Changeset - r107:9465f6cf947e
[Not reviewed]
master
0 2 0
truelight - 20 years ago 2004-08-22 14:44:03
truelight@openttd.org
(svn r108) -Fix: anon-union problems on GCC2 compilers
2 files changed with 81 insertions and 80 deletions:
queue.c
79
79
queue.h
2
1
0 comments (0 inline, 0 general)
queue.c
Show inline comments
 
@@ -6,31 +6,31 @@ void Stack_Clear(Queue* q, bool free_val
 
{
 
	uint i;
 
	if (free_values)
 
		for (i=0;i<q->stack.size;i++)
 
			free(q->stack.elements[i]);
 
	q->stack.size = 0;
 
		for (i=0;i<q->data.stack.size;i++)
 
			free(q->data.stack.elements[i]);
 
	q->data.stack.size = 0;
 
}
 

	
 
void Stack_Free(Queue* q, bool free_values)
 
{
 
	q->clear(q, free_values);
 
	free(q->stack.elements);
 
	free(q->data.stack.elements);
 
	if (q->freeq)
 
		free(q);
 
}
 

	
 
bool Stack_Push(Queue* q, void* item, int priority) {
 
	if (q->stack.size == q->stack.max_size)
 
	if (q->data.stack.size == q->data.stack.max_size)
 
		return false;
 
	q->stack.elements[q->stack.size++] = item;
 
	q->data.stack.elements[q->data.stack.size++] = item;
 
	return true;
 
}
 

	
 
void* Stack_Pop(Queue* q) {
 
	void* result;
 
	if (q->stack.size == 0)
 
	if (q->data.stack.size == 0)
 
		return NULL;
 
	result = q->stack.elements[--q->stack.size];
 
	result = q->data.stack.elements[--q->data.stack.size];
 

	
 
	return result;
 
}
 
@@ -46,9 +46,9 @@ Queue* init_stack(Queue* q, uint max_siz
 
	q->del = Stack_Delete;
 
	q->clear = Stack_Clear;
 
	q->free = Stack_Free;
 
	q->stack.max_size = max_size;
 
	q->stack.size = 0;
 
	q->stack.elements = malloc(max_size * sizeof(void*));
 
	q->data.stack.max_size = max_size;
 
	q->data.stack.size = 0;
 
	q->data.stack.elements = malloc(max_size * sizeof(void*));
 
	q->freeq = false;
 
	return q;
 
}
 
@@ -69,43 +69,43 @@ void Fifo_Clear(Queue* q, bool free_valu
 
{
 
	uint head, tail;
 
	if (free_values) {
 
		head = q->fifo.head;
 
		tail = q->fifo.tail; /* cache for speed */
 
		head = q->data.fifo.head;
 
		tail = q->data.fifo.tail; /* cache for speed */
 
		while (head != tail) {
 
			free(q->fifo.elements[tail]);
 
			tail = (tail + 1) % q->fifo.max_size;
 
			free(q->data.fifo.elements[tail]);
 
			tail = (tail + 1) % q->data.fifo.max_size;
 
		}
 
	}
 
	q->fifo.head = q->fifo.tail = 0;
 
	q->data.fifo.head = q->data.fifo.tail = 0;
 
}
 

	
 
void Fifo_Free(Queue* q, bool free_values)
 
{
 
	q->clear(q, free_values);
 
	free(q->fifo.elements);
 
	free(q->data.fifo.elements);
 
	if (q->freeq)
 
		free(q);
 
}
 

	
 
bool Fifo_Push(Queue* q, void* item, int priority) {
 
	uint next = (q->fifo.head + 1) % q->fifo.max_size;
 
	if (next == q->fifo.tail)
 
	uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size;
 
	if (next == q->data.fifo.tail)
 
		return false;
 
	q->fifo.elements[q->fifo.head] = item;
 
	q->data.fifo.elements[q->data.fifo.head] = item;
 

	
 

	
 
	q->fifo.head = next;
 
	q->data.fifo.head = next;
 
	return true;
 
}
 

	
 
void* Fifo_Pop(Queue* q) {
 
	void* result;
 
	if (q->fifo.head == q->fifo.tail)
 
	if (q->data.fifo.head == q->data.fifo.tail)
 
		return NULL;
 
	result = q->fifo.elements[q->fifo.tail];
 
	result = q->data.fifo.elements[q->data.fifo.tail];
 

	
 

	
 
	q->fifo.tail = (q->fifo.tail + 1) % q->fifo.max_size;
 
	q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size;
 
	return result;
 
}
 

	
 
@@ -120,10 +120,10 @@ Queue* init_fifo(Queue* q, uint max_size
 
	q->del = Fifo_Delete;
 
	q->clear = Fifo_Clear;
 
	q->free = Fifo_Free;
 
	q->fifo.max_size = max_size;
 
	q->fifo.head = 0;
 
	q->fifo.tail = 0;
 
	q->fifo.elements = malloc(max_size * sizeof(void*));
 
	q->data.fifo.max_size = max_size;
 
	q->data.fifo.head = 0;
 
	q->data.fifo.tail = 0;
 
	q->data.fifo.elements = malloc(max_size * sizeof(void*));
 
	q->freeq = false;
 
	return q;
 
}
 
@@ -142,7 +142,7 @@ Queue* new_Fifo(uint max_size)
 
 */
 

	
 
void InsSort_Clear(Queue* q, bool free_values) {
 
	InsSortNode* node = q->inssort.first;
 
	InsSortNode* node = q->data.inssort.first;
 
	InsSortNode* prev;
 
	while (node != NULL) {
 
		if (free_values)
 
@@ -152,7 +152,7 @@ void InsSort_Clear(Queue* q, bool free_v
 
		free(prev);
 
		
 
	}
 
	q->inssort.first = NULL;
 
	q->data.inssort.first = NULL;
 
}
 

	
 
void InsSort_Free(Queue* q, bool free_values)
 
@@ -167,11 +167,11 @@ bool InsSort_Push(Queue* q, void* item, 
 
	if (newnode == NULL) return false;
 
	newnode->item = item;
 
	newnode->priority = priority;
 
	if (q->inssort.first == NULL || q->inssort.first->priority >= priority) {
 
		newnode->next = q->inssort.first;
 
		q->inssort.first = newnode;
 
	if (q->data.inssort.first == NULL || q->data.inssort.first->priority >= priority) {
 
		newnode->next = q->data.inssort.first;
 
		q->data.inssort.first = newnode;
 
	} else {
 
		InsSortNode* node = q->inssort.first;
 
		InsSortNode* node = q->data.inssort.first;
 
		while( node != NULL ) {
 
			if (node->next == NULL || node->next->priority >= priority) {
 
				newnode->next = node->next;
 
@@ -185,14 +185,14 @@ bool InsSort_Push(Queue* q, void* item, 
 
}
 

	
 
void* InsSort_Pop(Queue* q) {
 
	InsSortNode* node = q->inssort.first;
 
	InsSortNode* node = q->data.inssort.first;
 
	void* result;
 
	if (node == NULL)
 
		return NULL;
 
	result = node->item;
 
	q->inssort.first = q->inssort.first->next;
 
	if (q->inssort.first)
 
		assert(q->inssort.first->priority >= node->priority);
 
	q->data.inssort.first = q->data.inssort.first->next;
 
	if (q->data.inssort.first)
 
		assert(q->data.inssort.first->priority >= node->priority);
 
	free(node);
 
	return result;
 
}
 
@@ -208,7 +208,7 @@ void init_InsSort(Queue* q) {
 
	q->del = InsSort_Delete;
 
	q->clear = InsSort_Clear;
 
	q->free = InsSort_Free;
 
	q->inssort.first = NULL;
 
	q->data.inssort.first = NULL;
 
	q->freeq = false;
 
}
 

	
 
@@ -231,16 +231,16 @@ Queue* new_InsSort() {
 
// To make our life easy, we make the next define
 
//  Because Binary Heaps works with array from 1 to n,
 
//  and C with array from 0 to n-1, and we don't like typing
 
//  q->binaryheap.elements[i-1] every time, we use this define.
 
#define BIN_HEAP_ARR(i) q->binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]
 
//  q->data.binaryheap.elements[i-1] every time, we use this define.
 
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]
 

	
 
void BinaryHeap_Clear(Queue* q, bool free_values)
 
{
 
	/* Free all items if needed and free all but the first blocks of
 
	 * memory */
 
	uint i,j;
 
	for (i=0;i<q->binaryheap.blocks;i++) {
 
		if (q->binaryheap.elements[i] == NULL) {
 
	for (i=0;i<q->data.binaryheap.blocks;i++) {
 
		if (q->data.binaryheap.elements[i] == NULL) {
 
			/* No more allocated blocks */
 
			break;
 
		}
 
@@ -248,29 +248,29 @@ void BinaryHeap_Clear(Queue* q, bool fre
 
		if (free_values)
 
			for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) {
 
				/* For every element in the block */
 
				if ((q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
 
					&& (q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
 
				if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
 
					&& (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
 
					break; /* We're past the last element */
 
				free(q->binaryheap.elements[i][j].item);
 
				free(q->data.binaryheap.elements[i][j].item);
 
			}
 
		if (i != 0) {
 
			/* Leave the first block of memory alone */
 
			free(q->binaryheap.elements[i]);
 
			q->binaryheap.elements[i] = NULL;
 
			free(q->data.binaryheap.elements[i]);
 
			q->data.binaryheap.elements[i] = NULL;
 
		}
 
	}
 
	q->binaryheap.size = 0;
 
	q->binaryheap.blocks = 1;
 
	q->data.binaryheap.size = 0;
 
	q->data.binaryheap.blocks = 1;
 
}
 

	
 
void BinaryHeap_Free(Queue* q, bool free_values)
 
{
 
	uint i;
 
	q->clear(q, free_values);
 
	for (i=0;i<q->binaryheap.blocks;i++) {
 
		if (q->binaryheap.elements[i] == NULL)
 
	for (i=0;i<q->data.binaryheap.blocks;i++) {
 
		if (q->data.binaryheap.elements[i] == NULL)
 
			break;
 
		free(q->binaryheap.elements[i]);
 
		free(q->data.binaryheap.elements[i]);
 
	}
 
	if (q->freeq)
 
		free(q);
 
@@ -278,33 +278,33 @@ void BinaryHeap_Free(Queue* q, bool free
 

	
 
bool BinaryHeap_Push(Queue* q, void* item, int priority) {
 
	#ifdef QUEUE_DEBUG
 
			printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->binaryheap.size);
 
			printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
 
	#endif
 
	if (q->binaryheap.size == q->binaryheap.max_size)
 
	if (q->data.binaryheap.size == q->data.binaryheap.max_size)
 
		return false;
 
	assert(q->binaryheap.size < q->binaryheap.max_size);
 
	assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
 
	
 
	if (q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
 
	if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
 
		/* The currently allocated blocks are full, allocate a new one */
 
		assert((q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
 
		q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
 
		q->binaryheap.blocks++;
 
		assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
 
		q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
 
		q->data.binaryheap.blocks++;
 
#ifdef QUEUE_DEBUG
 
		printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->binaryheap.blocks *  BINARY_HEAP_BLOCKSIZE);
 
		printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->data.binaryheap.blocks *  BINARY_HEAP_BLOCKSIZE);
 
#endif
 
	}
 

	
 
	// Add the item at the end of the array
 
	BIN_HEAP_ARR(q->binaryheap.size+1).priority = priority;
 
	BIN_HEAP_ARR(q->binaryheap.size+1).item = item;
 
	q->binaryheap.size++;
 
	BIN_HEAP_ARR(q->data.binaryheap.size+1).priority = priority;
 
	BIN_HEAP_ARR(q->data.binaryheap.size+1).item = item;
 
	q->data.binaryheap.size++;
 

	
 
	// Now we are going to check where it belongs. As long as the parent is
 
	// bigger, we switch with the parent
 
	{
 
		int i, j;
 
		BinaryHeapNode temp;
 
		i = q->binaryheap.size;
 
		i = q->data.binaryheap.size;
 
		while (i > 1) {
 
			// Get the parent of this object (divide by 2)
 
			j = i / 2;
 
@@ -327,20 +327,20 @@ bool BinaryHeap_Push(Queue* q, void* ite
 
bool BinaryHeap_Delete(Queue* q, void* item, int priority)
 
{
 
	#ifdef QUEUE_DEBUG
 
			printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->binaryheap.size);
 
			printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
 
	#endif
 
	uint i = 0;
 
	// First, we try to find the item..
 
	do {
 
		if (BIN_HEAP_ARR(i+1).item == item) break;
 
		i++;
 
	} while (i < q->binaryheap.size);
 
	} while (i < q->data.binaryheap.size);
 
	// We did not find the item, so we return false
 
	if (i == q->binaryheap.size) return false;
 
	if (i == q->data.binaryheap.size) return false;
 

	
 
	// Now we put the last item over the current item while decreasing the size of the elements
 
	q->binaryheap.size--;
 
	BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->binaryheap.size+1);
 
	q->data.binaryheap.size--;
 
	BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->data.binaryheap.size+1);
 

	
 
	// Now the only thing we have to do, is resort it..
 
	// On place i there is the item to be sorted.. let's start there
 
@@ -354,14 +354,14 @@ bool BinaryHeap_Delete(Queue* q, void* i
 
		for (;;) {
 
			j = i;
 
			// Check if we have 2 childs
 
			if (2*j+1 <= q->binaryheap.size) {
 
			if (2*j+1 <= q->data.binaryheap.size) {
 
				// Is this child smaller then the parent?
 
				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; }
 
				// Yes, we _need_ to use i here, not j, because we want to have the smallest child
 
				//  This way we get that straight away!
 
				if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; }
 
			// Do we have one child?
 
			} else if (2*j <= q->binaryheap.size) {
 
			} else if (2*j <= q->data.binaryheap.size) {
 
				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; }
 
			}
 

	
 
@@ -382,10 +382,10 @@ bool BinaryHeap_Delete(Queue* q, void* i
 

	
 
void* BinaryHeap_Pop(Queue* q) {
 
	#ifdef QUEUE_DEBUG
 
			printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->binaryheap.size);
 
			printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
 
	#endif
 
	void* result;
 
	if (q->binaryheap.size == 0)
 
	if (q->data.binaryheap.size == 0)
 
		return NULL;
 

	
 
	// The best item is always on top, so give that as result
 
@@ -404,13 +404,13 @@ void init_BinaryHeap(Queue* q, uint max_
 
	q->del = BinaryHeap_Delete;
 
	q->clear = BinaryHeap_Clear;
 
	q->free = BinaryHeap_Free;
 
	q->binaryheap.max_size = max_size;
 
	q->binaryheap.size = 0;
 
	q->data.binaryheap.max_size = max_size;
 
	q->data.binaryheap.size = 0;
 
	// We malloc memory in block of BINARY_HEAP_BLOCKSIZE
 
	//   It autosizes when it runs out of memory
 
	q->binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1);
 
	q->binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
 
	q->binaryheap.blocks = 1;
 
	q->data.binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1);
 
	q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
 
	q->data.binaryheap.blocks = 1;
 
	q->freeq = false;
 
#ifdef QUEUE_DEBUG
 
		printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024));
queue.h
Show inline comments
 
@@ -76,7 +76,8 @@ struct Queue{
 
			uint blocks; /* The amount of blocks for which space is reserved in elements */
 
			BinaryHeapNode** elements;
 
		} binaryheap;
 
	};
 
	} data;
 
 
	/* If true, this struct will be free'd when the
 
	 * Queue is deleted. */
 
	bool freeq;
0 comments (0 inline, 0 general)