Changeset - r9597:95581b9351bb
[Not reviewed]
master
0 7 0
smatz - 16 years ago 2008-06-26 15:46:19
smatz@openttd.org
(svn r13639) -Codechange: rewrite 32bpp-anim and 32bpp-optimized drawing and encoding so it uses similiar scheme as 8bpp-optimized
All zoom levels are stored and a kind of RLE is used. Together with further changes and reducing number of variables, drawing is ~50% faster in average.
7 files changed with 556 insertions and 171 deletions:
0 comments (0 inline, 0 general)
src/blitter/32bpp_anim.cpp
Show inline comments
 
@@ -15,6 +15,172 @@
 

	
 
static FBlitter_32bppAnim iFBlitter_32bppAnim;
 

	
 
template <BlitterMode mode>
 
inline void Blitter_32bppAnim::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
 
{
 
	const SpriteData *src = (const SpriteData *)bp->sprite;
 

	
 
	const Colour *src_px = (const Colour *)(src->data + src->offset[zoom][0]);
 
	const uint8  *src_n  = (const uint8  *)(src->data + src->offset[zoom][1]);
 

	
 
	for (uint i = bp->skip_top; i != 0; i--) {
 
		src_px = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
 
		src_n += *(const uint32 *)src_n;
 
	}
 

	
 
	uint32 *dst = (uint32 *)bp->dst + bp->top * bp->pitch + bp->left;
 
	uint8 *anim = this->anim_buf + ((uint32 *)bp->dst - (uint32 *)_screen.dst_ptr) + bp->top * this->anim_buf_width + bp->left;
 

	
 
	const byte *remap = bp->remap; // store so we don't have to access it via bp everytime
 

	
 
	for (int y = 0; y < bp->height; y++) {
 
		uint32 *dst_ln = dst + bp->pitch;
 
		uint8 *anim_ln = anim + this->anim_buf_width;
 

	
 
		const Colour *src_px_ln = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
 
		src_px++;
 

	
 
		const uint8 *src_n_ln = src_n + *(uint32 *)src_n;
 
		src_n += 4;
 

	
 
		uint32 *dst_end = dst + bp->skip_left;
 

	
 
		uint n;
 

	
 
		while (dst < dst_end) {
 
			n = *src_n++;
 

	
 
			if (src_px->a == 0) {
 
				dst += n;
 
				src_px ++;
 
				src_n++;
 

	
 
				if (dst > dst_end) anim += dst - dst_end;
 
			} else {
 
				if (dst + n > dst_end) {
 
					uint d = dst_end - dst;
 
					src_px += d;
 
					src_n += d;
 

	
 
					dst = dst_end - bp->skip_left;
 
					dst_end = dst + bp->width;
 

	
 
					n = min<uint>(n - d, (uint)bp->width);
 
					goto draw;
 
				}
 
				dst += n;
 
				src_px += n;
 
				src_n += n;
 
			}
 
		}
 

	
 
		dst -= bp->skip_left;
 
		dst_end -= bp->skip_left;
 

	
 
		dst_end += bp->width;
 

	
 
		while (dst < dst_end) {
 
			n = min<uint>(*src_n++, (uint)(dst_end - dst));
 

	
 
			if (src_px->a == 0) {
 
				anim += n;
 
				dst += n;
 
				src_px++;
 
				src_n++;
 
				continue;
 
			}
 

	
 
			draw:;
 

	
 
			switch (mode) {
 
				case BM_COLOUR_REMAP:
 
					if (src_px->a == 255) {
 
						do {
 
							uint m = *src_n;
 
							/* In case the m-channel is zero, do not remap this pixel in any way */
 
							if (m == 0) {
 
								*dst = *src_px;
 
								*anim = 0;
 
							} else {
 
								uint r = remap[m];
 
								*anim = r;
 
								if (r != 0) *dst = this->LookupColourInPalette(r);
 
							}
 
							anim++;
 
							dst++;
 
							src_px++;
 
							src_n++;
 
						} while (--n != 0);
 
					} else {
 
						do {
 
							uint m = *src_n;
 
							if (m == 0) {
 
								*dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
 
								*anim = 0;
 
							} else {
 
								uint r = remap[m];
 
								*anim = r;
 
								if (r != 0) *dst = ComposeColourPANoCheck(this->LookupColourInPalette(r), src_px->a, *dst);
 
							}
 
							anim++;
 
							dst++;
 
							src_px++;
 
							src_n++;
 
						} while (--n != 0);
 
					}
 
					break;
 

	
 
				case BM_TRANSPARENT:
 
					/* TODO -- We make an assumption here that the remap in fact is transparency, not some color.
 
					 *  This is never a problem with the code we produce, but newgrfs can make it fail... or at least:
 
					 *  we produce a result the newgrf maker didn't expect ;) */
 

	
 
					/* Make the current color a bit more black, so it looks like this image is transparent */
 
					src_px += n;
 
					src_n += n;
 

	
 
					do {
 
						*dst = MakeTransparent(*dst, 192);
 
						*anim = remap[*anim];
 
						anim++;
 
						dst++;
 
					} while (--n != 0);
 
					break;
 

	
 
				default:
 
					if (src_px->a == 255) {
 
						do {
 
							/* Compiler assumes pointer aliasing, can't optimise this on its own */
 
							uint m = *src_n++;
 
							/* Above 217 is palette animation */
 
							*anim++ = m;
 
							*dst++ = (m >= 217) ? this->LookupColourInPalette(m) : *src_px;
 
							src_px++;
 
						} while (--n != 0);
 
					} else {
 
						do {
 
							uint m = *src_n++;
 
							*anim++ = m;
 
							if (m >= 217) {
 
								*dst = ComposeColourPANoCheck(this->LookupColourInPalette(m), src_px->a, *dst);
 
							} else {
 
								*dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
 
							}
 
							dst++;
 
							src_px++;
 
						} while (--n != 0);
 
					}
 
					break;
 
			}
 
		}
 

	
 
		anim = anim_ln;
 
		dst = dst_ln;
 
		src_px = src_px_ln;
 
		src_n  = src_n_ln;
 
	}
 
}
 

	
 
void Blitter_32bppAnim::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
 
{
 
	if (_screen_disable_anim) {
 
@@ -23,10 +189,6 @@ void Blitter_32bppAnim::Draw(Blitter::Bl
 
		return;
 
	}
 

	
 
	const SpriteLoader::CommonPixel *src, *src_line;
 
	uint32 *dst, *dst_line;
 
	uint8 *anim, *anim_line;
 

	
 
	if (_screen.width != this->anim_buf_width || _screen.height != this->anim_buf_height) {
 
		/* The size of the screen changed; we can assume we can wipe all data from our buffer */
 
		free(this->anim_buf);
 
@@ -35,68 +197,11 @@ void Blitter_32bppAnim::Draw(Blitter::Bl
 
		this->anim_buf_height = _screen.height;
 
	}
 

	
 
	/* Find where to start reading in the source sprite */
 
	src_line = (const SpriteLoader::CommonPixel *)bp->sprite + (bp->skip_top * bp->sprite_width + bp->skip_left) * ScaleByZoom(1, zoom);
 
	dst_line = (uint32 *)bp->dst + bp->top * bp->pitch + bp->left;
 
	anim_line = this->anim_buf + ((uint32 *)bp->dst - (uint32 *)_screen.dst_ptr) + bp->top * this->anim_buf_width + bp->left;
 

	
 
	for (int y = 0; y < bp->height; y++) {
 
		dst = dst_line;
 
		dst_line += bp->pitch;
 

	
 
		src = src_line;
 
		src_line += bp->sprite_width * ScaleByZoom(1, zoom);
 

	
 
		anim = anim_line;
 
		anim_line += this->anim_buf_width;
 

	
 
		for (int x = 0; x < bp->width; x++) {
 
			if (src->a == 0) {
 
				/* src->r is 'misused' here to indicate how much more pixels are following with an alpha of 0 */
 
				int skip = UnScaleByZoom(src->r, zoom);
 

	
 
				dst  += skip;
 
				anim += skip;
 
				x    += skip - 1;
 
				src  += ScaleByZoom(1, zoom) * skip;
 
				continue;
 
			}
 

	
 
			switch (mode) {
 
				case BM_COLOUR_REMAP:
 
					/* In case the m-channel is zero, do not remap this pixel in any way */
 
					if (src->m == 0) {
 
						*dst = ComposeColourRGBA(src->r, src->g, src->b, src->a, *dst);
 
						*anim = 0;
 
					} else {
 
						if (bp->remap[src->m] != 0) {
 
							*dst = ComposeColourPA(this->LookupColourInPalette(bp->remap[src->m]), src->a, *dst);
 
							*anim = bp->remap[src->m];
 
						}
 
					}
 
					break;
 

	
 
				case BM_TRANSPARENT:
 
					/* TODO -- We make an assumption here that the remap in fact is transparency, not some color.
 
					 *  This is never a problem with the code we produce, but newgrfs can make it fail... or at least:
 
					 *  we produce a result the newgrf maker didn't expect ;) */
 

	
 
					/* Make the current color a bit more black, so it looks like this image is transparent */
 
					*dst = MakeTransparent(*dst, 192);
 
					*anim = bp->remap[*anim];
 
					break;
 

	
 
				default:
 
					/* Above 217 is palette animation */
 
					if (src->m >= 217) *dst = ComposeColourPA(this->LookupColourInPalette(src->m), src->a, *dst);
 
					else               *dst = ComposeColourRGBA(src->r, src->g, src->b, src->a, *dst);
 
					*anim = src->m;
 
					break;
 
			}
 
			dst++;
 
			anim++;
 
			src += ScaleByZoom(1, zoom);
 
		}
 
	switch (mode) {
 
		default: NOT_REACHED();
 
		case BM_NORMAL:       Draw<BM_NORMAL>      (bp, zoom); return;
 
		case BM_COLOUR_REMAP: Draw<BM_COLOUR_REMAP>(bp, zoom); return;
 
		case BM_TRANSPARENT:  Draw<BM_TRANSPARENT> (bp, zoom); return;
 
	}
 
}
 

	
src/blitter/32bpp_anim.hpp
Show inline comments
 
@@ -34,6 +34,8 @@ public:
 
	/* virtual */ Blitter::PaletteAnimation UsePaletteAnimation();
 

	
 
	/* virtual */ const char *GetName() { return "32bpp-anim"; }
 

	
 
	template <BlitterMode mode> void Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom);
 
};
 

	
 
class FBlitter_32bppAnim: public BlitterFactory<FBlitter_32bppAnim> {
src/blitter/32bpp_base.hpp
Show inline comments
 
@@ -30,7 +30,7 @@ public:
 
	/**
 
	 * Compose a colour based on RGB values.
 
	 */
 
	static inline uint ComposeColour(uint a, uint r, uint g, uint b)
 
	static inline uint32 ComposeColour(uint a, uint r, uint g, uint b)
 
	{
 
		return (((a) << 24) & 0xFF000000) | (((r) << 16) & 0x00FF0000) | (((g) << 8) & 0x0000FF00) | ((b) & 0x000000FF);
 
	}
 
@@ -46,44 +46,60 @@ public:
 
	/**
 
	 * Compose a colour based on RGBA values and the current pixel value.
 
	 */
 
	static inline uint ComposeColourRGBA(uint r, uint g, uint b, uint a, uint current)
 
	static inline uint32 ComposeColourRGBANoCheck(uint r, uint g, uint b, uint a, uint32 current)
 
	{
 
		uint cr = GB(current, 16, 8);
 
		uint cg = GB(current, 8,  8);
 
		uint cb = GB(current, 0,  8);
 

	
 
		/* The 256 is wrong, it should be 255, but 256 is much faster... */
 
		return ComposeColour(0xFF,
 
							(r * a + cr * (256 - a)) / 256,
 
							(g * a + cg * (256 - a)) / 256,
 
							(b * a + cb * (256 - a)) / 256);
 
	}
 

	
 
	/**
 
	 * Compose a colour based on RGBA values and the current pixel value.
 
	 * Handles fully transparent and solid pixels in a special (faster) way.
 
	 */
 
	static inline uint32 ComposeColourRGBA(uint r, uint g, uint b, uint a, uint32 current)
 
	{
 
		if (a == 0) return current;
 
		if (a >= 255) return ComposeColour(0xFF, r, g, b);
 

	
 
		uint cr, cg, cb;
 
		cr = GB(current, 16, 8);
 
		cg = GB(current, 8,  8);
 
		cb = GB(current, 0,  8);
 
		return ComposeColourRGBANoCheck(r, g, b, a, current);
 
	}
 

	
 
	/**
 
	 * Compose a colour based on Pixel value, alpha value, and the current pixel value.
 
	 */
 
	static inline uint32 ComposeColourPANoCheck(uint32 colour, uint a, uint32 current)
 
	{
 
		uint r  = GB(colour,  16, 8);
 
		uint g  = GB(colour,  8,  8);
 
		uint b  = GB(colour,  0,  8);
 
		uint cr = GB(current, 16, 8);
 
		uint cg = GB(current, 8,  8);
 
		uint cb = GB(current, 0,  8);
 

	
 
		/* The 256 is wrong, it should be 255, but 256 is much faster... */
 
		return ComposeColour(0xFF,
 
												(r * a + cr * (256 - a)) / 256,
 
												(g * a + cg * (256 - a)) / 256,
 
												(b * a + cb * (256 - a)) / 256);
 
							(r * a + cr * (256 - a)) / 256,
 
							(g * a + cg * (256 - a)) / 256,
 
							(b * a + cb * (256 - a)) / 256);
 
	}
 

	
 
	/**
 
	* Compose a colour based on Pixel value, alpha value, and the current pixel value.
 
	*/
 
	static inline uint ComposeColourPA(uint colour, uint a, uint current)
 
	 * Compose a colour based on Pixel value, alpha value, and the current pixel value.
 
	 * Handles fully transparent and solid pixels in a special (faster) way.
 
	 */
 
	static inline uint32 ComposeColourPA(uint32 colour, uint a, uint32 current)
 
	{
 
		if (a == 0) return current;
 
		if (a >= 255) return (colour | 0xFF000000);
 

	
 
		uint r, g, b, cr, cg, cb;
 
		r  = GB(colour,  16, 8);
 
		g  = GB(colour,  8,  8);
 
		b  = GB(colour,  0,  8);
 
		cr = GB(current, 16, 8);
 
		cg = GB(current, 8,  8);
 
		cb = GB(current, 0,  8);
 

	
 
		/* The 256 is wrong, it should be 255, but 256 is much faster... */
 
		return ComposeColour(0xFF,
 
												(r * a + cr * (256 - a)) / 256,
 
												(g * a + cg * (256 - a)) / 256,
 
												(b * a + cb * (256 - a)) / 256);
 
		return ComposeColourPANoCheck(colour, a, current);
 
	}
 

	
 
	/**
 
@@ -92,12 +108,11 @@ public:
 
	* @param amount the amount of transparency, times 256.
 
	* @return the new colour for the screen.
 
	*/
 
	static inline uint MakeTransparent(uint colour, uint amount)
 
	static inline uint32 MakeTransparent(uint32 colour, uint amount)
 
	{
 
		uint r, g, b;
 
		r = GB(colour, 16, 8);
 
		g = GB(colour, 8,  8);
 
		b = GB(colour, 0,  8);
 
		uint r = GB(colour, 16, 8);
 
		uint g = GB(colour, 8,  8);
 
		uint b = GB(colour, 0,  8);
 

	
 
		return ComposeColour(0xFF, r * amount / 256, g * amount / 256, b * amount / 256);
 
	}
 
@@ -107,12 +122,11 @@ public:
 
	* @param colour the colour to make grey.
 
	* @return the new colour, now grey.
 
	*/
 
	static inline uint MakeGrey(uint colour)
 
	static inline uint32 MakeGrey(uint32 colour)
 
	{
 
		uint r, g, b;
 
		r = GB(colour, 16, 8);
 
		g = GB(colour, 8,  8);
 
		b = GB(colour, 0,  8);
 
		uint r = GB(colour, 16, 8);
 
		uint g = GB(colour, 8,  8);
 
		uint b = GB(colour, 0,  8);
 

	
 
		/* To avoid doubles and stuff, multiple it with a total of 65536 (16bits), then
 
		*  divide by it to normalize the value to a byte again. See heightmap.cpp for
src/blitter/32bpp_optimized.cpp
Show inline comments
 
@@ -6,44 +6,133 @@
 
#include "../zoom_func.h"
 
#include "../gfx_func.h"
 
#include "../debug.h"
 
#include "../core/math_func.hpp"
 
#include "../core/alloc_func.hpp"
 
#include "32bpp_optimized.hpp"
 

	
 
static FBlitter_32bppOptimized iFBlitter_32bppOptimized;
 

	
 
template <BlitterMode mode, ZoomLevel zoom> inline void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp)
 
/**
 
 * Draws a sprite to a (screen) buffer. It is templated to allow faster operation.
 
 *
 
 * @param mode blitter mode
 
 * @param bp further blitting parameters
 
 * @param zoom zoom level at which we are drawing
 
 */
 
template <BlitterMode mode>
 
inline void Blitter_32bppOptimized::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
 
{
 
	const SpriteLoader::CommonPixel *src, *src_line;
 
	uint32 *dst, *dst_line;
 
	const SpriteData *src = (const SpriteData *)bp->sprite;
 

	
 
	/* src_px : each line begins with uint32 n = 'number of bytes in this line',
 
	 *          then n times is the Colour struct for this line */
 
	const Colour *src_px = (const Colour *)(src->data + src->offset[zoom][0]);
 
	/* src_n  : each line begins with uint32 n = 'number of bytes in this line',
 
	 *          then interleaved stream of 'm' and 'n' channels. 'm' is remap,
 
	 *          'n' is number of bytes with the same alpha channel class */
 
	const uint8  *src_n  = (const uint8  *)(src->data + src->offset[zoom][1]);
 

	
 
	/* Find where to start reading in the source sprite */
 
	src_line = (const SpriteLoader::CommonPixel *)bp->sprite + (bp->skip_top * bp->sprite_width + bp->skip_left) * ScaleByZoom(1, zoom);
 
	dst_line = (uint32 *)bp->dst + bp->top * bp->pitch + bp->left;
 
	/* skip upper lines in src_px and src_n */
 
	for (uint i = bp->skip_top; i != 0; i--) {
 
		src_px = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
 
		src_n += *(uint32 *)src_n;
 
	}
 

	
 
	/* skip lines in dst */
 
	uint32 *dst = (uint32 *)bp->dst + bp->top * bp->pitch + bp->left;
 

	
 
	/* store so we don't have to access it via bp everytime (compiler assumes pointer aliasing) */
 
	const byte *remap = bp->remap;
 

	
 
	for (int y = 0; y < bp->height; y++) {
 
		dst = dst_line;
 
		dst_line += bp->pitch;
 
		/* next dst line begins here */
 
		uint32 *dst_ln = dst + bp->pitch;
 

	
 
		/* next src line begins here */
 
		const Colour *src_px_ln = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
 
		src_px++;
 

	
 
		src = src_line;
 
		src_line += bp->sprite_width * ScaleByZoom(1, zoom);
 
		/* next src_n line begins here */
 
		const uint8 *src_n_ln = src_n + *(uint32 *)src_n;
 
		src_n += 4;
 

	
 
		/* we will end this line when we reach this point */
 
		uint32 *dst_end = dst + bp->skip_left;
 

	
 
		/* number of pixels with the same aplha channel class */
 
		uint n;
 

	
 
		while (dst < dst_end) {
 
			n = *src_n++;
 

	
 
		for (int x = 0; x < bp->width; x++) {
 
			if (src->a == 0) {
 
				/* src->r is 'misused' here to indicate how much more pixels are following with an alpha of 0 */
 
				int skip = UnScaleByZoom(src->r, zoom);
 
			if (src_px->a == 0) {
 
				dst += n;
 
				src_px ++;
 
				src_n++;
 
			} else {
 
				if (dst + n > dst_end) {
 
					uint d = dst_end - dst;
 
					src_px += d;
 
					src_n += d;
 

	
 
					dst = dst_end - bp->skip_left;
 
					dst_end = dst + bp->width;
 

	
 
				dst += skip;
 
				x   += skip - 1;
 
				src += ScaleByZoom(1, zoom) * skip;
 
					n = min<uint>(n - d, (uint)bp->width);
 
					goto draw;
 
				}
 
				dst += n;
 
				src_px += n;
 
				src_n += n;
 
			}
 
		}
 

	
 
		dst -= bp->skip_left;
 
		dst_end -= bp->skip_left;
 

	
 
		dst_end += bp->width;
 

	
 
		while (dst < dst_end) {
 
			n = min<uint>(*src_n++, (uint)(dst_end - dst));
 

	
 
			if (src_px->a == 0) {
 
				dst += n;
 
				src_px++;
 
				src_n++;
 
				continue;
 
			}
 

	
 
			draw:;
 

	
 
			switch (mode) {
 
				case BM_COLOUR_REMAP:
 
					/* In case the m-channel is zero, do not remap this pixel in any way */
 
					if (src->m == 0) {
 
						*dst = ComposeColourRGBA(src->r, src->g, src->b, src->a, *dst);
 
					if (src_px->a == 255) {
 
						do {
 
							uint m = *src_n;
 
							/* In case the m-channel is zero, do not remap this pixel in any way */
 
							if (m == 0) {
 
								*dst = *src_px;
 
							} else {
 
								uint r = remap[m];
 
								if (r != 0) *dst = this->LookupColourInPalette(r);
 
							}
 
							dst++;
 
							src_px++;
 
							src_n++;
 
						} while (--n != 0);
 
					} else {
 
						if (bp->remap[src->m] != 0) *dst = ComposeColourPA(this->LookupColourInPalette(bp->remap[src->m]), src->a, *dst);
 
						do {
 
							uint m = *src_n;
 
							if (m == 0) {
 
								*dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
 
							} else {
 
								uint r = remap[m];
 
								if (r != 0) *dst = ComposeColourPANoCheck(this->LookupColourInPalette(r), src_px->a, *dst);
 
							}
 
							dst++;
 
							src_px++;
 
							src_n++;
 
						} while (--n != 0);
 
					}
 
					break;
 

	
 
@@ -53,30 +142,47 @@ template <BlitterMode mode, ZoomLevel zo
 
					 *  we produce a result the newgrf maker didn't expect ;) */
 

	
 
					/* Make the current color a bit more black, so it looks like this image is transparent */
 
					*dst = MakeTransparent(*dst, 192);
 
					src_px += n;
 
					src_n += n;
 

	
 
					do {
 
						*dst = MakeTransparent(*dst, 192);
 
						dst++;
 
					} while (--n != 0);
 
					break;
 

	
 
				default:
 
					*dst = ComposeColourRGBA(src->r, src->g, src->b, src->a, *dst);
 
					if (src_px->a == 255) {
 
						/* faster than memcpy(), n is usually low */
 
						src_n += n;
 
						do {
 
							*dst++ = *src_px++;
 
						} while (--n != 0);
 
					} else {
 
						src_n += n;
 
						do {
 
							*dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
 
							dst++;
 
							src_px++;
 
						} while (--n != 0);
 
					}
 
					break;
 
			}
 
			dst++;
 
			src += ScaleByZoom(1, zoom);
 
		}
 

	
 
		dst = dst_ln;
 
		src_px = src_px_ln;
 
		src_n  = src_n_ln;
 
	}
 
}
 

	
 
template <BlitterMode mode> inline void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, ZoomLevel zoom)
 
{
 
	switch (zoom) {
 
		default: NOT_REACHED();
 
		case ZOOM_LVL_NORMAL: Draw<mode, ZOOM_LVL_NORMAL>(bp); return;
 
		case ZOOM_LVL_OUT_2X: Draw<mode, ZOOM_LVL_OUT_2X>(bp); return;
 
		case ZOOM_LVL_OUT_4X: Draw<mode, ZOOM_LVL_OUT_4X>(bp); return;
 
		case ZOOM_LVL_OUT_8X: Draw<mode, ZOOM_LVL_OUT_8X>(bp); return;
 
	}
 
}
 

	
 
/**
 
 * Draws a sprite to a (screen) buffer. Calls adequate templated function.
 
 *
 
 * @param bp further blitting parameters
 
 * @param mode blitter mode
 
 * @param zoom zoom level at which we are drawing
 
 */
 
void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
 
{
 
	switch (mode) {
 
@@ -87,46 +193,180 @@ void Blitter_32bppOptimized::Draw(Blitte
 
	}
 
}
 

	
 
/**
 
 * Resizes the sprite in a very simple way, takes every n-th pixel and every n-th row
 
 *
 
 * @param sprite_src sprite to resize
 
 * @param zoom resizing scale
 
 * @return resized sprite
 
 */
 
static const SpriteLoader::Sprite *ResizeSprite(const SpriteLoader::Sprite *sprite_src, ZoomLevel zoom)
 
{
 
	SpriteLoader::Sprite *sprite = MallocT<SpriteLoader::Sprite>(1);
 

	
 
	if (zoom == ZOOM_LVL_NORMAL) {
 
		memcpy(sprite, sprite_src, sizeof(*sprite));
 
		uint size = sprite_src->height * sprite_src->width;
 
		sprite->data = MallocT<SpriteLoader::CommonPixel>(size);
 
		memcpy(sprite->data, sprite_src->data, size * sizeof(SpriteLoader::CommonPixel));
 
		return sprite;
 
	}
 

	
 
	sprite->height = UnScaleByZoom(sprite_src->height, zoom);
 
	sprite->width  = UnScaleByZoom(sprite_src->width,  zoom);
 
	sprite->x_offs = UnScaleByZoom(sprite_src->x_offs, zoom);
 
	sprite->y_offs = UnScaleByZoom(sprite_src->y_offs, zoom);
 

	
 
	uint size = sprite->height * sprite->width;
 
	SpriteLoader::CommonPixel *dst = sprite->data = CallocT<SpriteLoader::CommonPixel>(size);
 

	
 
	const SpriteLoader::CommonPixel *src = (SpriteLoader::CommonPixel *)sprite_src->data;
 
	const SpriteLoader::CommonPixel *src_end = src + sprite_src->height * sprite_src->width;
 

	
 
	uint scaled_1 = ScaleByZoom(1, zoom);
 

	
 
	for (uint y = 0; y < sprite->height; y++) {
 
		if (src >= src_end) src = src_end - sprite_src->width;
 

	
 
		const SpriteLoader::CommonPixel *src_ln = src + sprite_src->width * scaled_1;
 
		for (uint x = 0; x < sprite->width; x++) {
 
			if (src >= src_ln) src = src_ln - 1;
 
			*dst = *src;
 
			dst++;
 
			src += scaled_1;
 
		}
 

	
 
		src = src_ln;
 
	}
 

	
 
	return sprite;
 
}
 

	
 
Sprite *Blitter_32bppOptimized::Encode(SpriteLoader::Sprite *sprite, Blitter::AllocatorProc *allocator)
 
{
 
	Sprite *dest_sprite;
 
	SpriteLoader::CommonPixel *dst;
 
	dest_sprite = (Sprite *)allocator(sizeof(*dest_sprite) + sprite->height * sprite->width * sizeof(SpriteLoader::CommonPixel));
 
	/* streams of pixels (a, r, g, b channels)
 
	 *
 
	 * stored in separated stream so data are always aligned on 4B boundary */
 
	Colour *dst_px_orig[ZOOM_LVL_COUNT];
 

	
 
	/* interleaved stream of 'm' channel and 'n' channel
 
	 * 'n' is number if following pixels with the same alpha channel class
 
	 * there are 3 classes: 0, 255, others
 
	 *
 
	 * it has to be stored in one stream so fewer registers are used -
 
	 * x86 has problems with register allocation even with this solution */
 
	uint8  *dst_n_orig[ZOOM_LVL_COUNT];
 

	
 
	/* lengths of streams */
 
	uint32 lengths[ZOOM_LVL_COUNT][2];
 

	
 
	for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
 
		const SpriteLoader::Sprite *src_orig = ResizeSprite(sprite, z);
 

	
 
		uint size = src_orig->height * src_orig->width;
 

	
 
		dst_px_orig[z] = CallocT<Colour>(size + src_orig->height * 2);
 
		dst_n_orig[z]  = CallocT<uint8>(size * 2 + src_orig->height * 4 * 2);
 

	
 
		uint32 *dst_px_ln = (uint32 *)dst_px_orig[z];
 
		uint32 *dst_n_ln  = (uint32 *)dst_n_orig[z];
 

	
 
		const SpriteLoader::CommonPixel *src = (const SpriteLoader::CommonPixel *)src_orig->data;
 

	
 
		for (uint y = src_orig->height; y > 0; y--) {
 
			Colour *dst_px = (Colour *)(dst_px_ln + 1);
 
			uint8 *dst_n = (uint8 *)(dst_n_ln + 1);
 

	
 
			uint8 *dst_len = dst_n++;
 

	
 
			uint last = 3;
 
			int len = 0;
 

	
 
			for (uint x = src_orig->width; x > 0; x--) {
 
				uint8 a = src->a;
 
				uint t = a > 0 && a < 255 ? 1 : a;
 

	
 
				if (last != t || len == 255) {
 
					if (last != 3) {
 
						*dst_len = len;
 
						dst_len = dst_n++;
 
					}
 
					len = 0;
 
				}
 

	
 
				last = t;
 
				len++;
 

	
 
				if (a != 0) {
 
					dst_px->a = a;
 
					*dst_n = src->m;
 
					if (src->m != 0) {
 
						/* Pre-convert the mapping channel to a RGB value */
 
						uint32 colour = this->LookupColourInPalette(src->m);
 
						dst_px->r = GB(colour, 16, 8);
 
						dst_px->g = GB(colour, 8,  8);
 
						dst_px->b = GB(colour, 0,  8);
 
					} else {
 
						dst_px->r = src->r;
 
						dst_px->g = src->g;
 
						dst_px->b = src->b;
 
					}
 
					dst_px++;
 
					dst_n++;
 
				} else if (len == 1) {
 
					dst_px++;
 
					*dst_n = src->m;
 
					dst_n++;
 
				}
 

	
 
				src++;
 
			}
 

	
 
			if (last != 3) {
 
				*dst_len = len;
 
			}
 

	
 
			dst_px = (Colour *)AlignPtr(dst_px, 4);
 
			dst_n  = (uint8 *)AlignPtr(dst_n, 4);
 

	
 
			*dst_px_ln = (uint8 *)dst_px - (uint8 *)dst_px_ln;
 
			*dst_n_ln  = (uint8 *)dst_n  - (uint8 *)dst_n_ln;
 

	
 
			dst_px_ln = (uint32 *)dst_px;
 
			dst_n_ln =  (uint32 *)dst_n;
 
		}
 

	
 
		lengths[z][0] = (byte *)dst_px_ln - (byte *)dst_px_orig[z]; // all are aligned to 4B boundary
 
		lengths[z][1] = (byte *)dst_n_ln  - (byte *)dst_n_orig[z];
 

	
 
		free(src_orig->data);
 
		free((void *)src_orig);
 
	}
 

	
 
	uint len = 0; // total length of data
 
	for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
 
		len += lengths[z][0] + lengths[z][1];
 
	}
 

	
 
	Sprite *dest_sprite = (Sprite *)allocator(sizeof(*dest_sprite) + sizeof(SpriteData) + len);
 

	
 
	dest_sprite->height = sprite->height;
 
	dest_sprite->width  = sprite->width;
 
	dest_sprite->x_offs = sprite->x_offs;
 
	dest_sprite->y_offs = sprite->y_offs;
 

	
 
	dst = (SpriteLoader::CommonPixel *)dest_sprite->data;
 
	SpriteData *dst = (SpriteData *)dest_sprite->data;
 

	
 
	memcpy(dst, sprite->data, sprite->height * sprite->width * sizeof(SpriteLoader::CommonPixel));
 
	/* Skip to the end of the array, and work backwards to find transparent blocks */
 
	dst = dst + sprite->height * sprite->width - 1;
 
	for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
 
		dst->offset[z][0] = z == ZOOM_LVL_BEGIN ? 0 : lengths[z - 1][1] + dst->offset[z - 1][1];
 
		dst->offset[z][1] = lengths[z][0] + dst->offset[z][0];
 

	
 
	for (uint y = sprite->height; y > 0; y--) {
 
		int trans = 0;
 
		/* Process sprite line backwards, to compute lengths of transparent blocks */
 
		for (uint x = sprite->width; x > 0; x--) {
 
			if (dst->a == 0) {
 
				/* Save transparent block length in red channel; max value is 255 the red channel can contain */
 
				if (trans < 255) trans++;
 
				dst->r = trans;
 
				dst->g = 0;
 
				dst->b = 0;
 
				dst->m = 0;
 
			} else {
 
				trans = 0;
 
				if (dst->m != 0) {
 
					/* Pre-convert the mapping channel to a RGB value */
 
					uint color = this->LookupColourInPalette(dst->m);
 
					dst->r = GB(color, 16, 8);
 
					dst->g = GB(color, 8,  8);
 
					dst->b = GB(color, 0,  8);
 
				}
 
			}
 
			dst--;
 
		}
 
		memcpy(dst->data + dst->offset[z][0], dst_px_orig[z], lengths[z][0]);
 
		memcpy(dst->data + dst->offset[z][1], dst_n_orig[z],  lengths[z][1]);
 

	
 
		free(dst_px_orig[z]);
 
		free(dst_n_orig[z]);
 
	}
 

	
 
	return dest_sprite;
 
}
src/blitter/32bpp_optimized.hpp
Show inline comments
 
@@ -10,13 +10,17 @@
 

	
 
class Blitter_32bppOptimized : public Blitter_32bppSimple {
 
public:
 
	struct SpriteData {
 
		uint32 offset[ZOOM_LVL_COUNT][2];
 
		byte data[VARARRAY_SIZE];
 
	};
 

	
 
	/* virtual */ void Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom);
 
	/* virtual */ Sprite *Encode(SpriteLoader::Sprite *sprite, Blitter::AllocatorProc *allocator);
 

	
 
	/* virtual */ const char *GetName() { return "32bpp-optimized"; }
 

	
 
	template <BlitterMode mode, ZoomLevel zoom> void Draw(Blitter::BlitterParams *bp);
 
	template <BlitterMode mode> void Draw(Blitter::BlitterParams *bp, ZoomLevel zoom);
 
	template <BlitterMode mode> void Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom);
 
};
 

	
 
class FBlitter_32bppOptimized: public BlitterFactory<FBlitter_32bppOptimized> {
src/core/math_func.hpp
Show inline comments
 
@@ -101,8 +101,28 @@ static FORCEINLINE T abs(const T a)
 
template <typename T>
 
static FORCEINLINE T Align(const T x, uint n)
 
{
 
	assert((n & (n - 1)) == 0 && n != 0);
 
	n--;
 
	return (T)((x + n) & ~(n));
 
	return (T)((x + n) & ~((T)n));
 
}
 

	
 
/**
 
 * Return the smallest multiple of n equal or greater than x
 
 * Applies to pointers only
 
 *
 
 * @note n must be a power of 2
 
 * @param x The min value
 
 * @param n The base of the number we are searching
 
 * @return The smallest multiple of n equal or greater than x
 
 * @see Align()
 
 */
 

	
 
assert_compile(sizeof(size_t) == sizeof(void *));
 

	
 
template <typename T>
 
static FORCEINLINE T *AlignPtr(T *x, uint n)
 
{
 
	return (T *)Align((size_t)x, n);
 
}
 

	
 
/**
src/gfx_type.h
Show inline comments
 
@@ -149,7 +149,7 @@ struct Colour {
 
	uint8 b, g, r, a; ///< colour channels in LE order
 
#endif /* TTD_ENDIAN == TTD_BIG_ENDIAN */
 

	
 
	operator uint32 () { return *(uint32 *)this; }
 
	operator uint32 () const { return *(uint32 *)this; }
 
};
 

	
 
enum FontSize {
0 comments (0 inline, 0 general)