  bool localized = false;
 
  // rep is unsigned to avoid overflow.
 
  using rep =
 
      conditional_t<std::is_integral<Rep>::value && sizeof(Rep) < sizeof(int),
 
                    unsigned, typename make_unsigned_or_unchanged<Rep>::type>;
 
  rep val;
 
  using seconds = std::chrono::duration<rep>;
 
  seconds s;
 
  using milliseconds = std::chrono::duration<rep, std::milli>;
 
  bool negative;
 

	
 
  using char_type = typename FormatContext::char_type;
 
  using tm_writer_type = tm_writer<OutputIt, char_type>;
 

	
 
  chrono_formatter(FormatContext& ctx, OutputIt o,
 
                   std::chrono::duration<Rep, Period> d)
 
      : context(ctx),
 
        out(o),
 
        val(static_cast<rep>(d.count())),
 
        negative(false) {
 
    if (d.count() < 0) {
 
      val = 0 - val;
 
      negative = true;
 
    }
 

	
 
    // this may overflow and/or the result may not fit in the
 
    // target type.
 
#if FMT_SAFE_DURATION_CAST
 
    // might need checked conversion (rep!=Rep)
 
    auto tmpval = std::chrono::duration<rep, Period>(val);
 
    s = fmt_safe_duration_cast<seconds>(tmpval);
 
#else
 
    s = std::chrono::duration_cast<seconds>(
 
        std::chrono::duration<rep, Period>(val));
 
#endif
 
  }
 

	
 
  // returns true if nan or inf, writes to out.
 
  bool handle_nan_inf() {
 
    if (isfinite(val)) {
 
      return false;
 
    }
 
    if (isnan(val)) {
 
      write_nan();
 
      return true;
 
    }
 
    // must be +-inf
 
    if (val > 0) {
 
      write_pinf();
 
    } else {
 
      write_ninf();
 
    }
 
    return true;
 
  }
 

	
 
  Rep hour() const { return static_cast<Rep>(mod((s.count() / 3600), 24)); }
 

	
 
  Rep hour12() const {
 
    Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12));
 
    return hour <= 0 ? 12 : hour;
 
  }
 

	
 
  Rep minute() const { return static_cast<Rep>(mod((s.count() / 60), 60)); }
 
  Rep second() const { return static_cast<Rep>(mod(s.count(), 60)); }
 

	
 
  std::tm time() const {
 
    auto time = std::tm();
 
    time.tm_hour = to_nonnegative_int(hour(), 24);
 
    time.tm_min = to_nonnegative_int(minute(), 60);
 
    time.tm_sec = to_nonnegative_int(second(), 60);
 
    return time;
 
  }
 

	
 
  void write_sign() {
 
    if (negative) {
 
      *out++ = '-';
 
      negative = false;
 
    }
 
  }
 

	
 
  void write(Rep value, int width, pad_type pad = pad_type::unspecified) {
 
    write_sign();
 
    if (isnan(value)) return write_nan();
 
    uint32_or_64_or_128_t<int> n =
 
        to_unsigned(to_nonnegative_int(value, max_value<int>()));
 
    int num_digits = detail::count_digits(n);
 
    if (width > num_digits) {
 
      out = detail::write_padding(out, pad, width - num_digits);
 
    }
 
    out = format_decimal<char_type>(out, n, num_digits).end;
 
  }
 

	
 
  void write_nan() { std::copy_n("nan", 3, out); }
 
  void write_pinf() { std::copy_n("inf", 3, out); }
 
  void write_ninf() { std::copy_n("-inf", 4, out); }
 

	
 
  template <typename Callback, typename... Args>
 
  void format_tm(const tm& time, Callback cb, Args... args) {
 
    if (isnan(val)) return write_nan();
 
    get_locale loc(localized, context.locale());
 
    auto w = tm_writer_type(loc, out, time);
 
    (w.*cb)(args...);
 
    out = w.out();
 
  }
 

	
 
  void on_text(const char_type* begin, const char_type* end) {
 
    std::copy(begin, end, out);
 
  }
 

	
 
  // These are not implemented because durations don't have date information.
 
  void on_abbr_weekday() {}
 
  void on_full_weekday() {}
 
  void on_dec0_weekday(numeric_system) {}
 
  void on_dec1_weekday(numeric_system) {}
 
  void on_abbr_month() {}
 
  void on_full_month() {}
 
  void on_datetime(numeric_system) {}
 
  void on_loc_date(numeric_system) {}
 
  void on_loc_time(numeric_system) {}
 
  void on_us_date() {}
 
  void on_iso_date() {}
 
  void on_utc_offset(numeric_system) {}
 
  void on_tz_name() {}
 
  void on_year(numeric_system) {}
 
  void on_short_year(numeric_system) {}
 
  void on_offset_year() {}
 
  void on_century(numeric_system) {}
 
  void on_iso_week_based_year() {}
 
  void on_iso_week_based_short_year() {}
 
  void on_dec_month(numeric_system) {}
 
  void on_dec0_week_of_year(numeric_system) {}
 
  void on_dec1_week_of_year(numeric_system) {}
 
  void on_iso_week_of_year(numeric_system) {}
 
  void on_day_of_year() {}
 
  void on_day_of_month(numeric_system) {}
 
  void on_day_of_month_space(numeric_system) {}
 

	
 
  void on_24_hour(numeric_system ns, pad_type pad) {
 
    if (handle_nan_inf()) return;
 

	
 
    if (ns == numeric_system::standard) return write(hour(), 2, pad);
 
    auto time = tm();
 
    time.tm_hour = to_nonnegative_int(hour(), 24);
 
    format_tm(time, &tm_writer_type::on_24_hour, ns, pad);
 
  }
 

	
 
  void on_12_hour(numeric_system ns, pad_type pad) {
 
    if (handle_nan_inf()) return;
 

	
 
    if (ns == numeric_system::standard) return write(hour12(), 2, pad);
 
    auto time = tm();
 
    time.tm_hour = to_nonnegative_int(hour12(), 12);
 
    format_tm(time, &tm_writer_type::on_12_hour, ns, pad);
 
  }
 

	
 
  void on_minute(numeric_system ns, pad_type pad) {
 
    if (handle_nan_inf()) return;
 

	
 
    if (ns == numeric_system::standard) return write(minute(), 2, pad);
 
    auto time = tm();
 
    time.tm_min = to_nonnegative_int(minute(), 60);
 
    format_tm(time, &tm_writer_type::on_minute, ns, pad);
 
  }
 

	
 
  void on_second(numeric_system ns, pad_type pad) {
 
    if (handle_nan_inf()) return;
 

	
 
    if (ns == numeric_system::standard) {
 
      if (std::is_floating_point<rep>::value) {
 
        auto buf = memory_buffer();
 
        write_floating_seconds(buf, std::chrono::duration<rep, Period>(val),
 
                               precision);
 
        if (negative) *out++ = '-';
 
        if (buf.size() < 2 || buf[1] == '.') {
 
          out = detail::write_padding(out, pad);
 
        }
 
        out = std::copy(buf.begin(), buf.end(), out);
 
      } else {
 
        write(second(), 2, pad);
 
        write_fractional_seconds<char_type>(
 
            out, std::chrono::duration<rep, Period>(val), precision);
 
      }
 
      return;
 
    }
 
    auto time = tm();
 
    time.tm_sec = to_nonnegative_int(second(), 60);
 
    format_tm(time, &tm_writer_type::on_second, ns, pad);
 
  }
 

	
 
  void on_12_hour_time() {
 
    if (handle_nan_inf()) return;
 
    format_tm(time(), &tm_writer_type::on_12_hour_time);
 
  }
 

	
 
  void on_24_hour_time() {
 
    if (handle_nan_inf()) {
 
      *out++ = ':';
 
      handle_nan_inf();
 
      return;
 
    }
 

	
 
    write(hour(), 2);
 
    *out++ = ':';
 
    write(minute(), 2);
 
  }
 

	
 
  void on_iso_time() {
 
    on_24_hour_time();
 
    *out++ = ':';
 
    if (handle_nan_inf()) return;
 
    on_second(numeric_system::standard, pad_type::unspecified);
 
  }
 

	
 
  void on_am_pm() {
 
    if (handle_nan_inf()) return;
 
    format_tm(time(), &tm_writer_type::on_am_pm);
 
  }
 

	
 
  void on_duration_value() {
 
    if (handle_nan_inf()) return;
 
    write_sign();
 
    out = format_duration_value<char_type>(out, val, precision);
 
  }
 

	
 
  void on_duration_unit() {
 
    out = format_duration_unit<char_type, Period>(out);
 
  }
 
};
 

	
 
FMT_END_DETAIL_NAMESPACE
 

	
 
#if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907
 
using weekday = std::chrono::weekday;
 
#else
 
// A fallback version of weekday.
 
class weekday {
 
 private:
 
  unsigned char value;
 

	
 
 public:
 
  weekday() = default;
 
  explicit constexpr weekday(unsigned wd) noexcept
 
      : value(static_cast<unsigned char>(wd != 7 ? wd : 0)) {}
 
  constexpr unsigned c_encoding() const noexcept { return value; }
 
};
 

	
 
class year_month_day {};
 
#endif
 

	
 
// A rudimentary weekday formatter.
 
template <typename Char> struct formatter<weekday, Char> {
 
 private:
 
  bool localized = false;
 

	
 
 public:
 
  FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
 
      -> decltype(ctx.begin()) {
 
    auto begin = ctx.begin(), end = ctx.end();
 
    if (begin != end && *begin == 'L') {
 
      ++begin;
 
      localized = true;
 
    }
 
    return begin;
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(weekday wd, FormatContext& ctx) const -> decltype(ctx.out()) {
 
    auto time = std::tm();
 
    time.tm_wday = static_cast<int>(wd.c_encoding());
 
    detail::get_locale loc(localized, ctx.locale());
 
    auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
 
    w.on_abbr_weekday();
 
    return w.out();
 
  }
 
};
 

	
 
template <typename Rep, typename Period, typename Char>
 
struct formatter<std::chrono::duration<Rep, Period>, Char> {
 
 private:
 
  format_specs<Char> specs;
 
  int precision = -1;
 
  using arg_ref_type = detail::arg_ref<Char>;
 
  arg_ref_type width_ref;
 
  arg_ref_type precision_ref;
 
  bool localized = false;
 
  basic_string_view<Char> format_str;
 
  using duration = std::chrono::duration<Rep, Period>;
 

	
 
  using iterator = typename basic_format_parse_context<Char>::iterator;
 
  struct parse_range {
 
    iterator begin;
 
    iterator end;
 
  };
 

	
 
  FMT_CONSTEXPR parse_range do_parse(basic_format_parse_context<Char>& ctx) {
 
    auto begin = ctx.begin(), end = ctx.end();
 
    if (begin == end || *begin == '}') return {begin, begin};
 

	
 
    begin = detail::parse_align(begin, end, specs);
 
    if (begin == end) return {begin, begin};
 

	
 
    begin = detail::parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
 
    if (begin == end) return {begin, begin};
 

	
 
    auto checker = detail::chrono_format_checker();
 
    if (*begin == '.') {
 
      checker.has_precision_integral = !std::is_floating_point<Rep>::value;
 
      begin =
 
          detail::parse_precision(begin, end, precision, precision_ref, ctx);
 
    }
 
    if (begin != end && *begin == 'L') {
 
      ++begin;
 
      localized = true;
 
    }
 
    end = detail::parse_chrono_format(begin, end, checker);
 
    return {begin, end};
 
  }
 

	
 
 public:
 
  FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
 
      -> decltype(ctx.begin()) {
 
    auto range = do_parse(ctx);
 
    format_str = basic_string_view<Char>(
 
        &*range.begin, detail::to_unsigned(range.end - range.begin));
 
    return range.end;
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(const duration& d, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    auto specs_copy = specs;
 
    auto precision_copy = precision;
 
    auto begin = format_str.begin(), end = format_str.end();
 
    // As a possible future optimization, we could avoid extra copying if width
 
    // is not specified.
 
    basic_memory_buffer<Char> buf;
 
    auto out = std::back_inserter(buf);
 
    detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
 
                                                       width_ref, ctx);
 
    detail::handle_dynamic_spec<detail::precision_checker>(precision_copy,
 
                                                           precision_ref, ctx);
 
    if (begin == end || *begin == '}') {
 
      out = detail::format_duration_value<Char>(out, d.count(), precision_copy);
 
      detail::format_duration_unit<Char, Period>(out);
 
    } else {
 
      detail::chrono_formatter<FormatContext, decltype(out), Rep, Period> f(
 
          ctx, out, d);
 
      f.precision = precision_copy;
 
      f.localized = localized;
 
      detail::parse_chrono_format(begin, end, f);
 
    }
 
    return detail::write(
 
        ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
 
  }
 
};
 

	
 
template <typename Char, typename Duration>
 
struct formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
 
                 Char> : formatter<std::tm, Char> {
 
  FMT_CONSTEXPR formatter() {
 
    this->format_str = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(std::chrono::time_point<std::chrono::system_clock, Duration> val,
 
              FormatContext& ctx) const -> decltype(ctx.out()) {
 
    using period = typename Duration::period;
 
    if (period::num != 1 || period::den != 1 ||
 
        std::is_floating_point<typename Duration::rep>::value) {
 
      const auto epoch = val.time_since_epoch();
 
      auto subsecs = std::chrono::duration_cast<Duration>(
 
          epoch - std::chrono::duration_cast<std::chrono::seconds>(epoch));
 

	
 
      if (subsecs.count() < 0) {
 
        auto second = std::chrono::seconds(1);
 
        if (epoch.count() < ((Duration::min)() + second).count())
 
          FMT_THROW(format_error("duration is too small"));
 
        subsecs += second;
 
        val -= second;
 
      }
 

	
 
      return formatter<std::tm, Char>::do_format(
 
          gmtime(std::chrono::time_point_cast<std::chrono::seconds>(val)), ctx,
 
          &subsecs);
 
    }
 

	
 
    return formatter<std::tm, Char>::format(
 
        gmtime(std::chrono::time_point_cast<std::chrono::seconds>(val)), ctx);
 
  }
 
};
 

	
 
#if FMT_USE_LOCAL_TIME
 
template <typename Char, typename Duration>
 
struct formatter<std::chrono::local_time<Duration>, Char>
 
    : formatter<std::tm, Char> {
 
  FMT_CONSTEXPR formatter() {
 
    this->format_str = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(std::chrono::local_time<Duration> val, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    using period = typename Duration::period;
 
    if (period::num != 1 || period::den != 1 ||
 
        std::is_floating_point<typename Duration::rep>::value) {
 
      const auto epoch = val.time_since_epoch();
 
      const auto subsecs = std::chrono::duration_cast<Duration>(
 
          epoch - std::chrono::duration_cast<std::chrono::seconds>(epoch));
 

	
 
      return formatter<std::tm, Char>::do_format(
 
          localtime(std::chrono::time_point_cast<std::chrono::seconds>(val)),
 
          ctx, &subsecs);
 
    }
 

	
 
    return formatter<std::tm, Char>::format(
 
        localtime(std::chrono::time_point_cast<std::chrono::seconds>(val)),
 
        ctx);
 
  }
 
};
 
#endif
 

	
 
#if FMT_USE_UTC_TIME
 
template <typename Char, typename Duration>
 
struct formatter<std::chrono::time_point<std::chrono::utc_clock, Duration>,
 
                 Char>
 
    : formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
 
                Char> {
 
  template <typename FormatContext>
 
  auto format(std::chrono::time_point<std::chrono::utc_clock, Duration> val,
 
              FormatContext& ctx) const -> decltype(ctx.out()) {
 
    return formatter<
 
        std::chrono::time_point<std::chrono::system_clock, Duration>,
 
        Char>::format(std::chrono::utc_clock::to_sys(val), ctx);
 
  }
 
};
 
#endif
 

	
 
template <typename Char> struct formatter<std::tm, Char> {
 
 private:
 
  format_specs<Char> specs;
 
  detail::arg_ref<Char> width_ref;
 

	
 
 protected:
 
  basic_string_view<Char> format_str;
 

	
 
  FMT_CONSTEXPR auto do_parse(basic_format_parse_context<Char>& ctx)
 
      -> decltype(ctx.begin()) {
 
    auto begin = ctx.begin(), end = ctx.end();
 
    if (begin == end || *begin == '}') return begin;
 

	
 
    begin = detail::parse_align(begin, end, specs);
 
    if (begin == end) return end;
 

	
 
    begin = detail::parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
 
    if (begin == end) return end;
 

	
 
    end = detail::parse_chrono_format(begin, end, detail::tm_format_checker());
 
    // Replace default format_str only if the new spec is not empty.
 
    if (end != begin) format_str = {begin, detail::to_unsigned(end - begin)};
 
    return end;
 
  }
 

	
 
  template <typename FormatContext, typename Duration>
 
  auto do_format(const std::tm& tm, FormatContext& ctx,
 
                 const Duration* subsecs) const -> decltype(ctx.out()) {
 
    auto specs_copy = specs;
 
    basic_memory_buffer<Char> buf;
 
    auto out = std::back_inserter(buf);
 
    detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
 
                                                       width_ref, ctx);
 

	
 
    const auto loc_ref = ctx.locale();
 
    detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref);
 
    auto w =
 
        detail::tm_writer<decltype(out), Char, Duration>(loc, out, tm, subsecs);
 
    detail::parse_chrono_format(format_str.begin(), format_str.end(), w);
 
    return detail::write(
 
        ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
 
  }
 

	
 
 public:
 
  FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
 
      -> decltype(ctx.begin()) {
 
    return this->do_parse(ctx);
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(const std::tm& tm, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    return do_format<FormatContext, std::chrono::seconds>(tm, ctx, nullptr);
 
  }
 
};
 

	
 
FMT_END_EXPORT
 
FMT_END_NAMESPACE
 

	
 
#endif  // FMT_CHRONO_H_
src/3rdparty/fmt/core.h
Show inline comments
 
// Formatting library for C++ - the core API
 
// Formatting library for C++ - the core API for char/UTF-8
 
//
 
// Copyright (c) 2012 - present, Victor Zverovich
 
// All rights reserved.
 
//
 
// For the license information refer to format.h.
 

	
 
#ifndef FMT_CORE_H_
 
#define FMT_CORE_H_
 

	
 
#include <cstddef>  // std::byte
 
#include <cstdio>  // std::FILE
 
#include <cstring>
 
#include <functional>
 
#include <cstring>  // std::strlen
 
#include <iterator>
 
#include <memory>
 
#include <limits>
 
#include <string>
 
#include <type_traits>
 
#include <vector>
 

	
 
// The fmt library version in the form major * 10000 + minor * 100 + patch.
 
#define FMT_VERSION 70103
 

	
 
#ifdef __clang__
 
#define FMT_VERSION 100000
 

	
 
#if defined(__clang__) && !defined(__ibmxl__)
 
#  define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
 
#else
 
#  define FMT_CLANG_VERSION 0
 
#endif
 

	
 
#if defined(__GNUC__) && !defined(__clang__)
 
#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) && \
 
    !defined(__NVCOMPILER)
 
#  define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
 
#else
 
#  define FMT_GCC_VERSION 0
 
#endif
 

	
 
#if defined(__INTEL_COMPILER)
 
#ifndef FMT_GCC_PRAGMA
 
// Workaround _Pragma bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59884.
 
#  if FMT_GCC_VERSION >= 504
 
#    define FMT_GCC_PRAGMA(arg) _Pragma(arg)
 
#  else
 
#    define FMT_GCC_PRAGMA(arg)
 
#  endif
 
#endif
 

	
 
#ifdef __ICL
 
#  define FMT_ICC_VERSION __ICL
 
#elif defined(__INTEL_COMPILER)
 
#  define FMT_ICC_VERSION __INTEL_COMPILER
 
#else
 
#  define FMT_ICC_VERSION 0
 
#endif
 

	
 
#if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__)
 
#  define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION
 
#else
 
#  define FMT_HAS_GXX_CXX11 0
 
#endif
 

	
 
#ifdef __NVCC__
 
#  define FMT_NVCC __NVCC__
 
#ifdef _MSC_VER
 
#  define FMT_MSC_VERSION _MSC_VER
 
#  define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__))
 
#else
 
#  define FMT_NVCC 0
 
#  define FMT_MSC_VERSION 0
 
#  define FMT_MSC_WARNING(...)
 
#endif
 

	
 
#ifdef _MSC_VER
 
#  define FMT_MSC_VER _MSC_VER
 
#  define FMT_SUPPRESS_MSC_WARNING(n) __pragma(warning(suppress : n))
 
#ifdef _MSVC_LANG
 
#  define FMT_CPLUSPLUS _MSVC_LANG
 
#else
 
#  define FMT_MSC_VER 0
 
#  define FMT_SUPPRESS_MSC_WARNING(n)
 
#  define FMT_CPLUSPLUS __cplusplus
 
#endif
 

	
 
#ifdef __has_feature
 
#  define FMT_HAS_FEATURE(x) __has_feature(x)
 
#else
 
#  define FMT_HAS_FEATURE(x) 0
 
#endif
 

	
 
#if defined(__has_include) && !defined(__INTELLISENSE__) && \
 
    (!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1600)
 
#if defined(__has_include) || FMT_ICC_VERSION >= 1600 || FMT_MSC_VERSION > 1900
 
#  define FMT_HAS_INCLUDE(x) __has_include(x)
 
#else
 
#  define FMT_HAS_INCLUDE(x) 0
 
#endif
 

	
 
#ifdef __has_cpp_attribute
 
#  define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
 
#else
 
#  define FMT_HAS_CPP_ATTRIBUTE(x) 0
 
#endif
 

	
 
#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
 
  (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
 
  (FMT_CPLUSPLUS >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
 

	
 
#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
 
  (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
 
  (FMT_CPLUSPLUS >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
 

	
 
// Check if relaxed C++14 constexpr is supported.
 
// GCC doesn't allow throw in constexpr until version 6 (bug 67371).
 
#ifndef FMT_USE_CONSTEXPR
 
#  define FMT_USE_CONSTEXPR                                           \
 
    (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \
 
     (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) &&           \
 
        !FMT_NVCC && !FMT_ICC_VERSION
 
#  if (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912 || \
 
       (FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L)) &&             \
 
      !FMT_ICC_VERSION && !defined(__NVCC__)
 
#    define FMT_USE_CONSTEXPR 1
 
#  else
 
#    define FMT_USE_CONSTEXPR 0
 
#  endif
 
#endif
 
#if FMT_USE_CONSTEXPR
 
#  define FMT_CONSTEXPR constexpr
 
#  define FMT_CONSTEXPR_DECL constexpr
 
#else
 
#  define FMT_CONSTEXPR inline
 
#  define FMT_CONSTEXPR_DECL
 
#  define FMT_CONSTEXPR
 
#endif
 

	
 
#if ((FMT_CPLUSPLUS >= 202002L) &&                            \
 
     (!defined(_GLIBCXX_RELEASE) || _GLIBCXX_RELEASE > 9)) || \
 
    (FMT_CPLUSPLUS >= 201709L && FMT_GCC_VERSION >= 1002)
 
#  define FMT_CONSTEXPR20 constexpr
 
#else
 
#  define FMT_CONSTEXPR20
 
#endif
 

	
 
#ifndef FMT_OVERRIDE
 
#  if FMT_HAS_FEATURE(cxx_override_control) || \
 
      (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
 
#    define FMT_OVERRIDE override
 
#  else
 
#    define FMT_OVERRIDE
 
// Check if constexpr std::char_traits<>::{compare,length} are supported.
 
#if defined(__GLIBCXX__)
 
#  if FMT_CPLUSPLUS >= 201703L && defined(_GLIBCXX_RELEASE) && \
 
      _GLIBCXX_RELEASE >= 7  // GCC 7+ libstdc++ has _GLIBCXX_RELEASE.
 
#    define FMT_CONSTEXPR_CHAR_TRAITS constexpr
 
#  endif
 
#elif defined(_LIBCPP_VERSION) && FMT_CPLUSPLUS >= 201703L && \
 
    _LIBCPP_VERSION >= 4000
 
#  define FMT_CONSTEXPR_CHAR_TRAITS constexpr
 
#elif FMT_MSC_VERSION >= 1914 && FMT_CPLUSPLUS >= 201703L
 
#  define FMT_CONSTEXPR_CHAR_TRAITS constexpr
 
#endif
 
#ifndef FMT_CONSTEXPR_CHAR_TRAITS
 
#  define FMT_CONSTEXPR_CHAR_TRAITS
 
#endif
 

	
 
// Check if exceptions are disabled.
 
#ifndef FMT_EXCEPTIONS
 
#  if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \
 
      FMT_MSC_VER && !_HAS_EXCEPTIONS
 
      (FMT_MSC_VERSION && !_HAS_EXCEPTIONS)
 
#    define FMT_EXCEPTIONS 0
 
#  else
 
#    define FMT_EXCEPTIONS 1
 
#  endif
 
#endif
 

	
 
// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
 
#ifndef FMT_USE_NOEXCEPT
 
#  define FMT_USE_NOEXCEPT 0
 
#endif
 

	
 
#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
 
    (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
 
#  define FMT_DETECTED_NOEXCEPT noexcept
 
#  define FMT_HAS_CXX11_NOEXCEPT 1
 
#else
 
#  define FMT_DETECTED_NOEXCEPT throw()
 
#  define FMT_HAS_CXX11_NOEXCEPT 0
 
#endif
 

	
 
#ifndef FMT_NOEXCEPT
 
#  if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT
 
#    define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
 
#  else
 
#    define FMT_NOEXCEPT
 
#  endif
 
#endif
 

	
 
// [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code
 
// warnings.
 
#if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \
 
    !FMT_NVCC
 
// Disable [[noreturn]] on MSVC/NVCC because of bogus unreachable code warnings.
 
#if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VERSION && \
 
    !defined(__NVCC__)
 
#  define FMT_NORETURN [[noreturn]]
 
#else
 
#  define FMT_NORETURN
 
#endif
 

	
 
#ifndef FMT_DEPRECATED
 
#  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900
 
#    define FMT_DEPRECATED [[deprecated]]
 
#  else
 
#    if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
 
#      define FMT_DEPRECATED __attribute__((deprecated))
 
#    elif FMT_MSC_VER
 
#      define FMT_DEPRECATED __declspec(deprecated)
 
#ifndef FMT_NODISCARD
 
#  if FMT_HAS_CPP17_ATTRIBUTE(nodiscard)
 
#    define FMT_NODISCARD [[nodiscard]]
 
#    else
 
#      define FMT_DEPRECATED /* deprecated */
 
#    endif
 
#  endif
 
#    define FMT_NODISCARD
 
#endif
 

	
 
// Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
 
#if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
 
#  define FMT_DEPRECATED_ALIAS
 
#else
 
#  define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
 
#endif
 

	
 
#ifndef FMT_INLINE
 
#  if FMT_GCC_VERSION || FMT_CLANG_VERSION
 
#    define FMT_INLINE inline __attribute__((always_inline))
 
#  else
 
#    define FMT_INLINE inline
 
#  endif
 
#endif
 

	
 
#ifndef FMT_USE_INLINE_NAMESPACES
 
#  if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \
 
      (FMT_MSC_VER >= 1900 && !_MANAGED)
 
#    define FMT_USE_INLINE_NAMESPACES 1
 
// An inline std::forward replacement.
 
#define FMT_FORWARD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)
 

	
 
#ifdef _MSC_VER
 
#  define FMT_UNCHECKED_ITERATOR(It) \
 
    using _Unchecked_type = It  // Mark iterator as checked.
 
#  else
 
#    define FMT_USE_INLINE_NAMESPACES 0
 
#  endif
 
#  define FMT_UNCHECKED_ITERATOR(It) using unchecked_type = It
 
#endif
 

	
 
#ifndef FMT_BEGIN_NAMESPACE
 
#  if FMT_USE_INLINE_NAMESPACES
 
#    define FMT_INLINE_NAMESPACE inline namespace
 
#  define FMT_BEGIN_NAMESPACE \
 
    namespace fmt {           \
 
    inline namespace v10 {
 
#    define FMT_END_NAMESPACE \
 
      }                       \
 
      }
 
#  else
 
#    define FMT_INLINE_NAMESPACE namespace
 
#    define FMT_END_NAMESPACE \
 
      }                       \
 
      using namespace v7;     \
 
      }
 
#  endif
 
#  define FMT_BEGIN_NAMESPACE \
 
    namespace fmt {           \
 
    FMT_INLINE_NAMESPACE v7 {
 

	
 
#ifndef FMT_MODULE_EXPORT
 
#  define FMT_MODULE_EXPORT
 
#  define FMT_BEGIN_EXPORT
 
#  define FMT_END_EXPORT
 
#endif
 

	
 
#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
 
#  define FMT_CLASS_API FMT_SUPPRESS_MSC_WARNING(4275)
 
#  ifdef FMT_EXPORT
 
#  ifdef FMT_LIB_EXPORT
 
#    define FMT_API __declspec(dllexport)
 
#    define FMT_EXTERN_TEMPLATE_API FMT_API
 
#    define FMT_EXPORTED
 
#  elif defined(FMT_SHARED)
 
#    define FMT_API __declspec(dllimport)
 
#    define FMT_EXTERN_TEMPLATE_API FMT_API
 
#  endif
 
#else
 
#  define FMT_CLASS_API
 
#  if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
 
#    if defined(__GNUC__) || defined(__clang__)
 
#      define FMT_API __attribute__((visibility("default")))
 
#    endif
 
#  endif
 
#endif
 
#ifndef FMT_API
 
#  define FMT_API
 
#endif
 
#ifndef FMT_EXTERN_TEMPLATE_API
 
#  define FMT_EXTERN_TEMPLATE_API
 
#endif
 
#ifndef FMT_INSTANTIATION_DEF_API
 
#  define FMT_INSTANTIATION_DEF_API FMT_API
 
#endif
 

	
 
#ifndef FMT_HEADER_ONLY
 
#  define FMT_EXTERN extern
 
#else
 
#  define FMT_EXTERN
 
#endif
 

	
 
// libc++ supports string_view in pre-c++17.
 
#if (FMT_HAS_INCLUDE(<string_view>) &&                       \
 
     (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \
 
    (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
 
#if FMT_HAS_INCLUDE(<string_view>) && \
 
    (FMT_CPLUSPLUS >= 201703L || defined(_LIBCPP_VERSION))
 
#  include <string_view>
 
#  define FMT_USE_STRING_VIEW
 
#elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L
 
#elif FMT_HAS_INCLUDE("experimental/string_view") && FMT_CPLUSPLUS >= 201402L
 
#  include <experimental/string_view>
 
#  define FMT_USE_EXPERIMENTAL_STRING_VIEW
 
#endif
 

	
 
#ifndef FMT_UNICODE
 
#  define FMT_UNICODE !FMT_MSC_VER
 
#  define FMT_UNICODE !FMT_MSC_VERSION
 
#endif
 

	
 
#ifndef FMT_CONSTEVAL
 
#  if ((FMT_GCC_VERSION >= 1000 || FMT_CLANG_VERSION >= 1101) && \
 
       (!defined(__apple_build_version__) ||                     \
 
        __apple_build_version__ >= 14000029L) &&                 \
 
       FMT_CPLUSPLUS >= 202002L) ||                              \
 
      (defined(__cpp_consteval) &&                               \
 
       (!FMT_MSC_VERSION || _MSC_FULL_VER >= 193030704))
 
// consteval is broken in MSVC before VS2022 and Apple clang before 14.
 
#    define FMT_CONSTEVAL consteval
 
#    define FMT_HAS_CONSTEVAL
 
#  else
 
#    define FMT_CONSTEVAL
 
#  endif
 
#endif
 
#if FMT_UNICODE && FMT_MSC_VER
 
#  pragma execution_character_set("utf-8")
 

	
 
#ifndef FMT_USE_NONTYPE_TEMPLATE_ARGS
 
#  if defined(__cpp_nontype_template_args) &&                  \
 
      ((FMT_GCC_VERSION >= 903 && FMT_CPLUSPLUS >= 201709L) || \
 
       __cpp_nontype_template_args >= 201911L) &&              \
 
      !defined(__NVCOMPILER) && !defined(__LCC__)
 
#    define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
 
#  else
 
#    define FMT_USE_NONTYPE_TEMPLATE_ARGS 0
 
#  endif
 
#endif
 

	
 
#if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
 
#  define FMT_INLINE_VARIABLE inline
 
#else
 
#  define FMT_INLINE_VARIABLE
 
#endif
 

	
 
// Enable minimal optimizations for more compact code in debug mode.
 
FMT_GCC_PRAGMA("GCC push_options")
 
#if !defined(__OPTIMIZE__) && !defined(__NVCOMPILER) && !defined(__LCC__) && \
 
    !defined(__CUDACC__)
 
FMT_GCC_PRAGMA("GCC optimize(\"Og\")")
 
#endif
 

	
 
FMT_BEGIN_NAMESPACE
 

	
 
// Implementations of enable_if_t and other metafunctions for older systems.
 
template <bool B, class T = void>
 
template <bool B, typename T = void>
 
using enable_if_t = typename std::enable_if<B, T>::type;
 
template <bool B, class T, class F>
 
template <bool B, typename T, typename F>
 
using conditional_t = typename std::conditional<B, T, F>::type;
 
template <bool B> using bool_constant = std::integral_constant<bool, B>;
 
template <typename T>
 
using remove_reference_t = typename std::remove_reference<T>::type;
 
template <typename T>
 
using remove_const_t = typename std::remove_const<T>::type;
 
template <typename T>
 
using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
 
template <typename T> struct type_identity { using type = T; };
 
template <typename T> using type_identity_t = typename type_identity<T>::type;
 

	
 
struct monostate {};
 
template <typename T>
 
using underlying_t = typename std::underlying_type<T>::type;
 

	
 
struct monostate {
 
  constexpr monostate() {}
 
};
 

	
 
// An enable_if helper to be used in template parameters which results in much
 
// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
 
// to workaround a bug in MSVC 2019 (see #1140 and #1186).
 
#define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0
 
#ifdef FMT_DOC
 
#  define FMT_ENABLE_IF(...)
 
#else
 
#  define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0
 
#endif
 

	
 
#ifdef __cpp_lib_byte
 
inline auto format_as(std::byte b) -> unsigned char {
 
  return static_cast<unsigned char>(b);
 
}
 
#endif
 

	
 
namespace detail {
 

	
 
// A helper function to suppress "conditional expression is constant" warnings.
 
template <typename T> constexpr T const_check(T value) { return value; }
 
// Suppresses "unused variable" warnings with the method described in
 
// https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/.
 
// (void)var does not work on many Intel compilers.
 
template <typename... T> FMT_CONSTEXPR void ignore_unused(const T&...) {}
 

	
 
constexpr FMT_INLINE auto is_constant_evaluated(
 
    bool default_value = false) noexcept -> bool {
 
// Workaround for incompatibility between libstdc++ consteval-based
 
// std::is_constant_evaluated() implementation and clang-14.
 
// https://github.com/fmtlib/fmt/issues/3247
 
#if FMT_CPLUSPLUS >= 202002L && defined(_GLIBCXX_RELEASE) && \
 
    _GLIBCXX_RELEASE >= 12 &&                                \
 
    (FMT_CLANG_VERSION >= 1400 && FMT_CLANG_VERSION < 1500)
 
  ignore_unused(default_value);
 
  return __builtin_is_constant_evaluated();
 
#elif defined(__cpp_lib_is_constant_evaluated)
 
  ignore_unused(default_value);
 
  return std::is_constant_evaluated();
 
#else
 
  return default_value;
 
#endif
 
}
 

	
 
// Suppresses "conditional expression is constant" warnings.
 
template <typename T> constexpr FMT_INLINE auto const_check(T value) -> T {
 
  return value;
 
}
 

	
 
FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
 
                                      const char* message);
 

	
 
#ifndef FMT_ASSERT
 
#  ifdef NDEBUG
 
// FMT_ASSERT is not empty to avoid -Werror=empty-body.
 
#    define FMT_ASSERT(condition, message) ((void)0)
 
// FMT_ASSERT is not empty to avoid -Wempty-body.
 
#    define FMT_ASSERT(condition, message) \
 
      fmt::detail::ignore_unused((condition), (message))
 
#  else
 
#    define FMT_ASSERT(condition, message)                                    \
 
      ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
 
           ? (void)0                                                          \
 
           : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
 
           : fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
 
#  endif
 
#endif
 

	
 
#if defined(FMT_USE_STRING_VIEW)
 
template <typename Char> using std_string_view = std::basic_string_view<Char>;
 
#elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
 
@@ -304,678 +348,214 @@ using std_string_view = std::experimenta
 
#else
 
template <typename T> struct std_string_view {};
 
#endif
 

	
 
#ifdef FMT_USE_INT128
 
// Do nothing.
 
#elif defined(__SIZEOF_INT128__) && !FMT_NVCC && \
 
    !(FMT_CLANG_VERSION && FMT_MSC_VER)
 
#elif defined(__SIZEOF_INT128__) && !defined(__NVCC__) && \
 
    !(FMT_CLANG_VERSION && FMT_MSC_VERSION)
 
#  define FMT_USE_INT128 1
 
using int128_t = __int128_t;
 
using uint128_t = __uint128_t;
 
using int128_opt = __int128_t;  // An optional native 128-bit integer.
 
using uint128_opt = __uint128_t;
 
template <typename T> inline auto convert_for_visit(T value) -> T {
 
  return value;
 
}
 
#else
 
#  define FMT_USE_INT128 0
 
#endif
 
#if !FMT_USE_INT128
 
struct int128_t {};
 
struct uint128_t {};
 
enum class int128_opt {};
 
enum class uint128_opt {};
 
// Reduce template instantiations.
 
template <typename T> auto convert_for_visit(T) -> monostate { return {}; }
 
#endif
 

	
 
// Casts a nonnegative integer to unsigned.
 
template <typename Int>
 
FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) {
 
  FMT_ASSERT(value >= 0, "negative value");
 
FMT_CONSTEXPR auto to_unsigned(Int value) ->
 
    typename std::make_unsigned<Int>::type {
 
  FMT_ASSERT(std::is_unsigned<Int>::value || value >= 0, "negative value");
 
  return static_cast<typename std::make_unsigned<Int>::type>(value);
 
}
 

	
 
FMT_SUPPRESS_MSC_WARNING(4566) constexpr unsigned char micro[] = "\u00B5";
 

	
 
template <typename Char> constexpr bool is_unicode() {
 
  return FMT_UNICODE || sizeof(Char) != 1 ||
 
         (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5);
 
FMT_CONSTEXPR inline auto is_utf8() -> bool {
 
  FMT_MSC_WARNING(suppress : 4566) constexpr unsigned char section[] = "\u00A7";
 

	
 
  // Avoid buggy sign extensions in MSVC's constant evaluation mode (#2297).
 
  using uchar = unsigned char;
 
  return FMT_UNICODE || (sizeof(section) == 3 && uchar(section[0]) == 0xC2 &&
 
                         uchar(section[1]) == 0xA7);
 
}
 

	
 
#ifdef __cpp_char8_t
 
using char8_type = char8_t;
 
#else
 
enum char8_type : unsigned char {};
 
#endif
 
}  // namespace detail
 

	
 
#ifdef FMT_USE_INTERNAL
 
namespace internal = detail;  // DEPRECATED
 
#endif
 

	
 
/**
 
  An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
 
  subset of the API. ``fmt::basic_string_view`` is used for format strings even
 
  if ``std::string_view`` is available to prevent issues when a library is
 
  compiled with a different ``-std`` option than the client code (which is not
 
  recommended).
 
 */
 
FMT_MODULE_EXPORT
 
template <typename Char> class basic_string_view {
 
 private:
 
  const Char* data_;
 
  size_t size_;
 

	
 
 public:
 
  using value_type = Char;
 
  using iterator = const Char*;
 

	
 
  constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {}
 
  constexpr basic_string_view() noexcept : data_(nullptr), size_(0) {}
 

	
 
  /** Constructs a string reference object from a C string and a size. */
 
  constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT
 
      : data_(s),
 
        size_(count) {}
 
  constexpr basic_string_view(const Char* s, size_t count) noexcept
 
      : data_(s), size_(count) {}
 

	
 
  /**
 
    \rst
 
    Constructs a string reference object from a C string computing
 
    the size with ``std::char_traits<Char>::length``.
 
    \endrst
 
   */
 
#if __cplusplus >= 201703L  // C++17's char_traits::length() is constexpr.
 
  FMT_CONSTEXPR
 
#endif
 
  FMT_CONSTEXPR_CHAR_TRAITS
 
  FMT_INLINE
 
  basic_string_view(const Char* s)
 
      : data_(s), size_(std::char_traits<Char>::length(s)) {}
 
      : data_(s),
 
        size_(detail::const_check(std::is_same<Char, char>::value &&
 
                                  !detail::is_constant_evaluated(true))
 
                  ? std::strlen(reinterpret_cast<const char*>(s))
 
                  : std::char_traits<Char>::length(s)) {}
 

	
 
  /** Constructs a string reference from a ``std::basic_string`` object. */
 
  template <typename Traits, typename Alloc>
 
  FMT_CONSTEXPR basic_string_view(
 
      const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT
 
      : data_(s.data()),
 
        size_(s.size()) {}
 
      const std::basic_string<Char, Traits, Alloc>& s) noexcept
 
      : data_(s.data()), size_(s.size()) {}
 

	
 
  template <typename S, FMT_ENABLE_IF(std::is_same<
 
                                      S, detail::std_string_view<Char>>::value)>
 
  FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()),
 
                                                      size_(s.size()) {}
 
  FMT_CONSTEXPR basic_string_view(S s) noexcept
 
      : data_(s.data()), size_(s.size()) {}
 

	
 
  /** Returns a pointer to the string data. */
 
  constexpr const Char* data() const { return data_; }
 
  constexpr auto data() const noexcept -> const Char* { return data_; }
 

	
 
  /** Returns the string size. */
 
  constexpr size_t size() const { return size_; }
 

	
 
  constexpr iterator begin() const { return data_; }
 
  constexpr iterator end() const { return data_ + size_; }
 

	
 
  constexpr const Char& operator[](size_t pos) const { return data_[pos]; }
 

	
 
  FMT_CONSTEXPR void remove_prefix(size_t n) {
 
  constexpr auto size() const noexcept -> size_t { return size_; }
 

	
 
  constexpr auto begin() const noexcept -> iterator { return data_; }
 
  constexpr auto end() const noexcept -> iterator { return data_ + size_; }
 

	
 
  constexpr auto operator[](size_t pos) const noexcept -> const Char& {
 
    return data_[pos];
 
  }
 

	
 
  FMT_CONSTEXPR void remove_prefix(size_t n) noexcept {
 
    data_ += n;
 
    size_ -= n;
 
  }
 

	
 
  FMT_CONSTEXPR_CHAR_TRAITS bool starts_with(
 
      basic_string_view<Char> sv) const noexcept {
 
    return size_ >= sv.size_ &&
 
           std::char_traits<Char>::compare(data_, sv.data_, sv.size_) == 0;
 
  }
 
  FMT_CONSTEXPR_CHAR_TRAITS bool starts_with(Char c) const noexcept {
 
    return size_ >= 1 && std::char_traits<Char>::eq(*data_, c);
 
  }
 
  FMT_CONSTEXPR_CHAR_TRAITS bool starts_with(const Char* s) const {
 
    return starts_with(basic_string_view<Char>(s));
 
  }
 

	
 
  // Lexicographically compare this string reference to other.
 
  int compare(basic_string_view other) const {
 
  FMT_CONSTEXPR_CHAR_TRAITS auto compare(basic_string_view other) const -> int {
 
    size_t str_size = size_ < other.size_ ? size_ : other.size_;
 
    int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
 
    if (result == 0)
 
      result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
 
    return result;
 
  }
 

	
 
  friend bool operator==(basic_string_view lhs, basic_string_view rhs) {
 
  FMT_CONSTEXPR_CHAR_TRAITS friend auto operator==(basic_string_view lhs,
 
                                                   basic_string_view rhs)
 
      -> bool {
 
    return lhs.compare(rhs) == 0;
 
  }
 
  friend bool operator!=(basic_string_view lhs, basic_string_view rhs) {
 
  friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool {
 
    return lhs.compare(rhs) != 0;
 
  }
 
  friend bool operator<(basic_string_view lhs, basic_string_view rhs) {
 
  friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool {
 
    return lhs.compare(rhs) < 0;
 
  }
 
  friend bool operator<=(basic_string_view lhs, basic_string_view rhs) {
 
  friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool {
 
    return lhs.compare(rhs) <= 0;
 
  }
 
  friend bool operator>(basic_string_view lhs, basic_string_view rhs) {
 
  friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool {
 
    return lhs.compare(rhs) > 0;
 
  }
 
  friend bool operator>=(basic_string_view lhs, basic_string_view rhs) {
 
  friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool {
 
    return lhs.compare(rhs) >= 0;
 
  }
 
};
 

	
 
FMT_MODULE_EXPORT
 
using string_view = basic_string_view<char>;
 
using wstring_view = basic_string_view<wchar_t>;
 

	
 
/** Specifies if ``T`` is a character type. Can be specialized by users. */
 
FMT_MODULE_EXPORT
 
template <typename T> struct is_char : std::false_type {};
 
template <> struct is_char<char> : std::true_type {};
 
template <> struct is_char<wchar_t> : std::true_type {};
 
template <> struct is_char<detail::char8_type> : std::true_type {};
 
template <> struct is_char<char16_t> : std::true_type {};
 
template <> struct is_char<char32_t> : std::true_type {};
 

	
 
/**
 
  \rst
 
  Returns a string view of `s`. In order to add custom string type support to
 
  {fmt} provide an overload of `to_string_view` for it in the same namespace as
 
  the type for the argument-dependent lookup to work.
 

	
 
  **Example**::
 

	
 
    namespace my_ns {
 
    inline string_view to_string_view(const my_string& s) {
 
      return {s.data(), s.length()};
 
    }
 
    }
 
    std::string message = fmt::format(my_string("The answer is {}"), 42);
 
  \endrst
 
 */
 
template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
 
inline basic_string_view<Char> to_string_view(const Char* s) {
 
  return s;
 
}
 

	
 
template <typename Char, typename Traits, typename Alloc>
 
inline basic_string_view<Char> to_string_view(
 
    const std::basic_string<Char, Traits, Alloc>& s) {
 
  return s;
 
}
 

	
 
template <typename Char>
 
inline basic_string_view<Char> to_string_view(basic_string_view<Char> s) {
 
  return s;
 
}
 

	
 
template <typename Char,
 
          FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)>
 
inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) {
 
  return s;
 
}
 

	
 
// A base class for compile-time strings. It is defined in the fmt namespace to
 
// make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42).
 

	
 
namespace detail {
 

	
 
// A base class for compile-time strings.
 
struct compile_string {};
 

	
 
template <typename S>
 
struct is_compile_string : std::is_base_of<compile_string, S> {};
 

	
 
template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
 
constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) {
 
template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
 
FMT_INLINE auto to_string_view(const Char* s) -> basic_string_view<Char> {
 
  return s;
 
}
 
template <typename Char, typename Traits, typename Alloc>
 
inline auto to_string_view(const std::basic_string<Char, Traits, Alloc>& s)
 
    -> basic_string_view<Char> {
 
  return s;
 
}
 

	
 
namespace detail {
 
template <typename Char>
 
constexpr auto to_string_view(basic_string_view<Char> s)
 
    -> basic_string_view<Char> {
 
  return s;
 
}
 
template <typename Char,
 
          FMT_ENABLE_IF(!std::is_empty<std_string_view<Char>>::value)>
 
inline auto to_string_view(std_string_view<Char> s) -> basic_string_view<Char> {
 
  return s;
 
}
 
template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
 
constexpr auto to_string_view(const S& s)
 
    -> basic_string_view<typename S::char_type> {
 
  return basic_string_view<typename S::char_type>(s);
 
}
 
void to_string_view(...);
 
using fmt::v7::to_string_view;
 

	
 
// Specifies whether S is a string type convertible to fmt::basic_string_view.
 
// It should be a constexpr function but MSVC 2017 fails to compile it in
 
// enable_if and MSVC 2015 fails to compile it as an alias template.
 
// ADL is intentionally disabled as to_string_view is not an extension point.
 
template <typename S>
 
struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> {
 
};
 
struct is_string
 
    : std::is_class<decltype(detail::to_string_view(std::declval<S>()))> {};
 

	
 
template <typename S, typename = void> struct char_t_impl {};
 
template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> {
 
  using result = decltype(to_string_view(std::declval<S>()));
 
  using type = typename result::value_type;
 
};
 

	
 
// Reports a compile-time error if S is not a valid format string.
 
template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
 
FMT_INLINE void check_format_string(const S&) {
 
#ifdef FMT_ENFORCE_COMPILE_STRING
 
  static_assert(is_compile_string<S>::value,
 
                "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
 
                "FMT_STRING.");
 
#endif
 
}
 
template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
 
void check_format_string(S);
 

	
 
struct error_handler {
 
  constexpr error_handler() = default;
 

	
 
  // This function is intentionally not constexpr to give a compile-time error.
 
  FMT_NORETURN FMT_API void on_error(const char* message);
 
};
 
}  // namespace detail
 

	
 
/** String's character type. */
 
template <typename S> using char_t = typename detail::char_t_impl<S>::type;
 

	
 
/**
 
  \rst
 
  Parsing context consisting of a format string range being parsed and an
 
  argument counter for automatic indexing.
 

	
 
  You can use one of the following type aliases for common character types:
 

	
 
  +-----------------------+-------------------------------------+
 
  | Type                  | Definition                          |
 
  +=======================+=====================================+
 
  | format_parse_context  | basic_format_parse_context<char>    |
 
  +-----------------------+-------------------------------------+
 
  | wformat_parse_context | basic_format_parse_context<wchar_t> |
 
  +-----------------------+-------------------------------------+
 
  \endrst
 
 */
 
template <typename Char, typename ErrorHandler = detail::error_handler>
 
class basic_format_parse_context : private ErrorHandler {
 
 private:
 
  basic_string_view<Char> format_str_;
 
  int next_arg_id_;
 

	
 
 public:
 
  using char_type = Char;
 
  using iterator = typename basic_string_view<Char>::iterator;
 

	
 
  explicit constexpr basic_format_parse_context(
 
      basic_string_view<Char> format_str, ErrorHandler eh = {},
 
      int next_arg_id = 0)
 
      : ErrorHandler(eh), format_str_(format_str), next_arg_id_(next_arg_id) {}
 

	
 
  /**
 
    Returns an iterator to the beginning of the format string range being
 
    parsed.
 
   */
 
  constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); }
 

	
 
  /**
 
    Returns an iterator past the end of the format string range being parsed.
 
   */
 
  constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); }
 

	
 
  /** Advances the begin iterator to ``it``. */
 
  FMT_CONSTEXPR void advance_to(iterator it) {
 
    format_str_.remove_prefix(detail::to_unsigned(it - begin()));
 
  }
 

	
 
  /**
 
    Reports an error if using the manual argument indexing; otherwise returns
 
    the next argument index and switches to the automatic indexing.
 
   */
 
  FMT_CONSTEXPR int next_arg_id() {
 
    // Don't check if the argument id is valid to avoid overhead and because it
 
    // will be checked during formatting anyway.
 
    if (next_arg_id_ >= 0) return next_arg_id_++;
 
    on_error("cannot switch from manual to automatic argument indexing");
 
    return 0;
 
  }
 

	
 
  /**
 
    Reports an error if using the automatic argument indexing; otherwise
 
    switches to the manual indexing.
 
   */
 
  FMT_CONSTEXPR void check_arg_id(int) {
 
    if (next_arg_id_ > 0)
 
      on_error("cannot switch from automatic to manual argument indexing");
 
    else
 
      next_arg_id_ = -1;
 
  }
 

	
 
  FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}
 

	
 
  FMT_CONSTEXPR void on_error(const char* message) {
 
    ErrorHandler::on_error(message);
 
  }
 

	
 
  constexpr ErrorHandler error_handler() const { return *this; }
 
};
 

	
 
using format_parse_context = basic_format_parse_context<char>;
 
using wformat_parse_context = basic_format_parse_context<wchar_t>;
 

	
 
template <typename Context> class basic_format_arg;
 
template <typename Context> class basic_format_args;
 
template <typename Context> class dynamic_format_arg_store;
 

	
 
// A formatter for objects of type T.
 
template <typename T, typename Char = char, typename Enable = void>
 
struct formatter {
 
  // A deleted default constructor indicates a disabled formatter.
 
  formatter() = delete;
 
};
 

	
 
// Specifies if T has an enabled formatter specialization. A type can be
 
// formattable even if it doesn't have a formatter e.g. via a conversion.
 
template <typename T, typename Context>
 
using has_formatter =
 
    std::is_constructible<typename Context::template formatter_type<T>>;
 

	
 
// Checks whether T is a container with contiguous storage.
 
template <typename T> struct is_contiguous : std::false_type {};
 
template <typename Char>
 
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
 

	
 
namespace detail {
 

	
 
// Extracts a reference to the container from back_insert_iterator.
 
template <typename Container>
 
inline Container& get_container(std::back_insert_iterator<Container> it) {
 
  using bi_iterator = std::back_insert_iterator<Container>;
 
  struct accessor : bi_iterator {
 
    accessor(bi_iterator iter) : bi_iterator(iter) {}
 
    using bi_iterator::container;
 
  };
 
  return *accessor(it).container;
 
}
 

	
 
/**
 
  \rst
 
  A contiguous memory buffer with an optional growing ability. It is an internal
 
  class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
 
  \endrst
 
 */
 
template <typename T> class buffer {
 
 private:
 
  T* ptr_;
 
  size_t size_;
 
  size_t capacity_;
 

	
 
 protected:
 
  // Don't initialize ptr_ since it is not accessed to save a few cycles.
 
  FMT_SUPPRESS_MSC_WARNING(26495)
 
  buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {}
 

	
 
  buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT
 
      : ptr_(p),
 
        size_(sz),
 
        capacity_(cap) {}
 

	
 
  ~buffer() = default;
 

	
 
  /** Sets the buffer data and capacity. */
 
  void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT {
 
    ptr_ = buf_data;
 
    capacity_ = buf_capacity;
 
  }
 

	
 
  /** Increases the buffer capacity to hold at least *capacity* elements. */
 
  virtual void grow(size_t capacity) = 0;
 

	
 
 public:
 
  using value_type = T;
 
  using const_reference = const T&;
 

	
 
  buffer(const buffer&) = delete;
 
  void operator=(const buffer&) = delete;
 

	
 
  T* begin() FMT_NOEXCEPT { return ptr_; }
 
  T* end() FMT_NOEXCEPT { return ptr_ + size_; }
 

	
 
  const T* begin() const FMT_NOEXCEPT { return ptr_; }
 
  const T* end() const FMT_NOEXCEPT { return ptr_ + size_; }
 

	
 
  /** Returns the size of this buffer. */
 
  size_t size() const FMT_NOEXCEPT { return size_; }
 

	
 
  /** Returns the capacity of this buffer. */
 
  size_t capacity() const FMT_NOEXCEPT { return capacity_; }
 

	
 
  /** Returns a pointer to the buffer data. */
 
  T* data() FMT_NOEXCEPT { return ptr_; }
 

	
 
  /** Returns a pointer to the buffer data. */
 
  const T* data() const FMT_NOEXCEPT { return ptr_; }
 

	
 
  /** Clears this buffer. */
 
  void clear() { size_ = 0; }
 

	
 
  // Tries resizing the buffer to contain *count* elements. If T is a POD type
 
  // the new elements may not be initialized.
 
  void try_resize(size_t count) {
 
    try_reserve(count);
 
    size_ = count <= capacity_ ? count : capacity_;
 
  }
 

	
 
  // Tries increasing the buffer capacity to *new_capacity*. It can increase the
 
  // capacity by a smaller amount than requested but guarantees there is space
 
  // for at least one additional element either by increasing the capacity or by
 
  // flushing the buffer if it is full.
 
  void try_reserve(size_t new_capacity) {
 
    if (new_capacity > capacity_) grow(new_capacity);
 
  }
 

	
 
  void push_back(const T& value) {
 
    try_reserve(size_ + 1);
 
    ptr_[size_++] = value;
 
  }
 

	
 
  /** Appends data to the end of the buffer. */
 
  template <typename U> void append(const U* begin, const U* end);
 

	
 
  template <typename I> T& operator[](I index) { return ptr_[index]; }
 
  template <typename I> const T& operator[](I index) const {
 
    return ptr_[index];
 
  }
 
};
 

	
 
struct buffer_traits {
 
  explicit buffer_traits(size_t) {}
 
  size_t count() const { return 0; }
 
  size_t limit(size_t size) { return size; }
 
};
 

	
 
class fixed_buffer_traits {
 
 private:
 
  size_t count_ = 0;
 
  size_t limit_;
 

	
 
 public:
 
  explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
 
  size_t count() const { return count_; }
 
  size_t limit(size_t size) {
 
    size_t n = limit_ > count_ ? limit_ - count_ : 0;
 
    count_ += size;
 
    return size < n ? size : n;
 
  }
 
};
 

	
 
// A buffer that writes to an output iterator when flushed.
 
template <typename OutputIt, typename T, typename Traits = buffer_traits>
 
class iterator_buffer final : public Traits, public buffer<T> {
 
 private:
 
  OutputIt out_;
 
  enum { buffer_size = 256 };
 
  T data_[buffer_size];
 

	
 
 protected:
 
  void grow(size_t) final FMT_OVERRIDE {
 
    if (this->size() == buffer_size) flush();
 
  }
 
  void flush();
 

	
 
 public:
 
  explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
 
      : Traits(n),
 
        buffer<T>(data_, 0, buffer_size),
 
        out_(out) {}
 
  ~iterator_buffer() { flush(); }
 

	
 
  OutputIt out() {
 
    flush();
 
    return out_;
 
  }
 
  size_t count() const { return Traits::count() + this->size(); }
 
};
 

	
 
template <typename T> class iterator_buffer<T*, T> final : public buffer<T> {
 
 protected:
 
  void grow(size_t) final FMT_OVERRIDE {}
 

	
 
 public:
 
  explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {}
 

	
 
  T* out() { return &*this->end(); }
 
};
 

	
 
// A buffer that writes to a container with the contiguous storage.
 
template <typename Container>
 
class iterator_buffer<std::back_insert_iterator<Container>,
 
                      enable_if_t<is_contiguous<Container>::value,
 
                                  typename Container::value_type>>
 
    final : public buffer<typename Container::value_type> {
 
 private:
 
  Container& container_;
 

	
 
 protected:
 
  void grow(size_t capacity) final FMT_OVERRIDE {
 
    container_.resize(capacity);
 
    this->set(&container_[0], capacity);
 
  }
 

	
 
 public:
 
  explicit iterator_buffer(Container& c)
 
      : buffer<typename Container::value_type>(c.size()), container_(c) {}
 
  explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0)
 
      : iterator_buffer(get_container(out)) {}
 
  std::back_insert_iterator<Container> out() {
 
    return std::back_inserter(container_);
 
  }
 
};
 

	
 
// A buffer that counts the number of code units written discarding the output.
 
template <typename T = char> class counting_buffer final : public buffer<T> {
 
 private:
 
  enum { buffer_size = 256 };
 
  T data_[buffer_size];
 
  size_t count_ = 0;
 

	
 
 protected:
 
  void grow(size_t) final FMT_OVERRIDE {
 
    if (this->size() != buffer_size) return;
 
    count_ += this->size();
 
    this->clear();
 
  }
 

	
 
 public:
 
  counting_buffer() : buffer<T>(data_, 0, buffer_size) {}
 

	
 
  size_t count() { return count_ + this->size(); }
 
};
 

	
 
// An output iterator that appends to the buffer.
 
// It is used to reduce symbol sizes for the common case.
 
template <typename T>
 
class buffer_appender : public std::back_insert_iterator<buffer<T>> {
 
  using base = std::back_insert_iterator<buffer<T>>;
 

	
 
 public:
 
  explicit buffer_appender(buffer<T>& buf) : base(buf) {}
 
  buffer_appender(base it) : base(it) {}
 

	
 
  buffer_appender& operator++() {
 
    base::operator++();
 
    return *this;
 
  }
 

	
 
  buffer_appender operator++(int) {
 
    buffer_appender tmp = *this;
 
    ++*this;
 
    return tmp;
 
  }
 
};
 

	
 
// Maps an output iterator into a buffer.
 
template <typename T, typename OutputIt>
 
iterator_buffer<OutputIt, T> get_buffer(OutputIt);
 
template <typename T> buffer<T>& get_buffer(buffer_appender<T>);
 

	
 
template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) {
 
  return out;
 
}
 
template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) {
 
  return get_container(out);
 
}
 

	
 
template <typename Buffer>
 
auto get_iterator(Buffer& buf) -> decltype(buf.out()) {
 
  return buf.out();
 
}
 
template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) {
 
  return buffer_appender<T>(buf);
 
}
 

	
 
template <typename T, typename Char = char, typename Enable = void>
 
struct fallback_formatter {
 
  fallback_formatter() = delete;
 
};
 

	
 
// Specifies if T has an enabled fallback_formatter specialization.
 
template <typename T, typename Context>
 
using has_fallback_formatter =
 
    std::is_constructible<fallback_formatter<T, typename Context::char_type>>;
 

	
 
struct view {};
 

	
 
template <typename Char, typename T> struct named_arg : view {
 
  const Char* name;
 
  const T& value;
 
  named_arg(const Char* n, const T& v) : name(n), value(v) {}
 
};
 

	
 
template <typename Char> struct named_arg_info {
 
  const Char* name;
 
  int id;
 
};
 

	
 
template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
 
struct arg_data {
 
  // args_[0].named_args points to named_args_ to avoid bloating format_args.
 
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
 
  T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)];
 
  named_arg_info<Char> named_args_[NUM_NAMED_ARGS];
 

	
 
  template <typename... U>
 
  arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
 
  arg_data(const arg_data& other) = delete;
 
  const T* args() const { return args_ + 1; }
 
  named_arg_info<Char>* named_args() { return named_args_; }
 
};
 

	
 
template <typename T, typename Char, size_t NUM_ARGS>
 
struct arg_data<T, Char, NUM_ARGS, 0> {
 
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
 
  T args_[NUM_ARGS != 0 ? NUM_ARGS : +1];
 

	
 
  template <typename... U>
 
  FMT_INLINE arg_data(const U&... init) : args_{init...} {}
 
  FMT_INLINE const T* args() const { return args_; }
 
  FMT_INLINE std::nullptr_t named_args() { return nullptr; }
 
};
 

	
 
template <typename Char>
 
inline void init_named_args(named_arg_info<Char>*, int, int) {}
 

	
 
template <typename Char, typename T, typename... Tail>
 
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
 
                     int named_arg_count, const T&, const Tail&... args) {
 
  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
 
}
 

	
 
template <typename Char, typename T, typename... Tail>
 
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
 
                     int named_arg_count, const named_arg<Char, T>& arg,
 
                     const Tail&... args) {
 
  named_args[named_arg_count++] = {arg.name, arg_count};
 
  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
 
}
 

	
 
template <typename... Args>
 
FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {}
 

	
 
template <typename T> struct is_named_arg : std::false_type {};
 

	
 
template <typename T, typename Char>
 
struct is_named_arg<named_arg<Char, T>> : std::true_type {};
 

	
 
template <bool B = false> constexpr size_t count() { return B ? 1 : 0; }
 
template <bool B1, bool B2, bool... Tail> constexpr size_t count() {
 
  return (B1 ? 1 : 0) + count<B2, Tail...>();
 
}
 

	
 
template <typename... Args> constexpr size_t count_named_args() {
 
  return count<is_named_arg<Args>::value...>();
 
}
 

	
 
enum class type {
 
  none_type,
 
  // Integer types should go first,
 
  int_type,
 
  uint_type,
 
  long_long_type,
 
@@ -1006,233 +586,891 @@ struct type_constant : std::integral_con
 
      : std::integral_constant<type, type::constant> {}
 

	
 
FMT_TYPE_CONSTANT(int, int_type);
 
FMT_TYPE_CONSTANT(unsigned, uint_type);
 
FMT_TYPE_CONSTANT(long long, long_long_type);
 
FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
 
FMT_TYPE_CONSTANT(int128_t, int128_type);
 
FMT_TYPE_CONSTANT(uint128_t, uint128_type);
 
FMT_TYPE_CONSTANT(int128_opt, int128_type);
 
FMT_TYPE_CONSTANT(uint128_opt, uint128_type);
 
FMT_TYPE_CONSTANT(bool, bool_type);
 
FMT_TYPE_CONSTANT(Char, char_type);
 
FMT_TYPE_CONSTANT(float, float_type);
 
FMT_TYPE_CONSTANT(double, double_type);
 
FMT_TYPE_CONSTANT(long double, long_double_type);
 
FMT_TYPE_CONSTANT(const Char*, cstring_type);
 
FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
 
FMT_TYPE_CONSTANT(const void*, pointer_type);
 

	
 
constexpr bool is_integral_type(type t) {
 
  return t > type::none_type && t <= type::last_integer_type;
 
}
 

	
 
constexpr bool is_arithmetic_type(type t) {
 
  return t > type::none_type && t <= type::last_numeric_type;
 
}
 

	
 
constexpr auto set(type rhs) -> int { return 1 << static_cast<int>(rhs); }
 
constexpr auto in(type t, int set) -> bool {
 
  return ((set >> static_cast<int>(t)) & 1) != 0;
 
}
 

	
 
// Bitsets of types.
 
enum {
 
  sint_set =
 
      set(type::int_type) | set(type::long_long_type) | set(type::int128_type),
 
  uint_set = set(type::uint_type) | set(type::ulong_long_type) |
 
             set(type::uint128_type),
 
  bool_set = set(type::bool_type),
 
  char_set = set(type::char_type),
 
  float_set = set(type::float_type) | set(type::double_type) |
 
              set(type::long_double_type),
 
  string_set = set(type::string_type),
 
  cstring_set = set(type::cstring_type),
 
  pointer_set = set(type::pointer_type)
 
};
 

	
 
FMT_NORETURN FMT_API void throw_format_error(const char* message);
 

	
 
struct error_handler {
 
  constexpr error_handler() = default;
 

	
 
  // This function is intentionally not constexpr to give a compile-time error.
 
  FMT_NORETURN void on_error(const char* message) {
 
    throw_format_error(message);
 
  }
 
};
 
}  // namespace detail
 

	
 
/** String's character type. */
 
template <typename S> using char_t = typename detail::char_t_impl<S>::type;
 

	
 
/**
 
  \rst
 
  Parsing context consisting of a format string range being parsed and an
 
  argument counter for automatic indexing.
 
  You can use the ``format_parse_context`` type alias for ``char`` instead.
 
  \endrst
 
 */
 
FMT_MODULE_EXPORT
 
template <typename Char> class basic_format_parse_context {
 
 private:
 
  basic_string_view<Char> format_str_;
 
  int next_arg_id_;
 

	
 
  FMT_CONSTEXPR void do_check_arg_id(int id);
 

	
 
 public:
 
  using char_type = Char;
 
  using iterator = const Char*;
 

	
 
  explicit constexpr basic_format_parse_context(
 
      basic_string_view<Char> format_str, int next_arg_id = 0)
 
      : format_str_(format_str), next_arg_id_(next_arg_id) {}
 

	
 
  /**
 
    Returns an iterator to the beginning of the format string range being
 
    parsed.
 
   */
 
  constexpr auto begin() const noexcept -> iterator {
 
    return format_str_.begin();
 
  }
 

	
 
  /**
 
    Returns an iterator past the end of the format string range being parsed.
 
   */
 
  constexpr auto end() const noexcept -> iterator { return format_str_.end(); }
 

	
 
  /** Advances the begin iterator to ``it``. */
 
  FMT_CONSTEXPR void advance_to(iterator it) {
 
    format_str_.remove_prefix(detail::to_unsigned(it - begin()));
 
  }
 

	
 
  /**
 
    Reports an error if using the manual argument indexing; otherwise returns
 
    the next argument index and switches to the automatic indexing.
 
   */
 
  FMT_CONSTEXPR auto next_arg_id() -> int {
 
    if (next_arg_id_ < 0) {
 
      detail::throw_format_error(
 
          "cannot switch from manual to automatic argument indexing");
 
      return 0;
 
    }
 
    int id = next_arg_id_++;
 
    do_check_arg_id(id);
 
    return id;
 
  }
 

	
 
  /**
 
    Reports an error if using the automatic argument indexing; otherwise
 
    switches to the manual indexing.
 
   */
 
  FMT_CONSTEXPR void check_arg_id(int id) {
 
    if (next_arg_id_ > 0) {
 
      detail::throw_format_error(
 
          "cannot switch from automatic to manual argument indexing");
 
      return;
 
    }
 
    next_arg_id_ = -1;
 
    do_check_arg_id(id);
 
  }
 
  FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}
 
  FMT_CONSTEXPR void check_dynamic_spec(int arg_id);
 
};
 

	
 
FMT_MODULE_EXPORT
 
using format_parse_context = basic_format_parse_context<char>;
 

	
 
namespace detail {
 
// A parse context with extra data used only in compile-time checks.
 
template <typename Char>
 
class compile_parse_context : public basic_format_parse_context<Char> {
 
 private:
 
  int num_args_;
 
  const type* types_;
 
  using base = basic_format_parse_context<Char>;
 

	
 
 public:
 
  explicit FMT_CONSTEXPR compile_parse_context(
 
      basic_string_view<Char> format_str, int num_args, const type* types,
 
      int next_arg_id = 0)
 
      : base(format_str, next_arg_id), num_args_(num_args), types_(types) {}
 

	
 
  constexpr auto num_args() const -> int { return num_args_; }
 
  constexpr auto arg_type(int id) const -> type { return types_[id]; }
 

	
 
  FMT_CONSTEXPR auto next_arg_id() -> int {
 
    int id = base::next_arg_id();
 
    if (id >= num_args_) throw_format_error("argument not found");
 
    return id;
 
  }
 

	
 
  FMT_CONSTEXPR void check_arg_id(int id) {
 
    base::check_arg_id(id);
 
    if (id >= num_args_) throw_format_error("argument not found");
 
  }
 
  using base::check_arg_id;
 

	
 
  FMT_CONSTEXPR void check_dynamic_spec(int arg_id) {
 
    detail::ignore_unused(arg_id);
 
#if !defined(__LCC__)
 
    if (arg_id < num_args_ && types_ && !is_integral_type(types_[arg_id]))
 
      throw_format_error("width/precision is not integer");
 
#endif
 
  }
 
};
 
}  // namespace detail
 

	
 
template <typename Char>
 
FMT_CONSTEXPR void basic_format_parse_context<Char>::do_check_arg_id(int id) {
 
  // Argument id is only checked at compile-time during parsing because
 
  // formatting has its own validation.
 
  if (detail::is_constant_evaluated() &&
 
      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
 
    using context = detail::compile_parse_context<Char>;
 
    if (id >= static_cast<context*>(this)->num_args())
 
      detail::throw_format_error("argument not found");
 
  }
 
}
 

	
 
template <typename Char>
 
FMT_CONSTEXPR void basic_format_parse_context<Char>::check_dynamic_spec(
 
    int arg_id) {
 
  if (detail::is_constant_evaluated() &&
 
      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
 
    using context = detail::compile_parse_context<Char>;
 
    static_cast<context*>(this)->check_dynamic_spec(arg_id);
 
  }
 
}
 

	
 
FMT_MODULE_EXPORT template <typename Context> class basic_format_arg;
 
FMT_MODULE_EXPORT template <typename Context> class basic_format_args;
 
FMT_MODULE_EXPORT template <typename Context> class dynamic_format_arg_store;
 

	
 
// A formatter for objects of type T.
 
FMT_MODULE_EXPORT
 
template <typename T, typename Char = char, typename Enable = void>
 
struct formatter {
 
  // A deleted default constructor indicates a disabled formatter.
 
  formatter() = delete;
 
};
 

	
 
// Specifies if T has an enabled formatter specialization. A type can be
 
// formattable even if it doesn't have a formatter e.g. via a conversion.
 
template <typename T, typename Context>
 
using has_formatter =
 
    std::is_constructible<typename Context::template formatter_type<T>>;
 

	
 
// Checks whether T is a container with contiguous storage.
 
template <typename T> struct is_contiguous : std::false_type {};
 
template <typename Char>
 
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
 

	
 
class appender;
 

	
 
namespace detail {
 

	
 
template <typename Context, typename T>
 
constexpr auto has_const_formatter_impl(T*)
 
    -> decltype(typename Context::template formatter_type<T>().format(
 
                    std::declval<const T&>(), std::declval<Context&>()),
 
                true) {
 
  return true;
 
}
 
template <typename Context>
 
constexpr auto has_const_formatter_impl(...) -> bool {
 
  return false;
 
}
 
template <typename T, typename Context>
 
constexpr auto has_const_formatter() -> bool {
 
  return has_const_formatter_impl<Context>(static_cast<T*>(nullptr));
 
}
 

	
 
// Extracts a reference to the container from back_insert_iterator.
 
template <typename Container>
 
inline auto get_container(std::back_insert_iterator<Container> it)
 
    -> Container& {
 
  using base = std::back_insert_iterator<Container>;
 
  struct accessor : base {
 
    accessor(base b) : base(b) {}
 
    using base::container;
 
  };
 
  return *accessor(it).container;
 
}
 

	
 
template <typename Char, typename InputIt, typename OutputIt>
 
FMT_CONSTEXPR auto copy_str(InputIt begin, InputIt end, OutputIt out)
 
    -> OutputIt {
 
  while (begin != end) *out++ = static_cast<Char>(*begin++);
 
  return out;
 
}
 

	
 
template <typename Char, typename T, typename U,
 
          FMT_ENABLE_IF(
 
              std::is_same<remove_const_t<T>, U>::value&& is_char<U>::value)>
 
FMT_CONSTEXPR auto copy_str(T* begin, T* end, U* out) -> U* {
 
  if (is_constant_evaluated()) return copy_str<Char, T*, U*>(begin, end, out);
 
  auto size = to_unsigned(end - begin);
 
  if (size > 0) memcpy(out, begin, size * sizeof(U));
 
  return out + size;
 
}
 

	
 
/**
 
  \rst
 
  A contiguous memory buffer with an optional growing ability. It is an internal
 
  class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
 
  \endrst
 
 */
 
template <typename T> class buffer {
 
 private:
 
  T* ptr_;
 
  size_t size_;
 
  size_t capacity_;
 

	
 
 protected:
 
  // Don't initialize ptr_ since it is not accessed to save a few cycles.
 
  FMT_MSC_WARNING(suppress : 26495)
 
  buffer(size_t sz) noexcept : size_(sz), capacity_(sz) {}
 

	
 
  FMT_CONSTEXPR20 buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) noexcept
 
      : ptr_(p), size_(sz), capacity_(cap) {}
 

	
 
  FMT_CONSTEXPR20 ~buffer() = default;
 
  buffer(buffer&&) = default;
 

	
 
  /** Sets the buffer data and capacity. */
 
  FMT_CONSTEXPR void set(T* buf_data, size_t buf_capacity) noexcept {
 
    ptr_ = buf_data;
 
    capacity_ = buf_capacity;
 
  }
 

	
 
  /** Increases the buffer capacity to hold at least *capacity* elements. */
 
  virtual FMT_CONSTEXPR20 void grow(size_t capacity) = 0;
 

	
 
 public:
 
  using value_type = T;
 
  using const_reference = const T&;
 

	
 
  buffer(const buffer&) = delete;
 
  void operator=(const buffer&) = delete;
 

	
 
  FMT_INLINE auto begin() noexcept -> T* { return ptr_; }
 
  FMT_INLINE auto end() noexcept -> T* { return ptr_ + size_; }
 

	
 
  FMT_INLINE auto begin() const noexcept -> const T* { return ptr_; }
 
  FMT_INLINE auto end() const noexcept -> const T* { return ptr_ + size_; }
 

	
 
  /** Returns the size of this buffer. */
 
  constexpr auto size() const noexcept -> size_t { return size_; }
 

	
 
  /** Returns the capacity of this buffer. */
 
  constexpr auto capacity() const noexcept -> size_t { return capacity_; }
 

	
 
  /** Returns a pointer to the buffer data. */
 
  FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; }
 

	
 
  /** Returns a pointer to the buffer data. */
 
  FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; }
 

	
 
  /** Clears this buffer. */
 
  void clear() { size_ = 0; }
 

	
 
  // Tries resizing the buffer to contain *count* elements. If T is a POD type
 
  // the new elements may not be initialized.
 
  FMT_CONSTEXPR20 void try_resize(size_t count) {
 
    try_reserve(count);
 
    size_ = count <= capacity_ ? count : capacity_;
 
  }
 

	
 
  // Tries increasing the buffer capacity to *new_capacity*. It can increase the
 
  // capacity by a smaller amount than requested but guarantees there is space
 
  // for at least one additional element either by increasing the capacity or by
 
  // flushing the buffer if it is full.
 
  FMT_CONSTEXPR20 void try_reserve(size_t new_capacity) {
 
    if (new_capacity > capacity_) grow(new_capacity);
 
  }
 

	
 
  FMT_CONSTEXPR20 void push_back(const T& value) {
 
    try_reserve(size_ + 1);
 
    ptr_[size_++] = value;
 
  }
 

	
 
  /** Appends data to the end of the buffer. */
 
  template <typename U> void append(const U* begin, const U* end);
 

	
 
  template <typename Idx> FMT_CONSTEXPR auto operator[](Idx index) -> T& {
 
    return ptr_[index];
 
  }
 
  template <typename Idx>
 
  FMT_CONSTEXPR auto operator[](Idx index) const -> const T& {
 
    return ptr_[index];
 
  }
 
};
 

	
 
struct buffer_traits {
 
  explicit buffer_traits(size_t) {}
 
  auto count() const -> size_t { return 0; }
 
  auto limit(size_t size) -> size_t { return size; }
 
};
 

	
 
class fixed_buffer_traits {
 
 private:
 
  size_t count_ = 0;
 
  size_t limit_;
 

	
 
 public:
 
  explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
 
  auto count() const -> size_t { return count_; }
 
  auto limit(size_t size) -> size_t {
 
    size_t n = limit_ > count_ ? limit_ - count_ : 0;
 
    count_ += size;
 
    return size < n ? size : n;
 
  }
 
};
 

	
 
// A buffer that writes to an output iterator when flushed.
 
template <typename OutputIt, typename T, typename Traits = buffer_traits>
 
class iterator_buffer final : public Traits, public buffer<T> {
 
 private:
 
  OutputIt out_;
 
  enum { buffer_size = 256 };
 
  T data_[buffer_size];
 

	
 
 protected:
 
  FMT_CONSTEXPR20 void grow(size_t) override {
 
    if (this->size() == buffer_size) flush();
 
  }
 

	
 
  void flush() {
 
    auto size = this->size();
 
    this->clear();
 
    out_ = copy_str<T>(data_, data_ + this->limit(size), out_);
 
  }
 

	
 
 public:
 
  explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
 
      : Traits(n), buffer<T>(data_, 0, buffer_size), out_(out) {}
 
  iterator_buffer(iterator_buffer&& other)
 
      : Traits(other), buffer<T>(data_, 0, buffer_size), out_(other.out_) {}
 
  ~iterator_buffer() { flush(); }
 

	
 
  auto out() -> OutputIt {
 
    flush();
 
    return out_;
 
  }
 
  auto count() const -> size_t { return Traits::count() + this->size(); }
 
};
 

	
 
template <typename T>
 
class iterator_buffer<T*, T, fixed_buffer_traits> final
 
    : public fixed_buffer_traits,
 
      public buffer<T> {
 
 private:
 
  T* out_;
 
  enum { buffer_size = 256 };
 
  T data_[buffer_size];
 

	
 
 protected:
 
  FMT_CONSTEXPR20 void grow(size_t) override {
 
    if (this->size() == this->capacity()) flush();
 
  }
 

	
 
  void flush() {
 
    size_t n = this->limit(this->size());
 
    if (this->data() == out_) {
 
      out_ += n;
 
      this->set(data_, buffer_size);
 
    }
 
    this->clear();
 
  }
 

	
 
 public:
 
  explicit iterator_buffer(T* out, size_t n = buffer_size)
 
      : fixed_buffer_traits(n), buffer<T>(out, 0, n), out_(out) {}
 
  iterator_buffer(iterator_buffer&& other)
 
      : fixed_buffer_traits(other),
 
        buffer<T>(std::move(other)),
 
        out_(other.out_) {
 
    if (this->data() != out_) {
 
      this->set(data_, buffer_size);
 
      this->clear();
 
    }
 
  }
 
  ~iterator_buffer() { flush(); }
 

	
 
  auto out() -> T* {
 
    flush();
 
    return out_;
 
  }
 
  auto count() const -> size_t {
 
    return fixed_buffer_traits::count() + this->size();
 
  }
 
};
 

	
 
template <typename T> class iterator_buffer<T*, T> final : public buffer<T> {
 
 protected:
 
  FMT_CONSTEXPR20 void grow(size_t) override {}
 

	
 
 public:
 
  explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {}
 

	
 
  auto out() -> T* { return &*this->end(); }
 
};
 

	
 
// A buffer that writes to a container with the contiguous storage.
 
template <typename Container>
 
class iterator_buffer<std::back_insert_iterator<Container>,
 
                      enable_if_t<is_contiguous<Container>::value,
 
                                  typename Container::value_type>>
 
    final : public buffer<typename Container::value_type> {
 
 private:
 
  Container& container_;
 

	
 
 protected:
 
  FMT_CONSTEXPR20 void grow(size_t capacity) override {
 
    container_.resize(capacity);
 
    this->set(&container_[0], capacity);
 
  }
 

	
 
 public:
 
  explicit iterator_buffer(Container& c)
 
      : buffer<typename Container::value_type>(c.size()), container_(c) {}
 
  explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0)
 
      : iterator_buffer(get_container(out)) {}
 

	
 
  auto out() -> std::back_insert_iterator<Container> {
 
    return std::back_inserter(container_);
 
  }
 
};
 

	
 
// A buffer that counts the number of code units written discarding the output.
 
template <typename T = char> class counting_buffer final : public buffer<T> {
 
 private:
 
  enum { buffer_size = 256 };
 
  T data_[buffer_size];
 
  size_t count_ = 0;
 

	
 
 protected:
 
  FMT_CONSTEXPR20 void grow(size_t) override {
 
    if (this->size() != buffer_size) return;
 
    count_ += this->size();
 
    this->clear();
 
  }
 

	
 
 public:
 
  counting_buffer() : buffer<T>(data_, 0, buffer_size) {}
 

	
 
  auto count() -> size_t { return count_ + this->size(); }
 
};
 

	
 
template <typename T>
 
using buffer_appender = conditional_t<std::is_same<T, char>::value, appender,
 
                                      std::back_insert_iterator<buffer<T>>>;
 

	
 
// Maps an output iterator to a buffer.
 
template <typename T, typename OutputIt>
 
auto get_buffer(OutputIt out) -> iterator_buffer<OutputIt, T> {
 
  return iterator_buffer<OutputIt, T>(out);
 
}
 
template <typename T, typename Buf,
 
          FMT_ENABLE_IF(std::is_base_of<buffer<char>, Buf>::value)>
 
auto get_buffer(std::back_insert_iterator<Buf> out) -> buffer<char>& {
 
  return get_container(out);
 
}
 

	
 
template <typename Buf, typename OutputIt>
 
FMT_INLINE auto get_iterator(Buf& buf, OutputIt) -> decltype(buf.out()) {
 
  return buf.out();
 
}
 
template <typename T, typename OutputIt>
 
auto get_iterator(buffer<T>&, OutputIt out) -> OutputIt {
 
  return out;
 
}
 

	
 
struct view {};
 

	
 
template <typename Char, typename T> struct named_arg : view {
 
  const Char* name;
 
  const T& value;
 
  named_arg(const Char* n, const T& v) : name(n), value(v) {}
 
};
 

	
 
template <typename Char> struct named_arg_info {
 
  const Char* name;
 
  int id;
 
};
 

	
 
template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
 
struct arg_data {
 
  // args_[0].named_args points to named_args_ to avoid bloating format_args.
 
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
 
  T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)];
 
  named_arg_info<Char> named_args_[NUM_NAMED_ARGS];
 

	
 
  template <typename... U>
 
  arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
 
  arg_data(const arg_data& other) = delete;
 
  auto args() const -> const T* { return args_ + 1; }
 
  auto named_args() -> named_arg_info<Char>* { return named_args_; }
 
};
 

	
 
template <typename T, typename Char, size_t NUM_ARGS>
 
struct arg_data<T, Char, NUM_ARGS, 0> {
 
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
 
  T args_[NUM_ARGS != 0 ? NUM_ARGS : +1];
 

	
 
  template <typename... U>
 
  FMT_CONSTEXPR FMT_INLINE arg_data(const U&... init) : args_{init...} {}
 
  FMT_CONSTEXPR FMT_INLINE auto args() const -> const T* { return args_; }
 
  FMT_CONSTEXPR FMT_INLINE auto named_args() -> std::nullptr_t {
 
    return nullptr;
 
  }
 
};
 

	
 
template <typename Char>
 
inline void init_named_args(named_arg_info<Char>*, int, int) {}
 

	
 
template <typename T> struct is_named_arg : std::false_type {};
 
template <typename T> struct is_statically_named_arg : std::false_type {};
 

	
 
template <typename T, typename Char>
 
struct is_named_arg<named_arg<Char, T>> : std::true_type {};
 

	
 
template <typename Char, typename T, typename... Tail,
 
          FMT_ENABLE_IF(!is_named_arg<T>::value)>
 
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
 
                     int named_arg_count, const T&, const Tail&... args) {
 
  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
 
}
 

	
 
template <typename Char, typename T, typename... Tail,
 
          FMT_ENABLE_IF(is_named_arg<T>::value)>
 
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
 
                     int named_arg_count, const T& arg, const Tail&... args) {
 
  named_args[named_arg_count++] = {arg.name, arg_count};
 
  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
 
}
 

	
 
template <typename... Args>
 
FMT_CONSTEXPR FMT_INLINE void init_named_args(std::nullptr_t, int, int,
 
                                              const Args&...) {}
 

	
 
template <bool B = false> constexpr auto count() -> size_t { return B ? 1 : 0; }
 
template <bool B1, bool B2, bool... Tail> constexpr auto count() -> size_t {
 
  return (B1 ? 1 : 0) + count<B2, Tail...>();
 
}
 

	
 
template <typename... Args> constexpr auto count_named_args() -> size_t {
 
  return count<is_named_arg<Args>::value...>();
 
}
 

	
 
template <typename... Args>
 
constexpr auto count_statically_named_args() -> size_t {
 
  return count<is_statically_named_arg<Args>::value...>();
 
}
 

	
 
struct unformattable {};
 
struct unformattable_char : unformattable {};
 
struct unformattable_pointer : unformattable {};
 

	
 
template <typename Char> struct string_value {
 
  const Char* data;
 
  size_t size;
 
};
 

	
 
template <typename Char> struct named_arg_value {
 
  const named_arg_info<Char>* data;
 
  size_t size;
 
};
 

	
 
template <typename Context> struct custom_value {
 
  using parse_context = typename Context::parse_context_type;
 
  const void* value;
 
  void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx);
 
  void* value;
 
  void (*format)(void* arg, parse_context& parse_ctx, Context& ctx);
 
};
 

	
 
// A formatting argument value.
 
template <typename Context> class value {
 
 public:
 
  using char_type = typename Context::char_type;
 

	
 
  union {
 
    monostate no_value;
 
    int int_value;
 
    unsigned uint_value;
 
    long long long_long_value;
 
    unsigned long long ulong_long_value;
 
    int128_t int128_value;
 
    uint128_t uint128_value;
 
    int128_opt int128_value;
 
    uint128_opt uint128_value;
 
    bool bool_value;
 
    char_type char_value;
 
    float float_value;
 
    double double_value;
 
    long double long_double_value;
 
    const void* pointer;
 
    string_value<char_type> string;
 
    custom_value<Context> custom;
 
    named_arg_value<char_type> named_args;
 
  };
 

	
 
  constexpr FMT_INLINE value(int val = 0) : int_value(val) {}
 
  constexpr FMT_INLINE value() : no_value() {}
 
  constexpr FMT_INLINE value(int val) : int_value(val) {}
 
  constexpr FMT_INLINE value(unsigned val) : uint_value(val) {}
 
  FMT_INLINE value(long long val) : long_long_value(val) {}
 
  FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
 
  FMT_INLINE value(int128_t val) : int128_value(val) {}
 
  FMT_INLINE value(uint128_t val) : uint128_value(val) {}
 
  FMT_INLINE value(float val) : float_value(val) {}
 
  FMT_INLINE value(double val) : double_value(val) {}
 
  constexpr FMT_INLINE value(long long val) : long_long_value(val) {}
 
  constexpr FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
 
  FMT_INLINE value(int128_opt val) : int128_value(val) {}
 
  FMT_INLINE value(uint128_opt val) : uint128_value(val) {}
 
  constexpr FMT_INLINE value(float val) : float_value(val) {}
 
  constexpr FMT_INLINE value(double val) : double_value(val) {}
 
  FMT_INLINE value(long double val) : long_double_value(val) {}
 
  FMT_INLINE value(bool val) : bool_value(val) {}
 
  FMT_INLINE value(char_type val) : char_value(val) {}
 
  FMT_INLINE value(const char_type* val) { string.data = val; }
 
  FMT_INLINE value(basic_string_view<char_type> val) {
 
  constexpr FMT_INLINE value(bool val) : bool_value(val) {}
 
  constexpr FMT_INLINE value(char_type val) : char_value(val) {}
 
  FMT_CONSTEXPR FMT_INLINE value(const char_type* val) {
 
    string.data = val;
 
    if (is_constant_evaluated()) string.size = {};
 
  }
 
  FMT_CONSTEXPR FMT_INLINE value(basic_string_view<char_type> val) {
 
    string.data = val.data();
 
    string.size = val.size();
 
  }
 
  FMT_INLINE value(const void* val) : pointer(val) {}
 
  FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
 
      : named_args{args, size} {}
 

	
 
  template <typename T> FMT_INLINE value(const T& val) {
 
    custom.value = &val;
 
  template <typename T> FMT_CONSTEXPR FMT_INLINE value(T& val) {
 
    using value_type = remove_cvref_t<T>;
 
    custom.value = const_cast<value_type*>(&val);
 
    // Get the formatter type through the context to allow different contexts
 
    // have different extension points, e.g. `formatter<T>` for `format` and
 
    // `printf_formatter<T>` for `printf`.
 
    custom.format = format_custom_arg<
 
        T, conditional_t<has_formatter<T, Context>::value,
 
                         typename Context::template formatter_type<T>,
 
                         fallback_formatter<T, char_type>>>;
 
        value_type, typename Context::template formatter_type<value_type>>;
 
  }
 
  value(unformattable);
 
  value(unformattable_char);
 
  value(unformattable_pointer);
 

	
 
 private:
 
  // Formats an argument of a custom type, such as a user-defined class.
 
  template <typename T, typename Formatter>
 
  static void format_custom_arg(const void* arg,
 
  static void format_custom_arg(void* arg,
 
                                typename Context::parse_context_type& parse_ctx,
 
                                Context& ctx) {
 
    Formatter f;
 
    auto f = Formatter();
 
    parse_ctx.advance_to(f.parse(parse_ctx));
 
    ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx));
 
    using qualified_type =
 
        conditional_t<has_const_formatter<T, Context>(), const T, T>;
 
    ctx.advance_to(f.format(*static_cast<qualified_type*>(arg), ctx));
 
  }
 
};
 

	
 
template <typename Context, typename T>
 
FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value);
 
FMT_CONSTEXPR auto make_arg(T&& value) -> basic_format_arg<Context>;
 

	
 
// To minimize the number of types we need to deal with, long is translated
 
// either to int or to long long depending on its size.
 
enum { long_short = sizeof(long) == sizeof(int) };
 
using long_type = conditional_t<long_short, int, long long>;
 
using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;
 

	
 
struct unformattable {};
 
template <typename T> struct format_as_result {
 
  template <typename U,
 
            FMT_ENABLE_IF(std::is_enum<U>::value || std::is_class<U>::value)>
 
  static auto map(U*) -> decltype(format_as(std::declval<U>()));
 
  static auto map(...) -> void;
 

	
 
  using type = decltype(map(static_cast<T*>(nullptr)));
 
};
 
template <typename T> using format_as_t = typename format_as_result<T>::type;
 

	
 
template <typename T>
 
struct has_format_as
 
    : bool_constant<!std::is_same<format_as_t<T>, void>::value> {};
 

	
 
// Maps formatting arguments to core types.
 
// arg_mapper reports errors by returning unformattable instead of using
 
// static_assert because it's used in the is_formattable trait.
 
template <typename Context> struct arg_mapper {
 
  using char_type = typename Context::char_type;
 

	
 
  FMT_CONSTEXPR int map(signed char val) { return val; }
 
  FMT_CONSTEXPR unsigned map(unsigned char val) { return val; }
 
  FMT_CONSTEXPR int map(short val) { return val; }
 
  FMT_CONSTEXPR unsigned map(unsigned short val) { return val; }
 
  FMT_CONSTEXPR int map(int val) { return val; }
 
  FMT_CONSTEXPR unsigned map(unsigned val) { return val; }
 
  FMT_CONSTEXPR long_type map(long val) { return val; }
 
  FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; }
 
  FMT_CONSTEXPR long long map(long long val) { return val; }
 
  FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; }
 
  FMT_CONSTEXPR int128_t map(int128_t val) { return val; }
 
  FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; }
 
  FMT_CONSTEXPR bool map(bool val) { return val; }
 

	
 
  template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
 
  FMT_CONSTEXPR char_type map(T val) {
 
    static_assert(
 
        std::is_same<T, char>::value || std::is_same<T, char_type>::value,
 
        "mixing character types is disallowed");
 
  FMT_CONSTEXPR FMT_INLINE auto map(signed char val) -> int { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(unsigned char val) -> unsigned {
 
    return val;
 
  }
 
  FMT_CONSTEXPR FMT_INLINE auto map(short val) -> int { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(unsigned short val) -> unsigned {
 
    return val;
 
  }
 
  FMT_CONSTEXPR FMT_INLINE auto map(int val) -> int { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(unsigned val) -> unsigned { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(long val) -> long_type { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(unsigned long val) -> ulong_type {
 
    return val;
 
  }
 
  FMT_CONSTEXPR FMT_INLINE auto map(long long val) -> long long { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(unsigned long long val)
 
      -> unsigned long long {
 
    return val;
 
  }
 
  FMT_CONSTEXPR FMT_INLINE auto map(int128_opt val) -> int128_opt {
 
    return val;
 
  }
 
  FMT_CONSTEXPR FMT_INLINE auto map(uint128_opt val) -> uint128_opt {
 
    return val;
 
  }
 

	
 
  FMT_CONSTEXPR float map(float val) { return val; }
 
  FMT_CONSTEXPR double map(double val) { return val; }
 
  FMT_CONSTEXPR long double map(long double val) { return val; }
 

	
 
  FMT_CONSTEXPR const char_type* map(char_type* val) { return val; }
 
  FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; }
 
  template <typename T, FMT_ENABLE_IF(is_string<T>::value)>
 
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
 
    static_assert(std::is_same<char_type, char_t<T>>::value,
 
                  "mixing character types is disallowed");
 
  FMT_CONSTEXPR FMT_INLINE auto map(bool val) -> bool { return val; }
 

	
 
  template <typename T, FMT_ENABLE_IF(std::is_same<T, char>::value ||
 
                                      std::is_same<T, char_type>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(T val) -> char_type {
 
    return val;
 
  }
 
  template <typename T, enable_if_t<(std::is_same<T, wchar_t>::value ||
 
#ifdef __cpp_char8_t
 
                                     std::is_same<T, char8_t>::value ||
 
#endif
 
                                     std::is_same<T, char16_t>::value ||
 
                                     std::is_same<T, char32_t>::value) &&
 
                                        !std::is_same<T, char_type>::value,
 
                                    int> = 0>
 
  FMT_CONSTEXPR FMT_INLINE auto map(T) -> unformattable_char {
 
    return {};
 
  }
 

	
 
  FMT_CONSTEXPR FMT_INLINE auto map(float val) -> float { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(double val) -> double { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(long double val) -> long double {
 
    return val;
 
  }
 

	
 
  FMT_CONSTEXPR FMT_INLINE auto map(char_type* val) -> const char_type* {
 
    return val;
 
  }
 
  FMT_CONSTEXPR FMT_INLINE auto map(const char_type* val) -> const char_type* {
 
    return val;
 
  }
 
  template <typename T,
 
            FMT_ENABLE_IF(is_string<T>::value && !std::is_pointer<T>::value &&
 
                          std::is_same<char_type, char_t<T>>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(const T& val)
 
      -> basic_string_view<char_type> {
 
    return to_string_view(val);
 
  }
 
  template <typename T,
 
            FMT_ENABLE_IF(
 
                std::is_constructible<basic_string_view<char_type>, T>::value &&
 
                !is_string<T>::value && !has_formatter<T, Context>::value &&
 
                !has_fallback_formatter<T, Context>::value)>
 
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
 
    return basic_string_view<char_type>(val);
 
            FMT_ENABLE_IF(is_string<T>::value && !std::is_pointer<T>::value &&
 
                          !std::is_same<char_type, char_t<T>>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(const T&) -> unformattable_char {
 
    return {};
 
  }
 

	
 
  FMT_CONSTEXPR FMT_INLINE auto map(void* val) -> const void* { return val; }
 
  FMT_CONSTEXPR FMT_INLINE auto map(const void* val) -> const void* {
 
    return val;
 
  }
 
  FMT_CONSTEXPR FMT_INLINE auto map(std::nullptr_t val) -> const void* {
 
    return val;
 
  }
 

	
 
  // Use SFINAE instead of a const T* parameter to avoid a conflict with the
 
  // array overload.
 
  template <
 
      typename T,
 
      FMT_ENABLE_IF(
 
          std::is_constructible<std_string_view<char_type>, T>::value &&
 
          !std::is_constructible<basic_string_view<char_type>, T>::value &&
 
          !is_string<T>::value && !has_formatter<T, Context>::value &&
 
          !has_fallback_formatter<T, Context>::value)>
 
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
 
    return std_string_view<char_type>(val);
 
  }
 
  FMT_CONSTEXPR const char* map(const signed char* val) {
 
    static_assert(std::is_same<char_type, char>::value, "invalid string type");
 
    return reinterpret_cast<const char*>(val);
 
          std::is_pointer<T>::value || std::is_member_pointer<T>::value ||
 
          std::is_function<typename std::remove_pointer<T>::type>::value ||
 
          (std::is_convertible<const T&, const void*>::value &&
 
           !std::is_convertible<const T&, const char_type*>::value &&
 
           !has_formatter<T, Context>::value))>
 
  FMT_CONSTEXPR auto map(const T&) -> unformattable_pointer {
 
    return {};
 
  }
 
  FMT_CONSTEXPR const char* map(const unsigned char* val) {
 
    static_assert(std::is_same<char_type, char>::value, "invalid string type");
 
    return reinterpret_cast<const char*>(val);
 
  }
 
  FMT_CONSTEXPR const char* map(signed char* val) {
 
    const auto* const_val = val;
 
    return map(const_val);
 
  }
 
  FMT_CONSTEXPR const char* map(unsigned char* val) {
 
    const auto* const_val = val;
 
    return map(const_val);
 

	
 
  template <typename T, std::size_t N,
 
            FMT_ENABLE_IF(!std::is_same<T, wchar_t>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(const T (&values)[N]) -> const T (&)[N] {
 
    return values;
 
  }
 

	
 
  FMT_CONSTEXPR const void* map(void* val) { return val; }
 
  FMT_CONSTEXPR const void* map(const void* val) { return val; }
 
  FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; }
 
  template <typename T> FMT_CONSTEXPR int map(const T*) {
 
    // Formatting of arbitrary pointers is disallowed. If you want to output
 
    // a pointer cast it to "void *" or "const void *". In particular, this
 
    // forbids formatting of "[const] volatile char *" which is printed as bool
 
    // by iostreams.
 
    static_assert(!sizeof(T), "formatting of non-void pointers is disallowed");
 
    return 0;
 
  // Only map owning types because mapping views can be unsafe.
 
  template <typename T, typename U = format_as_t<T>,
 
            FMT_ENABLE_IF(std::is_arithmetic<U>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> decltype(this->map(U())) {
 
    return map(format_as(val));
 
  }
 

	
 
  template <typename T,
 
            FMT_ENABLE_IF(std::is_enum<T>::value &&
 
                          !has_formatter<T, Context>::value &&
 
                          !has_fallback_formatter<T, Context>::value)>
 
  FMT_CONSTEXPR auto map(const T& val)
 
      -> decltype(std::declval<arg_mapper>().map(
 
          static_cast<typename std::underlying_type<T>::type>(val))) {
 
    return map(static_cast<typename std::underlying_type<T>::type>(val));
 
  }
 
  template <typename T,
 
            FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value &&
 
                          (has_formatter<T, Context>::value ||
 
                           has_fallback_formatter<T, Context>::value))>
 
  FMT_CONSTEXPR const T& map(const T& val) {
 
  template <typename T, typename U = remove_cvref_t<T>>
 
  struct formattable
 
      : bool_constant<has_const_formatter<U, Context>() ||
 
                      (has_formatter<U, Context>::value &&
 
                       !std::is_const<remove_reference_t<T>>::value)> {};
 

	
 
  template <typename T, FMT_ENABLE_IF(formattable<T>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto do_map(T&& val) -> T& {
 
    return val;
 
  }
 

	
 
  template <typename T>
 
  FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val)
 
      -> decltype(std::declval<arg_mapper>().map(val.value)) {
 
    return map(val.value);
 
  template <typename T, FMT_ENABLE_IF(!formattable<T>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto do_map(T&&) -> unformattable {
 
    return {};
 
  }
 

	
 
  unformattable map(...) { return {}; }
 
  template <typename T, typename U = remove_cvref_t<T>,
 
            FMT_ENABLE_IF((std::is_class<U>::value || std::is_enum<U>::value ||
 
                           std::is_union<U>::value) &&
 
                          !is_string<U>::value && !is_char<U>::value &&
 
                          !is_named_arg<U>::value &&
 
                          !std::is_arithmetic<format_as_t<U>>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(T&& val)
 
      -> decltype(this->do_map(std::forward<T>(val))) {
 
    return do_map(std::forward<T>(val));
 
  }
 

	
 
  template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(const T& named_arg)
 
      -> decltype(this->map(named_arg.value)) {
 
    return map(named_arg.value);
 
  }
 

	
 
  auto map(...) -> unformattable { return {}; }
 
};
 

	
 
// A type constant after applying arg_mapper<Context>.
 
template <typename T, typename Context>
 
using mapped_type_constant =
 
    type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
 
@@ -1242,22 +1480,36 @@ enum { packed_arg_bits = 4 };
 
// Maximum number of arguments with packed types.
 
enum { max_packed_args = 62 / packed_arg_bits };
 
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
 
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
 
}  // namespace detail
 

	
 
// An output iterator that appends to a buffer.
 
// It is used to reduce symbol sizes for the common case.
 
class appender : public std::back_insert_iterator<detail::buffer<char>> {
 
  using base = std::back_insert_iterator<detail::buffer<char>>;
 

	
 
 public:
 
  using std::back_insert_iterator<detail::buffer<char>>::back_insert_iterator;
 
  appender(base it) noexcept : base(it) {}
 
  FMT_UNCHECKED_ITERATOR(appender);
 

	
 
  auto operator++() noexcept -> appender& { return *this; }
 
  auto operator++(int) noexcept -> appender { return *this; }
 
};
 

	
 
// A formatting argument. It is a trivially copyable/constructible type to
 
// allow storage in basic_memory_buffer.
 
template <typename Context> class basic_format_arg {
 
 private:
 
  detail::value<Context> value_;
 
  detail::type type_;
 

	
 
  template <typename ContextType, typename T>
 
  friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg(
 
      const T& value);
 
  friend FMT_CONSTEXPR auto detail::make_arg(T&& value)
 
      -> basic_format_arg<ContextType>;
 

	
 
  template <typename Visitor, typename Ctx>
 
  friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis,
 
                                             const basic_format_arg<Ctx>& arg)
 
      -> decltype(vis(0));
 

	
 
@@ -1285,54 +1537,50 @@ template <typename Context> class basic_
 
   private:
 
    detail::custom_value<Context> custom_;
 
  };
 

	
 
  constexpr basic_format_arg() : type_(detail::type::none_type) {}
 

	
 
  constexpr explicit operator bool() const FMT_NOEXCEPT {
 
  constexpr explicit operator bool() const noexcept {
 
    return type_ != detail::type::none_type;
 
  }
 

	
 
  detail::type type() const { return type_; }
 

	
 
  bool is_integral() const { return detail::is_integral_type(type_); }
 
  bool is_arithmetic() const { return detail::is_arithmetic_type(type_); }
 
  auto type() const -> detail::type { return type_; }
 

	
 
  auto is_integral() const -> bool { return detail::is_integral_type(type_); }
 
  auto is_arithmetic() const -> bool {
 
    return detail::is_arithmetic_type(type_);
 
  }
 
};
 

	
 
/**
 
  \rst
 
  Visits an argument dispatching to the appropriate visit method based on
 
  the argument type. For example, if the argument type is ``double`` then
 
  ``vis(value)`` will be called with the value of type ``double``.
 
  \endrst
 
 */
 
FMT_MODULE_EXPORT
 
template <typename Visitor, typename Context>
 
FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg(
 
FMT_CONSTEXPR FMT_INLINE auto visit_format_arg(
 
    Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
 
  using char_type = typename Context::char_type;
 
  switch (arg.type_) {
 
  case detail::type::none_type:
 
    break;
 
  case detail::type::int_type:
 
    return vis(arg.value_.int_value);
 
  case detail::type::uint_type:
 
    return vis(arg.value_.uint_value);
 
  case detail::type::long_long_type:
 
    return vis(arg.value_.long_long_value);
 
  case detail::type::ulong_long_type:
 
    return vis(arg.value_.ulong_long_value);
 
#if FMT_USE_INT128
 
  case detail::type::int128_type:
 
    return vis(arg.value_.int128_value);
 
    return vis(detail::convert_for_visit(arg.value_.int128_value));
 
  case detail::type::uint128_type:
 
    return vis(arg.value_.uint128_value);
 
#else
 
  case detail::type::int128_type:
 
  case detail::type::uint128_type:
 
    break;
 
#endif
 
    return vis(detail::convert_for_visit(arg.value_.uint128_value));
 
  case detail::type::bool_type:
 
    return vis(arg.value_.bool_value);
 
  case detail::type::char_type:
 
    return vis(arg.value_.char_value);
 
  case detail::type::float_type:
 
    return vis(arg.value_.float_value);
 
@@ -1340,210 +1588,200 @@ FMT_CONSTEXPR_DECL FMT_INLINE auto visit
 
    return vis(arg.value_.double_value);
 
  case detail::type::long_double_type:
 
    return vis(arg.value_.long_double_value);
 
  case detail::type::cstring_type:
 
    return vis(arg.value_.string.data);
 
  case detail::type::string_type:
 
    return vis(basic_string_view<char_type>(arg.value_.string.data,
 
                                            arg.value_.string.size));
 
    using sv = basic_string_view<typename Context::char_type>;
 
    return vis(sv(arg.value_.string.data, arg.value_.string.size));
 
  case detail::type::pointer_type:
 
    return vis(arg.value_.pointer);
 
  case detail::type::custom_type:
 
    return vis(typename basic_format_arg<Context>::handle(arg.value_.custom));
 
  }
 
  return vis(monostate());
 
}
 

	
 
template <typename T> struct formattable : std::false_type {};
 

	
 
namespace detail {
 

	
 
template <typename Char, typename InputIt>
 
auto copy_str(InputIt begin, InputIt end, appender out) -> appender {
 
  get_container(out).append(begin, end);
 
  return out;
 
}
 

	
 
template <typename Char, typename R, typename OutputIt>
 
FMT_CONSTEXPR auto copy_str(R&& rng, OutputIt out) -> OutputIt {
 
  return detail::copy_str<Char>(rng.begin(), rng.end(), out);
 
}
 

	
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
 
// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
 
template <typename... Ts> struct void_t_impl { using type = void; };
 
template <typename... Ts>
 
using void_t = typename detail::void_t_impl<Ts...>::type;
 
template <typename...> struct void_t_impl { using type = void; };
 
template <typename... T> using void_t = typename void_t_impl<T...>::type;
 
#else
 
template <typename...> using void_t = void;
 
#endif
 

	
 
template <typename It, typename T, typename Enable = void>
 
struct is_output_iterator : std::false_type {};
 

	
 
template <typename It, typename T>
 
struct is_output_iterator<
 
    It, T,
 
    void_t<typename std::iterator_traits<It>::iterator_category,
 
           decltype(*std::declval<It>() = std::declval<T>())>>
 
    : std::true_type {};
 

	
 
template <typename OutputIt>
 
struct is_back_insert_iterator : std::false_type {};
 
template <typename It> struct is_back_insert_iterator : std::false_type {};
 
template <typename Container>
 
struct is_back_insert_iterator<std::back_insert_iterator<Container>>
 
    : std::true_type {};
 

	
 
template <typename OutputIt>
 
template <typename It>
 
struct is_contiguous_back_insert_iterator : std::false_type {};
 
template <typename Container>
 
struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
 
    : is_contiguous<Container> {};
 
template <typename Char>
 
struct is_contiguous_back_insert_iterator<buffer_appender<Char>>
 
    : std::true_type {};
 

	
 
// A type-erased reference to an std::locale to avoid heavy <locale> include.
 
template <>
 
struct is_contiguous_back_insert_iterator<appender> : std::true_type {};
 

	
 
// A type-erased reference to an std::locale to avoid a heavy <locale> include.
 
class locale_ref {
 
 private:
 
  const void* locale_;  // A type-erased pointer to std::locale.
 

	
 
 public:
 
  locale_ref() : locale_(nullptr) {}
 
  constexpr FMT_INLINE locale_ref() : locale_(nullptr) {}
 
  template <typename Locale> explicit locale_ref(const Locale& loc);
 

	
 
  explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; }
 

	
 
  template <typename Locale> Locale get() const;
 
  explicit operator bool() const noexcept { return locale_ != nullptr; }
 

	
 
  template <typename Locale> auto get() const -> Locale;
 
};
 

	
 
template <typename> constexpr unsigned long long encode_types() { return 0; }
 
template <typename> constexpr auto encode_types() -> unsigned long long {
 
  return 0;
 
}
 

	
 
template <typename Context, typename Arg, typename... Args>
 
constexpr unsigned long long encode_types() {
 
constexpr auto encode_types() -> unsigned long long {
 
  return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
 
         (encode_types<Context, Args...>() << packed_arg_bits);
 
}
 

	
 
template <typename Context, typename T>
 
FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) {
 
  basic_format_arg<Context> arg;
 
  arg.type_ = mapped_type_constant<T, Context>::value;
 
  arg.value_ = arg_mapper<Context>().map(value);
 
  return arg;
 
}
 

	
 
template <typename T> int check(unformattable) {
 
FMT_CONSTEXPR FMT_INLINE auto make_value(T&& val) -> value<Context> {
 
  auto&& arg = arg_mapper<Context>().map(FMT_FORWARD(val));
 
  using arg_type = remove_cvref_t<decltype(arg)>;
 

	
 
  constexpr bool formattable_char =
 
      !std::is_same<arg_type, unformattable_char>::value;
 
  static_assert(formattable_char, "Mixing character types is disallowed.");
 

	
 
  // Formatting of arbitrary pointers is disallowed. If you want to format a
 
  // pointer cast it to `void*` or `const void*`. In particular, this forbids
 
  // formatting of `[const] volatile char*` printed as bool by iostreams.
 
  constexpr bool formattable_pointer =
 
      !std::is_same<arg_type, unformattable_pointer>::value;
 
  static_assert(formattable_pointer,
 
                "Formatting of non-void pointers is disallowed.");
 

	
 
  constexpr bool formattable = !std::is_same<arg_type, unformattable>::value;
 
  static_assert(
 
      formattable<T>(),
 
      formattable,
 
      "Cannot format an argument. To make type T formattable provide a "
 
      "formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
 
  return 0;
 
}
 
template <typename T, typename U> inline const U& check(const U& val) {
 
  return val;
 
  return {arg};
 
}
 

	
 
// The type template parameter is there to avoid an ODR violation when using
 
// a fallback formatter in one translation unit and an implicit conversion in
 
// another (not recommended).
 
template <typename Context, typename T>
 
FMT_CONSTEXPR auto make_arg(T&& value) -> basic_format_arg<Context> {
 
  auto arg = basic_format_arg<Context>();
 
  arg.type_ = mapped_type_constant<T, Context>::value;
 
  arg.value_ = make_value<Context>(value);
 
  return arg;
 
}
 

	
 
// The DEPRECATED type template parameter is there to avoid an ODR violation
 
// when using a fallback formatter in one translation unit and an implicit
 
// conversion in another (not recommended).
 
template <bool IS_PACKED, typename Context, type, typename T,
 
          FMT_ENABLE_IF(IS_PACKED)>
 
inline value<Context> make_arg(const T& val) {
 
  return check<T>(arg_mapper<Context>().map(val));
 
FMT_CONSTEXPR FMT_INLINE auto make_arg(T&& val) -> value<Context> {
 
  return make_value<Context>(val);
 
}
 

	
 
template <bool IS_PACKED, typename Context, type, typename T,
 
          FMT_ENABLE_IF(!IS_PACKED)>
 
inline basic_format_arg<Context> make_arg(const T& value) {
 
FMT_CONSTEXPR inline auto make_arg(T&& value) -> basic_format_arg<Context> {
 
  return make_arg<Context>(value);
 
}
 

	
 
template <typename T> struct is_reference_wrapper : std::false_type {};
 
template <typename T>
 
struct is_reference_wrapper<std::reference_wrapper<T>> : std::true_type {};
 

	
 
template <typename T> const T& unwrap(const T& v) { return v; }
 
template <typename T> const T& unwrap(const std::reference_wrapper<T>& v) {
 
  return static_cast<const T&>(v);
 
}
 

	
 
class dynamic_arg_list {
 
  // Workaround for clang's -Wweak-vtables. Unlike for regular classes, for
 
  // templates it doesn't complain about inability to deduce single translation
 
  // unit for placing vtable. So storage_node_base is made a fake template.
 
  template <typename = void> struct node {
 
    virtual ~node() = default;
 
    std::unique_ptr<node<>> next;
 
  };
 

	
 
  template <typename T> struct typed_node : node<> {
 
    T value;
 

	
 
    template <typename Arg>
 
    FMT_CONSTEXPR typed_node(const Arg& arg) : value(arg) {}
 

	
 
    template <typename Char>
 
    FMT_CONSTEXPR typed_node(const basic_string_view<Char>& arg)
 
        : value(arg.data(), arg.size()) {}
 
  };
 

	
 
  std::unique_ptr<node<>> head_;
 

	
 
 public:
 
  template <typename T, typename Arg> const T& push(const Arg& arg) {
 
    auto new_node = std::unique_ptr<typed_node<T>>(new typed_node<T>(arg));
 
    auto& value = new_node->value;
 
    new_node->next = std::move(head_);
 
    head_ = std::move(new_node);
 
    return value;
 
  }
 
};
 
}  // namespace detail
 
FMT_BEGIN_EXPORT
 

	
 
// Formatting context.
 
template <typename OutputIt, typename Char> class basic_format_context {
 
 public:
 
  /** The character type for the output. */
 
  using char_type = Char;
 

	
 
 private:
 
  OutputIt out_;
 
  basic_format_args<basic_format_context> args_;
 
  detail::locale_ref loc_;
 

	
 
 public:
 
  using iterator = OutputIt;
 
  using format_arg = basic_format_arg<basic_format_context>;
 
  using format_args = basic_format_args<basic_format_context>;
 
  using parse_context_type = basic_format_parse_context<Char>;
 
  template <typename T> using formatter_type = formatter<T, char_type>;
 

	
 
  template <typename T> using formatter_type = formatter<T, Char>;
 

	
 
  /** The character type for the output. */
 
  using char_type = Char;
 

	
 
  basic_format_context(basic_format_context&&) = default;
 
  basic_format_context(const basic_format_context&) = delete;
 
  void operator=(const basic_format_context&) = delete;
 
  /**
 
   Constructs a ``basic_format_context`` object. References to the arguments are
 
   stored in the object so make sure they have appropriate lifetimes.
 
    Constructs a ``basic_format_context`` object. References to the arguments
 
    are stored in the object so make sure they have appropriate lifetimes.
 
   */
 
  basic_format_context(OutputIt out,
 
                       basic_format_args<basic_format_context> ctx_args,
 
                       detail::locale_ref loc = detail::locale_ref())
 
  constexpr basic_format_context(OutputIt out, format_args ctx_args,
 
                                 detail::locale_ref loc = {})
 
      : out_(out), args_(ctx_args), loc_(loc) {}
 

	
 
  format_arg arg(int id) const { return args_.get(id); }
 
  format_arg arg(basic_string_view<char_type> name) { return args_.get(name); }
 
  int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); }
 
  const basic_format_args<basic_format_context>& args() const { return args_; }
 

	
 
  detail::error_handler error_handler() { return {}; }
 
  constexpr auto arg(int id) const -> format_arg { return args_.get(id); }
 
  FMT_CONSTEXPR auto arg(basic_string_view<Char> name) -> format_arg {
 
    return args_.get(name);
 
  }
 
  FMT_CONSTEXPR auto arg_id(basic_string_view<Char> name) -> int {
 
    return args_.get_id(name);
 
  }
 
  auto args() const -> const format_args& { return args_; }
 

	
 
  FMT_CONSTEXPR auto error_handler() -> detail::error_handler { return {}; }
 
  void on_error(const char* message) { error_handler().on_error(message); }
 

	
 
  // Returns an iterator to the beginning of the output range.
 
  iterator out() { return out_; }
 
  FMT_CONSTEXPR auto out() -> iterator { return out_; }
 

	
 
  // Advances the begin iterator to ``it``.
 
  void advance_to(iterator it) {
 
    if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
 
  }
 

	
 
  detail::locale_ref locale() { return loc_; }
 
  FMT_CONSTEXPR auto locale() -> detail::locale_ref { return loc_; }
 
};
 

	
 
template <typename Char>
 
using buffer_context =
 
    basic_format_context<detail::buffer_appender<Char>, Char>;
 
using format_context = buffer_context<char>;
 
using wformat_context = buffer_context<wchar_t>;
 

	
 
// Workaround an alias issue: https://stackoverflow.com/q/62767544/471164.
 
#define FMT_BUFFER_CONTEXT(Char) \
 
  basic_format_context<detail::buffer_appender<Char>, Char>
 

	
 
template <typename T, typename Char = char>
 
using is_formattable = bool_constant<!std::is_base_of<
 
    detail::unformattable, decltype(detail::arg_mapper<buffer_context<Char>>()
 
                                        .map(std::declval<T>()))>::value>;
 

	
 
/**
 
  \rst
 
  An array of references to arguments. It can be implicitly converted into
 
  `~fmt::basic_format_args` for passing into type-erased formatting functions
 
  such as `~fmt::vformat`.
 
@@ -1575,247 +1813,57 @@ class format_arg_store
 
                 : detail::is_unpacked_bit | num_args) |
 
      (num_named_args != 0
 
           ? static_cast<unsigned long long>(detail::has_named_args_bit)
 
           : 0);
 

	
 
 public:
 
  format_arg_store(const Args&... args)
 
  template <typename... T>
 
  FMT_CONSTEXPR FMT_INLINE format_arg_store(T&&... args)
 
      :
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
        basic_format_args<Context>(*this),
 
#endif
 
        data_{detail::make_arg<
 
            is_packed, Context,
 
            detail::mapped_type_constant<Args, Context>::value>(args)...} {
 
            detail::mapped_type_constant<remove_cvref_t<T>, Context>::value>(
 
            FMT_FORWARD(args))...} {
 
    detail::init_named_args(data_.named_args(), 0, 0, args...);
 
  }
 
};
 

	
 
/**
 
  \rst
 
  Constructs a `~fmt::format_arg_store` object that contains references to
 
  arguments and can be implicitly converted to `~fmt::format_args`. `Context`
 
  can be omitted in which case it defaults to `~fmt::context`.
 
  See `~fmt::arg` for lifetime considerations.
 
  \endrst
 
 */
 
template <typename Context = format_context, typename... Args>
 
inline format_arg_store<Context, Args...> make_format_args(
 
    const Args&... args) {
 
  return {args...};
 
template <typename Context = format_context, typename... T>
 
constexpr auto make_format_args(T&&... args)
 
    -> format_arg_store<Context, remove_cvref_t<T>...> {
 
  return {FMT_FORWARD(args)...};
 
}
 

	
 
/**
 
  \rst
 
  Constructs a `~fmt::format_arg_store` object that contains references
 
  to arguments and can be implicitly converted to `~fmt::format_args`.
 
  If ``format_str`` is a compile-time string then `make_args_checked` checks
 
  its validity at compile time.
 
  \endrst
 
 */
 
template <typename... Args, typename S, typename Char = char_t<S>>
 
inline auto make_args_checked(const S& format_str,
 
                              const remove_reference_t<Args>&... args)
 
    -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
 
  static_assert(
 
      detail::count<(
 
              std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
 
              std::is_reference<Args>::value)...>() == 0,
 
      "passing views as lvalues is disallowed");
 
  detail::check_format_string<Args...>(format_str);
 
  return {args...};
 
}
 

	
 
/**
 
  \rst
 
  Returns a named argument to be used in a formatting function. It should only
 
  be used in a call to a formatting function.
 
  Returns a named argument to be used in a formatting function.
 
  It should only be used in a call to a formatting function or
 
  `dynamic_format_arg_store::push_back`.
 

	
 
  **Example**::
 

	
 
    fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
 
  \endrst
 
 */
 
template <typename Char, typename T>
 
inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) {
 
inline auto arg(const Char* name, const T& arg) -> detail::named_arg<Char, T> {
 
  static_assert(!detail::is_named_arg<T>(), "nested named arguments");
 
  return {name, arg};
 
}
 

	
 
/**
 
  \rst
 
  A dynamic version of `fmt::format_arg_store`.
 
  It's equipped with a storage to potentially temporary objects which lifetimes
 
  could be shorter than the format arguments object.
 

	
 
  It can be implicitly converted into `~fmt::basic_format_args` for passing
 
  into type-erased formatting functions such as `~fmt::vformat`.
 
  \endrst
 
 */
 
template <typename Context>
 
class dynamic_format_arg_store
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
    // Workaround a GCC template argument substitution bug.
 
    : public basic_format_args<Context>
 
#endif
 
{
 
 private:
 
  using char_type = typename Context::char_type;
 

	
 
  template <typename T> struct need_copy {
 
    static constexpr detail::type mapped_type =
 
        detail::mapped_type_constant<T, Context>::value;
 

	
 
    enum {
 
      value = !(detail::is_reference_wrapper<T>::value ||
 
                std::is_same<T, basic_string_view<char_type>>::value ||
 
                std::is_same<T, detail::std_string_view<char_type>>::value ||
 
                (mapped_type != detail::type::cstring_type &&
 
                 mapped_type != detail::type::string_type &&
 
                 mapped_type != detail::type::custom_type))
 
    };
 
  };
 

	
 
  template <typename T>
 
  using stored_type = conditional_t<detail::is_string<T>::value,
 
                                    std::basic_string<char_type>, T>;
 

	
 
  // Storage of basic_format_arg must be contiguous.
 
  std::vector<basic_format_arg<Context>> data_;
 
  std::vector<detail::named_arg_info<char_type>> named_info_;
 

	
 
  // Storage of arguments not fitting into basic_format_arg must grow
 
  // without relocation because items in data_ refer to it.
 
  detail::dynamic_arg_list dynamic_args_;
 

	
 
  friend class basic_format_args<Context>;
 

	
 
  unsigned long long get_types() const {
 
    return detail::is_unpacked_bit | data_.size() |
 
           (named_info_.empty()
 
                ? 0ULL
 
                : static_cast<unsigned long long>(detail::has_named_args_bit));
 
  }
 

	
 
  const basic_format_arg<Context>* data() const {
 
    return named_info_.empty() ? data_.data() : data_.data() + 1;
 
  }
 

	
 
  template <typename T> void emplace_arg(const T& arg) {
 
    data_.emplace_back(detail::make_arg<Context>(arg));
 
  }
 

	
 
  template <typename T>
 
  void emplace_arg(const detail::named_arg<char_type, T>& arg) {
 
    if (named_info_.empty()) {
 
      constexpr const detail::named_arg_info<char_type>* zero_ptr{nullptr};
 
      data_.insert(data_.begin(), {zero_ptr, 0});
 
    }
 
    data_.emplace_back(detail::make_arg<Context>(detail::unwrap(arg.value)));
 
    auto pop_one = [](std::vector<basic_format_arg<Context>>* data) {
 
      data->pop_back();
 
    };
 
    std::unique_ptr<std::vector<basic_format_arg<Context>>, decltype(pop_one)>
 
        guard{&data_, pop_one};
 
    named_info_.push_back({arg.name, static_cast<int>(data_.size() - 2u)});
 
    data_[0].value_.named_args = {named_info_.data(), named_info_.size()};
 
    guard.release();
 
  }
 

	
 
 public:
 
  /**
 
    \rst
 
    Adds an argument into the dynamic store for later passing to a formatting
 
    function.
 

	
 
    Note that custom types and string types (but not string views) are copied
 
    into the store dynamically allocating memory if necessary.
 

	
 
    **Example**::
 

	
 
      fmt::dynamic_format_arg_store<fmt::format_context> store;
 
      store.push_back(42);
 
      store.push_back("abc");
 
      store.push_back(1.5f);
 
      std::string result = fmt::vformat("{} and {} and {}", store);
 
    \endrst
 
  */
 
  template <typename T> void push_back(const T& arg) {
 
    if (detail::const_check(need_copy<T>::value))
 
      emplace_arg(dynamic_args_.push<stored_type<T>>(arg));
 
    else
 
      emplace_arg(detail::unwrap(arg));
 
  }
 

	
 
  /**
 
    \rst
 
    Adds a reference to the argument into the dynamic store for later passing to
 
    a formatting function. Supports named arguments wrapped in
 
    ``std::reference_wrapper`` via ``std::ref()``/``std::cref()``.
 

	
 
    **Example**::
 

	
 
      fmt::dynamic_format_arg_store<fmt::format_context> store;
 
      char str[] = "1234567890";
 
      store.push_back(std::cref(str));
 
      int a1_val{42};
 
      auto a1 = fmt::arg("a1_", a1_val);
 
      store.push_back(std::cref(a1));
 

	
 
      // Changing str affects the output but only for string and custom types.
 
      str[0] = 'X';
 

	
 
      std::string result = fmt::vformat("{} and {a1_}");
 
      assert(result == "X234567890 and 42");
 
    \endrst
 
  */
 
  template <typename T> void push_back(std::reference_wrapper<T> arg) {
 
    static_assert(
 
        detail::is_named_arg<typename std::remove_cv<T>::type>::value ||
 
            need_copy<T>::value,
 
        "objects of built-in types and string views are always copied");
 
    emplace_arg(arg.get());
 
  }
 

	
 
  /**
 
    Adds named argument into the dynamic store for later passing to a formatting
 
    function. ``std::reference_wrapper`` is supported to avoid copying of the
 
    argument.
 
  */
 
  template <typename T>
 
  void push_back(const detail::named_arg<char_type, T>& arg) {
 
    const char_type* arg_name =
 
        dynamic_args_.push<std::basic_string<char_type>>(arg.name).c_str();
 
    if (detail::const_check(need_copy<T>::value)) {
 
      emplace_arg(
 
          fmt::arg(arg_name, dynamic_args_.push<stored_type<T>>(arg.value)));
 
    } else {
 
      emplace_arg(fmt::arg(arg_name, arg.value));
 
    }
 
  }
 

	
 
  /** Erase all elements from the store */
 
  void clear() {
 
    data_.clear();
 
    named_info_.clear();
 
    dynamic_args_ = detail::dynamic_arg_list();
 
  }
 

	
 
  /**
 
    \rst
 
    Reserves space to store at least *new_cap* arguments including
 
    *new_cap_named* named arguments.
 
    \endrst
 
  */
 
  void reserve(size_t new_cap, size_t new_cap_named) {
 
    FMT_ASSERT(new_cap >= new_cap_named,
 
               "Set of arguments includes set of named arguments");
 
    data_.reserve(new_cap);
 
    named_info_.reserve(new_cap_named);
 
  }
 
};
 
FMT_END_EXPORT
 

	
 
/**
 
  \rst
 
  A view of a collection of formatting arguments. To avoid lifetime issues it
 
  should only be used as a parameter type in type-erased functions such as
 
  ``vformat``::
 
@@ -1842,280 +1890,1062 @@ template <typename Context> class basic_
 
    // may require more code (at least on x86-64) even if the same amount of
 
    // data is actually copied to stack. It saves ~10% on the bloat test.
 
    const detail::value<Context>* values_;
 
    const format_arg* args_;
 
  };
 

	
 
  bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; }
 
  bool has_named_args() const {
 
  constexpr auto is_packed() const -> bool {
 
    return (desc_ & detail::is_unpacked_bit) == 0;
 
  }
 
  auto has_named_args() const -> bool {
 
    return (desc_ & detail::has_named_args_bit) != 0;
 
  }
 

	
 
  detail::type type(int index) const {
 
  FMT_CONSTEXPR auto type(int index) const -> detail::type {
 
    int shift = index * detail::packed_arg_bits;
 
    unsigned int mask = (1 << detail::packed_arg_bits) - 1;
 
    return static_cast<detail::type>((desc_ >> shift) & mask);
 
  }
 

	
 
  basic_format_args(unsigned long long desc,
 
  constexpr FMT_INLINE basic_format_args(unsigned long long desc,
 
                    const detail::value<Context>* values)
 
      : desc_(desc), values_(values) {}
 
  basic_format_args(unsigned long long desc, const format_arg* args)
 
  constexpr basic_format_args(unsigned long long desc, const format_arg* args)
 
      : desc_(desc), args_(args) {}
 

	
 
 public:
 
  basic_format_args() : desc_(0) {}
 
  constexpr basic_format_args() : desc_(0), args_(nullptr) {}
 

	
 
  /**
 
   \rst
 
   Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
 
   \endrst
 
   */
 
  template <typename... Args>
 
  FMT_INLINE basic_format_args(const format_arg_store<Context, Args...>& store)
 
      : basic_format_args(store.desc, store.data_.args()) {}
 
  constexpr FMT_INLINE basic_format_args(
 
      const format_arg_store<Context, Args...>& store)
 
      : basic_format_args(format_arg_store<Context, Args...>::desc,
 
                          store.data_.args()) {}
 

	
 
  /**
 
   \rst
 
   Constructs a `basic_format_args` object from
 
   `~fmt::dynamic_format_arg_store`.
 
   \endrst
 
   */
 
  FMT_INLINE basic_format_args(const dynamic_format_arg_store<Context>& store)
 
  constexpr FMT_INLINE basic_format_args(
 
      const dynamic_format_arg_store<Context>& store)
 
      : basic_format_args(store.get_types(), store.data()) {}
 

	
 
  /**
 
   \rst
 
   Constructs a `basic_format_args` object from a dynamic set of arguments.
 
   \endrst
 
   */
 
  basic_format_args(const format_arg* args, int count)
 
  constexpr basic_format_args(const format_arg* args, int count)
 
      : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count),
 
                          args) {}
 

	
 
  /** Returns the argument with the specified id. */
 
  format_arg get(int id) const {
 
  FMT_CONSTEXPR auto get(int id) const -> format_arg {
 
    format_arg arg;
 
    if (!is_packed()) {
 
      if (id < max_size()) arg = args_[id];
 
      return arg;
 
    }
 
    if (id >= detail::max_packed_args) return arg;
 
    arg.type_ = type(id);
 
    if (arg.type_ == detail::type::none_type) return arg;
 
    arg.value_ = values_[id];
 
    return arg;
 
  }
 

	
 
  template <typename Char> format_arg get(basic_string_view<Char> name) const {
 
  template <typename Char>
 
  auto get(basic_string_view<Char> name) const -> format_arg {
 
    int id = get_id(name);
 
    return id >= 0 ? get(id) : format_arg();
 
  }
 

	
 
  template <typename Char> int get_id(basic_string_view<Char> name) const {
 
  template <typename Char>
 
  auto get_id(basic_string_view<Char> name) const -> int {
 
    if (!has_named_args()) return -1;
 
    const auto& named_args =
 
        (is_packed() ? values_[-1] : args_[-1].value_).named_args;
 
    for (size_t i = 0; i < named_args.size; ++i) {
 
      if (named_args.data[i].name == name) return named_args.data[i].id;
 
    }
 
    return -1;
 
  }
 

	
 
  int max_size() const {
 
  auto max_size() const -> int {
 
    unsigned long long max_packed = detail::max_packed_args;
 
    return static_cast<int>(is_packed() ? max_packed
 
                                        : desc_ & ~detail::is_unpacked_bit);
 
  }
 
};
 

	
 
#ifdef FMT_ARM_ABI_COMPATIBILITY
 
/** An alias to ``basic_format_args<format_context>``. */
 
// Separate types would result in shorter symbols but break ABI compatibility
 
// A separate type would result in shorter symbols but break ABI compatibility
 
// between clang and gcc on ARM (#1919).
 
using format_args = basic_format_args<format_context>;
 
using wformat_args = basic_format_args<wformat_context>;
 
FMT_MODULE_EXPORT using format_args = basic_format_args<format_context>;
 

	
 
// We cannot use enum classes as bit fields because of a gcc bug, so we put them
 
// in namespaces instead (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414).
 
// Additionally, if an underlying type is specified, older gcc incorrectly warns
 
// that the type is too small. Both bugs are fixed in gcc 9.3.
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 903
 
#  define FMT_ENUM_UNDERLYING_TYPE(type)
 
#else
 
// DEPRECATED! These are kept for ABI compatibility.
 
// It is a separate type rather than an alias to make symbols readable.
 
struct format_args : basic_format_args<format_context> {
 
  template <typename... Args>
 
  FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {}
 
#  define FMT_ENUM_UNDERLYING_TYPE(type) : type
 
#endif
 
namespace align {
 
enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, left, right, center,
 
                                                  numeric};
 
}
 
using align_t = align::type;
 
namespace sign {
 
enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, minus, plus, space};
 
}
 
using sign_t = sign::type;
 

	
 
namespace detail {
 

	
 
// Workaround an array initialization issue in gcc 4.8.
 
template <typename Char> struct fill_t {
 
 private:
 
  enum { max_size = 4 };
 
  Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)};
 
  unsigned char size_ = 1;
 

	
 
 public:
 
  FMT_CONSTEXPR void operator=(basic_string_view<Char> s) {
 
    auto size = s.size();
 
    FMT_ASSERT(size <= max_size, "invalid fill");
 
    for (size_t i = 0; i < size; ++i) data_[i] = s[i];
 
    size_ = static_cast<unsigned char>(size);
 
  }
 

	
 
  constexpr auto size() const -> size_t { return size_; }
 
  constexpr auto data() const -> const Char* { return data_; }
 

	
 
  FMT_CONSTEXPR auto operator[](size_t index) -> Char& { return data_[index]; }
 
  FMT_CONSTEXPR auto operator[](size_t index) const -> const Char& {
 
    return data_[index];
 
  }
 
};
 
struct wformat_args : basic_format_args<wformat_context> {
 
  using basic_format_args::basic_format_args;
 
}  // namespace detail
 

	
 
enum class presentation_type : unsigned char {
 
  none,
 
  dec,             // 'd'
 
  oct,             // 'o'
 
  hex_lower,       // 'x'
 
  hex_upper,       // 'X'
 
  bin_lower,       // 'b'
 
  bin_upper,       // 'B'
 
  hexfloat_lower,  // 'a'
 
  hexfloat_upper,  // 'A'
 
  exp_lower,       // 'e'
 
  exp_upper,       // 'E'
 
  fixed_lower,     // 'f'
 
  fixed_upper,     // 'F'
 
  general_lower,   // 'g'
 
  general_upper,   // 'G'
 
  chr,             // 'c'
 
  string,          // 's'
 
  pointer,         // 'p'
 
  debug            // '?'
 
};
 
#endif
 

	
 
// Format specifiers for built-in and string types.
 
template <typename Char = char> struct format_specs {
 
  int width;
 
  int precision;
 
  presentation_type type;
 
  align_t align : 4;
 
  sign_t sign : 3;
 
  bool alt : 1;  // Alternate form ('#').
 
  bool localized : 1;
 
  detail::fill_t<Char> fill;
 

	
 
  constexpr format_specs()
 
      : width(0),
 
        precision(-1),
 
        type(presentation_type::none),
 
        align(align::none),
 
        sign(sign::none),
 
        alt(false),
 
        localized(false) {}
 
};
 

	
 
namespace detail {
 

	
 
template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
 
std::basic_string<Char> vformat(
 
    basic_string_view<Char> format_str,
 
    basic_format_args<buffer_context<type_identity_t<Char>>> args);
 

	
 
FMT_API std::string vformat(string_view format_str, format_args args);
 
enum class arg_id_kind { none, index, name };
 

	
 
// An argument reference.
 
template <typename Char> struct arg_ref {
 
  FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {}
 

	
 
  FMT_CONSTEXPR explicit arg_ref(int index)
 
      : kind(arg_id_kind::index), val(index) {}
 
  FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name)
 
      : kind(arg_id_kind::name), val(name) {}
 

	
 
  FMT_CONSTEXPR auto operator=(int idx) -> arg_ref& {
 
    kind = arg_id_kind::index;
 
    val.index = idx;
 
    return *this;
 
  }
 

	
 
  arg_id_kind kind;
 
  union value {
 
    FMT_CONSTEXPR value(int idx = 0) : index(idx) {}
 
    FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {}
 

	
 
    int index;
 
    basic_string_view<Char> name;
 
  } val;
 
};
 

	
 
// Format specifiers with width and precision resolved at formatting rather
 
// than parsing time to allow reusing the same parsed specifiers with
 
// different sets of arguments (precompilation of format strings).
 
template <typename Char = char>
 
struct dynamic_format_specs : format_specs<Char> {
 
  arg_ref<Char> width_ref;
 
  arg_ref<Char> precision_ref;
 
};
 

	
 
// Converts a character to ASCII. Returns '\0' on conversion failure.
 
template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)>
 
constexpr auto to_ascii(Char c) -> char {
 
  return c <= 0xff ? static_cast<char>(c) : '\0';
 
}
 
template <typename Char, FMT_ENABLE_IF(std::is_enum<Char>::value)>
 
constexpr auto to_ascii(Char c) -> char {
 
  return c <= 0xff ? static_cast<char>(c) : '\0';
 
}
 

	
 
// Returns the number of code units in a code point or 1 on error.
 
template <typename Char>
 
FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int {
 
  if (const_check(sizeof(Char) != 1)) return 1;
 
  auto c = static_cast<unsigned char>(*begin);
 
  return static_cast<int>((0x3a55000000000000ull >> (2 * (c >> 3))) & 0x3) + 1;
 
}
 

	
 
// Return the result via the out param to workaround gcc bug 77539.
 
template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*>
 
FMT_CONSTEXPR auto find(Ptr first, Ptr last, T value, Ptr& out) -> bool {
 
  for (out = first; out != last; ++out) {
 
    if (*out == value) return true;
 
  }
 
  return false;
 
}
 

	
 
template <>
 
inline auto find<false, char>(const char* first, const char* last, char value,
 
                              const char*& out) -> bool {
 
  out = static_cast<const char*>(
 
      std::memchr(first, value, to_unsigned(last - first)));
 
  return out != nullptr;
 
}
 

	
 
// Parses the range [begin, end) as an unsigned integer. This function assumes
 
// that the range is non-empty and the first character is a digit.
 
template <typename Char>
 
FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end,
 
                                         int error_value) noexcept -> int {
 
  FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', "");
 
  unsigned value = 0, prev = 0;
 
  auto p = begin;
 
  do {
 
    prev = value;
 
    value = value * 10 + unsigned(*p - '0');
 
    ++p;
 
  } while (p != end && '0' <= *p && *p <= '9');
 
  auto num_digits = p - begin;
 
  begin = p;
 
  if (num_digits <= std::numeric_limits<int>::digits10)
 
    return static_cast<int>(value);
 
  // Check for overflow.
 
  const unsigned max = to_unsigned((std::numeric_limits<int>::max)());
 
  return num_digits == std::numeric_limits<int>::digits10 + 1 &&
 
                 prev * 10ull + unsigned(p[-1] - '0') <= max
 
             ? static_cast<int>(value)
 
             : error_value;
 
}
 

	
 
FMT_CONSTEXPR inline auto parse_align(char c) -> align_t {
 
  switch (c) {
 
  case '<':
 
    return align::left;
 
  case '>':
 
    return align::right;
 
  case '^':
 
    return align::center;
 
  }
 
  return align::none;
 
}
 

	
 
template <typename Char> constexpr auto is_name_start(Char c) -> bool {
 
  return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '_';
 
}
 

	
 
template <typename Char, typename Handler>
 
FMT_CONSTEXPR auto do_parse_arg_id(const Char* begin, const Char* end,
 
                                   Handler&& handler) -> const Char* {
 
  Char c = *begin;
 
  if (c >= '0' && c <= '9') {
 
    int index = 0;
 
    constexpr int max = (std::numeric_limits<int>::max)();
 
    if (c != '0')
 
      index = parse_nonnegative_int(begin, end, max);
 
    else
 
      ++begin;
 
    if (begin == end || (*begin != '}' && *begin != ':'))
 
      throw_format_error("invalid format string");
 
    else
 
      handler.on_index(index);
 
    return begin;
 
  }
 
  if (!is_name_start(c)) {
 
    throw_format_error("invalid format string");
 
    return begin;
 
  }
 
  auto it = begin;
 
  do {
 
    ++it;
 
  } while (it != end && (is_name_start(*it) || ('0' <= *it && *it <= '9')));
 
  handler.on_name({begin, to_unsigned(it - begin)});
 
  return it;
 
}
 

	
 
template <typename Char, typename Handler>
 
FMT_CONSTEXPR FMT_INLINE auto parse_arg_id(const Char* begin, const Char* end,
 
                                           Handler&& handler) -> const Char* {
 
  FMT_ASSERT(begin != end, "");
 
  Char c = *begin;
 
  if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler);
 
  handler.on_auto();
 
  return begin;
 
}
 

	
 
template <typename Char> struct dynamic_spec_id_handler {
 
  basic_format_parse_context<Char>& ctx;
 
  arg_ref<Char>& ref;
 

	
 
  FMT_CONSTEXPR void on_auto() {
 
    int id = ctx.next_arg_id();
 
    ref = arg_ref<Char>(id);
 
    ctx.check_dynamic_spec(id);
 
  }
 
  FMT_CONSTEXPR void on_index(int id) {
 
    ref = arg_ref<Char>(id);
 
    ctx.check_arg_id(id);
 
    ctx.check_dynamic_spec(id);
 
  }
 
  FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
 
    ref = arg_ref<Char>(id);
 
    ctx.check_arg_id(id);
 
  }
 
};
 

	
 
// Parses [integer | "{" [arg_id] "}"].
 
template <typename Char>
 
FMT_CONSTEXPR auto parse_dynamic_spec(const Char* begin, const Char* end,
 
                                      int& value, arg_ref<Char>& ref,
 
                                      basic_format_parse_context<Char>& ctx)
 
    -> const Char* {
 
  FMT_ASSERT(begin != end, "");
 
  if ('0' <= *begin && *begin <= '9') {
 
    int val = parse_nonnegative_int(begin, end, -1);
 
    if (val != -1)
 
      value = val;
 
    else
 
      throw_format_error("number is too big");
 
  } else if (*begin == '{') {
 
    ++begin;
 
    auto handler = dynamic_spec_id_handler<Char>{ctx, ref};
 
    if (begin != end) begin = parse_arg_id(begin, end, handler);
 
    if (begin != end && *begin == '}') return ++begin;
 
    throw_format_error("invalid format string");
 
  }
 
  return begin;
 
}
 

	
 
template <typename Char>
 
void vformat_to(
 
    buffer<Char>& buf, basic_string_view<Char> format_str,
 
    basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args,
 
    detail::locale_ref loc = {});
 

	
 
template <typename Char, typename Args,
 
          FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
 
inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {}
 
FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end,
 
                                   int& value, arg_ref<Char>& ref,
 
                                   basic_format_parse_context<Char>& ctx)
 
    -> const Char* {
 
  ++begin;
 
  if (begin == end || *begin == '}') {
 
    throw_format_error("invalid precision");
 
    return begin;
 
  }
 
  return parse_dynamic_spec(begin, end, value, ref, ctx);
 
}
 

	
 
enum class state { start, align, sign, hash, zero, width, precision, locale };
 

	
 
// Parses standard format specifiers.
 
template <typename Char>
 
FMT_CONSTEXPR FMT_INLINE auto parse_format_specs(
 
    const Char* begin, const Char* end, dynamic_format_specs<Char>& specs,
 
    basic_format_parse_context<Char>& ctx, type arg_type) -> const Char* {
 
  auto c = '\0';
 
  if (end - begin > 1) {
 
    auto next = to_ascii(begin[1]);
 
    c = parse_align(next) == align::none ? to_ascii(*begin) : '\0';
 
  } else {
 
    if (begin == end) return begin;
 
    c = to_ascii(*begin);
 
  }
 

	
 
  struct {
 
    state current_state = state::start;
 
    FMT_CONSTEXPR void operator()(state s, bool valid = true) {
 
      if (current_state >= s || !valid)
 
        throw_format_error("invalid format specifier");
 
      current_state = s;
 
    }
 
  } enter_state;
 

	
 
  using pres = presentation_type;
 
  constexpr auto integral_set = sint_set | uint_set | bool_set | char_set;
 
  struct {
 
    const Char*& begin;
 
    dynamic_format_specs<Char>& specs;
 
    type arg_type;
 

	
 
    FMT_CONSTEXPR auto operator()(pres type, int set) -> const Char* {
 
      if (!in(arg_type, set)) throw_format_error("invalid format specifier");
 
      specs.type = type;
 
      return begin + 1;
 
    }
 
  } parse_presentation_type{begin, specs, arg_type};
 

	
 
  for (;;) {
 
    switch (c) {
 
    case '<':
 
    case '>':
 
    case '^':
 
      enter_state(state::align);
 
      specs.align = parse_align(c);
 
      ++begin;
 
      break;
 
    case '+':
 
    case '-':
 
    case ' ':
 
      enter_state(state::sign, in(arg_type, sint_set | float_set));
 
      switch (c) {
 
      case '+':
 
        specs.sign = sign::plus;
 
        break;
 
      case '-':
 
        specs.sign = sign::minus;
 
        break;
 
      case ' ':
 
        specs.sign = sign::space;
 
        break;
 
      }
 
      ++begin;
 
      break;
 
    case '#':
 
      enter_state(state::hash, is_arithmetic_type(arg_type));
 
      specs.alt = true;
 
      ++begin;
 
      break;
 
    case '0':
 
      enter_state(state::zero);
 
      if (!is_arithmetic_type(arg_type))
 
        throw_format_error("format specifier requires numeric argument");
 
      if (specs.align == align::none) {
 
        // Ignore 0 if align is specified for compatibility with std::format.
 
        specs.align = align::numeric;
 
        specs.fill[0] = Char('0');
 
      }
 
      ++begin;
 
      break;
 
    case '1':
 
    case '2':
 
    case '3':
 
    case '4':
 
    case '5':
 
    case '6':
 
    case '7':
 
    case '8':
 
    case '9':
 
    case '{':
 
      enter_state(state::width);
 
      begin = parse_dynamic_spec(begin, end, specs.width, specs.width_ref, ctx);
 
      break;
 
    case '.':
 
      enter_state(state::precision,
 
                  in(arg_type, float_set | string_set | cstring_set));
 
      begin = parse_precision(begin, end, specs.precision, specs.precision_ref,
 
                              ctx);
 
      break;
 
    case 'L':
 
      enter_state(state::locale, is_arithmetic_type(arg_type));
 
      specs.localized = true;
 
      ++begin;
 
      break;
 
    case 'd':
 
      return parse_presentation_type(pres::dec, integral_set);
 
    case 'o':
 
      return parse_presentation_type(pres::oct, integral_set);
 
    case 'x':
 
      return parse_presentation_type(pres::hex_lower, integral_set);
 
    case 'X':
 
      return parse_presentation_type(pres::hex_upper, integral_set);
 
    case 'b':
 
      return parse_presentation_type(pres::bin_lower, integral_set);
 
    case 'B':
 
      return parse_presentation_type(pres::bin_upper, integral_set);
 
    case 'a':
 
      return parse_presentation_type(pres::hexfloat_lower, float_set);
 
    case 'A':
 
      return parse_presentation_type(pres::hexfloat_upper, float_set);
 
    case 'e':
 
      return parse_presentation_type(pres::exp_lower, float_set);
 
    case 'E':
 
      return parse_presentation_type(pres::exp_upper, float_set);
 
    case 'f':
 
      return parse_presentation_type(pres::fixed_lower, float_set);
 
    case 'F':
 
      return parse_presentation_type(pres::fixed_upper, float_set);
 
    case 'g':
 
      return parse_presentation_type(pres::general_lower, float_set);
 
    case 'G':
 
      return parse_presentation_type(pres::general_upper, float_set);
 
    case 'c':
 
      return parse_presentation_type(pres::chr, integral_set);
 
    case 's':
 
      return parse_presentation_type(pres::string,
 
                                     bool_set | string_set | cstring_set);
 
    case 'p':
 
      return parse_presentation_type(pres::pointer, pointer_set | cstring_set);
 
    case '?':
 
      return parse_presentation_type(pres::debug,
 
                                     char_set | string_set | cstring_set);
 
    case '}':
 
      return begin;
 
    default: {
 
      if (*begin == '}') return begin;
 
      // Parse fill and alignment.
 
      auto fill_end = begin + code_point_length(begin);
 
      if (end - fill_end <= 0) {
 
        throw_format_error("invalid format specifier");
 
        return begin;
 
      }
 
      if (*begin == '{') {
 
        throw_format_error("invalid fill character '{'");
 
        return begin;
 
      }
 
      auto align = parse_align(to_ascii(*fill_end));
 
      enter_state(state::align, align != align::none);
 
      specs.fill = {begin, to_unsigned(fill_end - begin)};
 
      specs.align = align;
 
      begin = fill_end + 1;
 
    }
 
    }
 
    if (begin == end) return begin;
 
    c = to_ascii(*begin);
 
  }
 
}
 

	
 
template <typename Char, typename Handler>
 
FMT_CONSTEXPR auto parse_replacement_field(const Char* begin, const Char* end,
 
                                           Handler&& handler) -> const Char* {
 
  struct id_adapter {
 
    Handler& handler;
 
    int arg_id;
 

	
 
    FMT_CONSTEXPR void on_auto() { arg_id = handler.on_arg_id(); }
 
    FMT_CONSTEXPR void on_index(int id) { arg_id = handler.on_arg_id(id); }
 
    FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
 
      arg_id = handler.on_arg_id(id);
 
    }
 
  };
 

	
 
  ++begin;
 
  if (begin == end) return handler.on_error("invalid format string"), end;
 
  if (*begin == '}') {
 
    handler.on_replacement_field(handler.on_arg_id(), begin);
 
  } else if (*begin == '{') {
 
    handler.on_text(begin, begin + 1);
 
  } else {
 
    auto adapter = id_adapter{handler, 0};
 
    begin = parse_arg_id(begin, end, adapter);
 
    Char c = begin != end ? *begin : Char();
 
    if (c == '}') {
 
      handler.on_replacement_field(adapter.arg_id, begin);
 
    } else if (c == ':') {
 
      begin = handler.on_format_specs(adapter.arg_id, begin + 1, end);
 
      if (begin == end || *begin != '}')
 
        return handler.on_error("unknown format specifier"), end;
 
    } else {
 
      return handler.on_error("missing '}' in format string"), end;
 
    }
 
  }
 
  return begin + 1;
 
}
 

	
 
template <bool IS_CONSTEXPR, typename Char, typename Handler>
 
FMT_CONSTEXPR FMT_INLINE void parse_format_string(
 
    basic_string_view<Char> format_str, Handler&& handler) {
 
  auto begin = format_str.data();
 
  auto end = begin + format_str.size();
 
  if (end - begin < 32) {
 
    // Use a simple loop instead of memchr for small strings.
 
    const Char* p = begin;
 
    while (p != end) {
 
      auto c = *p++;
 
      if (c == '{') {
 
        handler.on_text(begin, p - 1);
 
        begin = p = parse_replacement_field(p - 1, end, handler);
 
      } else if (c == '}') {
 
        if (p == end || *p != '}')
 
          return handler.on_error("unmatched '}' in format string");
 
        handler.on_text(begin, p);
 
        begin = ++p;
 
      }
 
    }
 
    handler.on_text(begin, end);
 
    return;
 
  }
 
  struct writer {
 
    FMT_CONSTEXPR void operator()(const Char* from, const Char* to) {
 
      if (from == to) return;
 
      for (;;) {
 
        const Char* p = nullptr;
 
        if (!find<IS_CONSTEXPR>(from, to, Char('}'), p))
 
          return handler_.on_text(from, to);
 
        ++p;
 
        if (p == to || *p != '}')
 
          return handler_.on_error("unmatched '}' in format string");
 
        handler_.on_text(from, p);
 
        from = p + 1;
 
      }
 
    }
 
    Handler& handler_;
 
  } write = {handler};
 
  while (begin != end) {
 
    // Doing two passes with memchr (one for '{' and another for '}') is up to
 
    // 2.5x faster than the naive one-pass implementation on big format strings.
 
    const Char* p = begin;
 
    if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, Char('{'), p))
 
      return write(begin, end);
 
    write(begin, p);
 
    begin = parse_replacement_field(p, end, handler);
 
  }
 
}
 

	
 
template <typename T, bool = is_named_arg<T>::value> struct strip_named_arg {
 
  using type = T;
 
};
 
template <typename T> struct strip_named_arg<T, true> {
 
  using type = remove_cvref_t<decltype(T::value)>;
 
};
 

	
 
template <typename T, typename ParseContext>
 
FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx)
 
    -> decltype(ctx.begin()) {
 
  using char_type = typename ParseContext::char_type;
 
  using context = buffer_context<char_type>;
 
  using mapped_type = conditional_t<
 
      mapped_type_constant<T, context>::value != type::custom_type,
 
      decltype(arg_mapper<context>().map(std::declval<const T&>())),
 
      typename strip_named_arg<T>::type>;
 
  return formatter<mapped_type, char_type>().parse(ctx);
 
}
 

	
 
// Checks char specs and returns true iff the presentation type is char-like.
 
template <typename Char>
 
FMT_CONSTEXPR auto check_char_specs(const format_specs<Char>& specs) -> bool {
 
  if (specs.type != presentation_type::none &&
 
      specs.type != presentation_type::chr &&
 
      specs.type != presentation_type::debug) {
 
    return false;
 
  }
 
  if (specs.align == align::numeric || specs.sign != sign::none || specs.alt)
 
    throw_format_error("invalid format specifier for char");
 
  return true;
 
}
 

	
 
constexpr FMT_INLINE_VARIABLE int invalid_arg_index = -1;
 

	
 
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
 
template <int N, typename T, typename... Args, typename Char>
 
constexpr auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
 
  if constexpr (is_statically_named_arg<T>()) {
 
    if (name == T::name) return N;
 
  }
 
  if constexpr (sizeof...(Args) > 0)
 
    return get_arg_index_by_name<N + 1, Args...>(name);
 
  (void)name;  // Workaround an MSVC bug about "unused" parameter.
 
  return invalid_arg_index;
 
}
 
#endif
 

	
 
template <typename... Args, typename Char>
 
FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
 
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
 
  if constexpr (sizeof...(Args) > 0)
 
    return get_arg_index_by_name<0, Args...>(name);
 
#endif
 
  (void)name;
 
  return invalid_arg_index;
 
}
 

	
 
template <typename Char, typename... Args> class format_string_checker {
 
 private:
 
  using parse_context_type = compile_parse_context<Char>;
 
  static constexpr int num_args = sizeof...(Args);
 

	
 
  // Format specifier parsing function.
 
  // In the future basic_format_parse_context will replace compile_parse_context
 
  // here and will use is_constant_evaluated and downcasting to access the data
 
  // needed for compile-time checks: https://godbolt.org/z/GvWzcTjh1.
 
  using parse_func = const Char* (*)(parse_context_type&);
 

	
 
  parse_context_type context_;
 
  parse_func parse_funcs_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
 
  type types_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
 

	
 
 public:
 
  explicit FMT_CONSTEXPR format_string_checker(basic_string_view<Char> fmt)
 
      : context_(fmt, num_args, types_),
 
        parse_funcs_{&parse_format_specs<Args, parse_context_type>...},
 
        types_{mapped_type_constant<Args, buffer_context<Char>>::value...} {}
 

	
 
  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
 

	
 
  FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); }
 
  FMT_CONSTEXPR auto on_arg_id(int id) -> int {
 
    return context_.check_arg_id(id), id;
 
  }
 
  FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
 
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
 
    auto index = get_arg_index_by_name<Args...>(id);
 
    if (index == invalid_arg_index) on_error("named argument is not found");
 
    return index;
 
#else
 
    (void)id;
 
    on_error("compile-time checks for named arguments require C++20 support");
 
    return 0;
 
#endif
 
  }
 

	
 
  FMT_CONSTEXPR void on_replacement_field(int, const Char*) {}
 

	
 
  FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*)
 
      -> const Char* {
 
    context_.advance_to(begin);
 
    // id >= 0 check is a workaround for gcc 10 bug (#2065).
 
    return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin;
 
  }
 

	
 
  FMT_CONSTEXPR void on_error(const char* message) {
 
    throw_format_error(message);
 
  }
 
};
 

	
 
// Reports a compile-time error if S is not a valid format string.
 
template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
 
FMT_INLINE void check_format_string(const S&) {
 
#ifdef FMT_ENFORCE_COMPILE_STRING
 
  static_assert(is_compile_string<S>::value,
 
                "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
 
                "FMT_STRING.");
 
#endif
 
}
 
template <typename... Args, typename S,
 
          FMT_ENABLE_IF(is_compile_string<S>::value)>
 
void check_format_string(S format_str) {
 
  using char_t = typename S::char_type;
 
  FMT_CONSTEXPR auto s = basic_string_view<char_t>(format_str);
 
  using checker = format_string_checker<char_t, remove_cvref_t<Args>...>;
 
  FMT_CONSTEXPR bool error = (parse_format_string<true>(s, checker(s)), true);
 
  ignore_unused(error);
 
}
 

	
 
template <typename Char = char> struct vformat_args {
 
  using type = basic_format_args<
 
      basic_format_context<std::back_insert_iterator<buffer<Char>>, Char>>;
 
};
 
template <> struct vformat_args<char> { using type = format_args; };
 

	
 
// Use vformat_args and avoid type_identity to keep symbols short.
 
template <typename Char>
 
void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
 
                typename vformat_args<Char>::type args, locale_ref loc = {});
 

	
 
FMT_API void vprint_mojibake(std::FILE*, string_view, format_args);
 
#ifndef _WIN32
 
inline void vprint_mojibake(std::FILE*, string_view, format_args) {}
 
#endif
 
}  // namespace detail
 

	
 
FMT_BEGIN_EXPORT
 

	
 
// A formatter specialization for natively supported types.
 
template <typename T, typename Char>
 
struct formatter<T, Char,
 
                 enable_if_t<detail::type_constant<T, Char>::value !=
 
                             detail::type::custom_type>> {
 
 private:
 
  detail::dynamic_format_specs<Char> specs_;
 

	
 
 public:
 
  template <typename ParseContext>
 
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* {
 
    auto type = detail::type_constant<T, Char>::value;
 
    auto end =
 
        detail::parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, type);
 
    if (type == detail::type::char_type) detail::check_char_specs(specs_);
 
    return end;
 
  }
 

	
 
  template <detail::type U = detail::type_constant<T, Char>::value,
 
            FMT_ENABLE_IF(U == detail::type::string_type ||
 
                          U == detail::type::cstring_type ||
 
                          U == detail::type::char_type)>
 
  FMT_CONSTEXPR void set_debug_format(bool set = true) {
 
    specs_.type = set ? presentation_type::debug : presentation_type::none;
 
  }
 

	
 
  template <typename FormatContext>
 
  FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const
 
      -> decltype(ctx.out());
 
};
 

	
 
#define FMT_FORMAT_AS(Type, Base)                                        \
 
  template <typename Char>                                               \
 
  struct formatter<Type, Char> : formatter<Base, Char> {                 \
 
    template <typename FormatContext>                                    \
 
    auto format(const Type& val, FormatContext& ctx) const               \
 
        -> decltype(ctx.out()) {                                         \
 
      return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \
 
    }                                                                    \
 
  }
 

	
 
FMT_FORMAT_AS(signed char, int);
 
FMT_FORMAT_AS(unsigned char, unsigned);
 
FMT_FORMAT_AS(short, int);
 
FMT_FORMAT_AS(unsigned short, unsigned);
 
FMT_FORMAT_AS(long, long long);
 
FMT_FORMAT_AS(unsigned long, unsigned long long);
 
FMT_FORMAT_AS(Char*, const Char*);
 
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
 
FMT_FORMAT_AS(std::nullptr_t, const void*);
 
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
 

	
 
template <typename Char = char> struct runtime_format_string {
 
  basic_string_view<Char> str;
 
};
 

	
 
/** A compile-time format string. */
 
template <typename Char, typename... Args> class basic_format_string {
 
 private:
 
  basic_string_view<Char> str_;
 

	
 
 public:
 
  template <typename S,
 
            FMT_ENABLE_IF(
 
                std::is_convertible<const S&, basic_string_view<Char>>::value)>
 
  FMT_CONSTEVAL FMT_INLINE basic_format_string(const S& s) : str_(s) {
 
    static_assert(
 
        detail::count<
 
            (std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
 
             std::is_reference<Args>::value)...>() == 0,
 
        "passing views as lvalues is disallowed");
 
#ifdef FMT_HAS_CONSTEVAL
 
    if constexpr (detail::count_named_args<Args...>() ==
 
                  detail::count_statically_named_args<Args...>()) {
 
      using checker =
 
          detail::format_string_checker<Char, remove_cvref_t<Args>...>;
 
      detail::parse_format_string<true>(str_, checker(s));
 
    }
 
#else
 
    detail::check_format_string<Args...>(s);
 
#endif
 
  }
 
  basic_format_string(runtime_format_string<Char> fmt) : str_(fmt.str) {}
 

	
 
  FMT_INLINE operator basic_string_view<Char>() const { return str_; }
 
  FMT_INLINE auto get() const -> basic_string_view<Char> { return str_; }
 
};
 

	
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
// Workaround broken conversion on older gcc.
 
template <typename...> using format_string = string_view;
 
inline auto runtime(string_view s) -> string_view { return s; }
 
#else
 
template <typename... Args>
 
using format_string = basic_format_string<char, type_identity_t<Args>...>;
 
/**
 
  \rst
 
  Creates a runtime format string.
 

	
 
  **Example**::
 

	
 
    // Check format string at runtime instead of compile-time.
 
    fmt::print(fmt::runtime("{:d}"), "I am not a number");
 
  \endrst
 
 */
 
inline auto runtime(string_view s) -> runtime_format_string<> { return {{s}}; }
 
#endif
 

	
 
FMT_API auto vformat(string_view fmt, format_args args) -> std::string;
 

	
 
/**
 
  \rst
 
  Formats ``args`` according to specifications in ``fmt`` and returns the result
 
  as a string.
 

	
 
  **Example**::
 

	
 
    #include <fmt/core.h>
 
    std::string message = fmt::format("The answer is {}.", 42);
 
  \endrst
 
*/
 
template <typename... T>
 
FMT_NODISCARD FMT_INLINE auto format(format_string<T...> fmt, T&&... args)
 
    -> std::string {
 
  return vformat(fmt, fmt::make_format_args(args...));
 
}
 

	
 
/** Formats a string and writes the output to ``out``. */
 
// GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with
 
// vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead.
 
template <typename OutputIt, typename S, typename Char = char_t<S>,
 
          bool enable = detail::is_output_iterator<OutputIt, Char>::value>
 
auto vformat_to(OutputIt out, const S& format_str,
 
                basic_format_args<buffer_context<type_identity_t<Char>>> args)
 
    -> typename std::enable_if<enable, OutputIt>::type {
 
  decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out));
 
  detail::vformat_to(buf, to_string_view(format_str), args);
 
  return detail::get_iterator(buf);
 
template <typename OutputIt,
 
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
 
auto vformat_to(OutputIt out, string_view fmt, format_args args) -> OutputIt {
 
  auto&& buf = detail::get_buffer<char>(out);
 
  detail::vformat_to(buf, fmt, args, {});
 
  return detail::get_iterator(buf, out);
 
}
 

	
 
/**
 
 \rst
 
 Formats arguments, writes the result to the output iterator ``out`` and returns
 
 the iterator past the end of the output range.
 
 Formats ``args`` according to specifications in ``fmt``, writes the result to
 
 the output iterator ``out`` and returns the iterator past the end of the output
 
 range. `format_to` does not append a terminating null character.
 

	
 
 **Example**::
 

	
 
   std::vector<char> out;
 
   auto out = std::vector<char>();
 
   fmt::format_to(std::back_inserter(out), "{}", 42);
 
 \endrst
 
 */
 
// We cannot use FMT_ENABLE_IF because of a bug in gcc 8.3.
 
template <typename OutputIt, typename S, typename... Args,
 
          bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value>
 
inline auto format_to(OutputIt out, const S& format_str, Args&&... args) ->
 
    typename std::enable_if<enable, OutputIt>::type {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return vformat_to(out, to_string_view(format_str), vargs);
 
template <typename OutputIt, typename... T,
 
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
 
FMT_INLINE auto format_to(OutputIt out, format_string<T...> fmt, T&&... args)
 
    -> OutputIt {
 
  return vformat_to(out, fmt, fmt::make_format_args(args...));
 
}
 

	
 
template <typename OutputIt> struct format_to_n_result {
 
  /** Iterator past the end of the output range. */
 
  OutputIt out;
 
  /** Total (not truncated) output size. */
 
  size_t size;
 
};
 

	
 
template <typename OutputIt, typename Char, typename... Args,
 
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value)>
 
inline format_to_n_result<OutputIt> vformat_to_n(
 
    OutputIt out, size_t n, basic_string_view<Char> format_str,
 
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
 
  detail::iterator_buffer<OutputIt, Char, detail::fixed_buffer_traits> buf(out,
 
                                                                           n);
 
  detail::vformat_to(buf, format_str, args);
 
template <typename OutputIt, typename... T,
 
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
 
auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args)
 
    -> format_to_n_result<OutputIt> {
 
  using traits = detail::fixed_buffer_traits;
 
  auto buf = detail::iterator_buffer<OutputIt, char, traits>(out, n);
 
  detail::vformat_to(buf, fmt, args, {});
 
  return {buf.out(), buf.count()};
 
}
 

	
 
/**
 
 \rst
 
 Formats arguments, writes up to ``n`` characters of the result to the output
 
 iterator ``out`` and returns the total output size and the iterator past the
 
 end of the output range.
 
  Formats ``args`` according to specifications in ``fmt``, writes up to ``n``
 
  characters of the result to the output iterator ``out`` and returns the total
 
  (not truncated) output size and the iterator past the end of the output range.
 
  `format_to_n` does not append a terminating null character.
 
 \endrst
 
 */
 
template <typename OutputIt, typename S, typename... Args,
 
          bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value>
 
inline auto format_to_n(OutputIt out, size_t n, const S& format_str,
 
                        const Args&... args) ->
 
    typename std::enable_if<enable, format_to_n_result<OutputIt>>::type {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return vformat_to_n(out, n, to_string_view(format_str), vargs);
 
template <typename OutputIt, typename... T,
 
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
 
FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string<T...> fmt,
 
                            T&&... args) -> format_to_n_result<OutputIt> {
 
  return vformat_to_n(out, n, fmt, fmt::make_format_args(args...));
 
}
 

	
 
/** Returns the number of chars in the output of ``format(fmt, args...)``. */
 
template <typename... T>
 
FMT_NODISCARD FMT_INLINE auto formatted_size(format_string<T...> fmt,
 
                                             T&&... args) -> size_t {
 
  auto buf = detail::counting_buffer<>();
 
  detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...), {});
 
  return buf.count();
 
}
 

	
 
FMT_API void vprint(string_view fmt, format_args args);
 
FMT_API void vprint(std::FILE* f, string_view fmt, format_args args);
 

	
 
/**
 
  Returns the number of characters in the output of
 
  ``format(format_str, args...)``.
 
  \rst
 
  Formats ``args`` according to specifications in ``fmt`` and writes the output
 
  to ``stdout``.
 

	
 
  **Example**::
 

	
 
    fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
 
  \endrst
 
 */
 
template <typename... Args>
 
inline size_t formatted_size(string_view format_str, Args&&... args) {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  detail::counting_buffer<> buf;
 
  detail::vformat_to(buf, format_str, vargs);
 
  return buf.count();
 
}
 

	
 
template <typename S, typename Char = char_t<S>>
 
FMT_INLINE std::basic_string<Char> vformat(
 
    const S& format_str,
 
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
 
  return detail::vformat(to_string_view(format_str), args);
 
template <typename... T>
 
FMT_INLINE void print(format_string<T...> fmt, T&&... args) {
 
  const auto& vargs = fmt::make_format_args(args...);
 
  return detail::is_utf8() ? vprint(fmt, vargs)
 
                           : detail::vprint_mojibake(stdout, fmt, vargs);
 
}
 

	
 
/**
 
  \rst
 
  Formats arguments and returns the result as a string.
 

	
 
  **Example**::
 

	
 
    #include <fmt/core.h>
 
    std::string message = fmt::format("The answer is {}", 42);
 
  \endrst
 
*/
 
// Pass char_t as a default template parameter instead of using
 
// std::basic_string<char_t<S>> to reduce the symbol size.
 
template <typename S, typename... Args, typename Char = char_t<S>>
 
FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return detail::vformat(to_string_view(format_str), vargs);
 
}
 

	
 
FMT_API void vprint(string_view, format_args);
 
FMT_API void vprint(std::FILE*, string_view, format_args);
 

	
 
/**
 
  \rst
 
  Formats ``args`` according to specifications in ``format_str`` and writes the
 
  output to the file ``f``. Strings are assumed to be Unicode-encoded unless the
 
  ``FMT_UNICODE`` macro is set to 0.
 
  Formats ``args`` according to specifications in ``fmt`` and writes the
 
  output to the file ``f``.
 

	
 
  **Example**::
 

	
 
    fmt::print(stderr, "Don't {}!", "panic");
 
  \endrst
 
 */
 
template <typename S, typename... Args, typename Char = char_t<S>>
 
inline void print(std::FILE* f, const S& format_str, Args&&... args) {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return detail::is_unicode<Char>()
 
             ? vprint(f, to_string_view(format_str), vargs)
 
             : detail::vprint_mojibake(f, to_string_view(format_str), vargs);
 
template <typename... T>
 
FMT_INLINE void print(std::FILE* f, format_string<T...> fmt, T&&... args) {
 
  const auto& vargs = fmt::make_format_args(args...);
 
  return detail::is_utf8() ? vprint(f, fmt, vargs)
 
                           : detail::vprint_mojibake(f, fmt, vargs);
 
}
 

	
 
/**
 
  Formats ``args`` according to specifications in ``fmt`` and writes the
 
  output to the file ``f`` followed by a newline.
 
 */
 
template <typename... T>
 
FMT_INLINE void println(std::FILE* f, format_string<T...> fmt, T&&... args) {
 
  return fmt::print(f, "{}\n", fmt::format(fmt, std::forward<T>(args)...));
 
}
 

	
 
/**
 
  \rst
 
  Formats ``args`` according to specifications in ``format_str`` and writes
 
  the output to ``stdout``. Strings are assumed to be Unicode-encoded unless
 
  the ``FMT_UNICODE`` macro is set to 0.
 

	
 
  **Example**::
 

	
 
    fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
 
  \endrst
 
  Formats ``args`` according to specifications in ``fmt`` and writes the output
 
  to ``stdout`` followed by a newline.
 
 */
 
template <typename S, typename... Args, typename Char = char_t<S>>
 
inline void print(const S& format_str, Args&&... args) {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return detail::is_unicode<Char>()
 
             ? vprint(to_string_view(format_str), vargs)
 
             : detail::vprint_mojibake(stdout, to_string_view(format_str),
 
                                       vargs);
 
template <typename... T>
 
FMT_INLINE void println(format_string<T...> fmt, T&&... args) {
 
  return fmt::println(stdout, fmt, std::forward<T>(args)...);
 
}
 

	
 
FMT_END_EXPORT
 
FMT_GCC_PRAGMA("GCC pop_options")
 
FMT_END_NAMESPACE
 

	
 
#ifdef FMT_HEADER_ONLY
 
#  include "format.h"
 
#endif
 
#endif  // FMT_CORE_H_

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)