Changeset - r28571:f38bdbf45090
[Not reviewed]
master
0 7 0
Rubidium - 3 months ago 2024-01-26 17:13:55
rubidium@openttd.org
Update: fmt to 10.2.0
7 files changed with 1419 insertions and 1406 deletions:
0 comments (0 inline, 0 general)
src/3rdparty/fmt/chrono.h
Show inline comments
 
@@ -18,7 +18,7 @@
 
#include <ostream>
 
#include <type_traits>
 

	
 
#include "format.h"
 
#include "ostream.h"  // formatbuf
 

	
 
FMT_BEGIN_NAMESPACE
 

	
 
@@ -72,7 +72,8 @@ template <typename To, typename From,
 
          FMT_ENABLE_IF(!std::is_same<From, To>::value &&
 
                        std::numeric_limits<From>::is_signed ==
 
                            std::numeric_limits<To>::is_signed)>
 
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
 
FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
 
    -> To {
 
  ec = 0;
 
  using F = std::numeric_limits<From>;
 
  using T = std::numeric_limits<To>;
 
@@ -101,7 +102,8 @@ template <typename To, typename From,
 
          FMT_ENABLE_IF(!std::is_same<From, To>::value &&
 
                        std::numeric_limits<From>::is_signed !=
 
                            std::numeric_limits<To>::is_signed)>
 
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
 
FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
 
    -> To {
 
  ec = 0;
 
  using F = std::numeric_limits<From>;
 
  using T = std::numeric_limits<To>;
 
@@ -133,7 +135,8 @@ FMT_CONSTEXPR To lossless_integral_conve
 

	
 
template <typename To, typename From,
 
          FMT_ENABLE_IF(std::is_same<From, To>::value)>
 
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
 
FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
 
    -> To {
 
  ec = 0;
 
  return from;
 
}  // function
 
@@ -154,7 +157,7 @@ FMT_CONSTEXPR To lossless_integral_conve
 
// clang-format on
 
template <typename To, typename From,
 
          FMT_ENABLE_IF(!std::is_same<From, To>::value)>
 
FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) {
 
FMT_CONSTEXPR auto safe_float_conversion(const From from, int& ec) -> To {
 
  ec = 0;
 
  using T = std::numeric_limits<To>;
 
  static_assert(std::is_floating_point<From>::value, "From must be floating");
 
@@ -176,7 +179,7 @@ FMT_CONSTEXPR To safe_float_conversion(c
 

	
 
template <typename To, typename From,
 
          FMT_ENABLE_IF(std::is_same<From, To>::value)>
 
FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) {
 
FMT_CONSTEXPR auto safe_float_conversion(const From from, int& ec) -> To {
 
  ec = 0;
 
  static_assert(std::is_floating_point<From>::value, "From must be floating");
 
  return from;
 
@@ -188,8 +191,8 @@ FMT_CONSTEXPR To safe_float_conversion(c
 
template <typename To, typename FromRep, typename FromPeriod,
 
          FMT_ENABLE_IF(std::is_integral<FromRep>::value),
 
          FMT_ENABLE_IF(std::is_integral<typename To::rep>::value)>
 
To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
 
                      int& ec) {
 
auto safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
 
                        int& ec) -> To {
 
  using From = std::chrono::duration<FromRep, FromPeriod>;
 
  ec = 0;
 
  // the basic idea is that we need to convert from count() in the from type
 
@@ -240,8 +243,8 @@ To safe_duration_cast(std::chrono::durat
 
template <typename To, typename FromRep, typename FromPeriod,
 
          FMT_ENABLE_IF(std::is_floating_point<FromRep>::value),
 
          FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)>
 
To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
 
                      int& ec) {
 
auto safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
 
                        int& ec) -> To {
 
  using From = std::chrono::duration<FromRep, FromPeriod>;
 
  ec = 0;
 
  if (std::isnan(from.count())) {
 
@@ -321,12 +324,12 @@ To safe_duration_cast(std::chrono::durat
 

	
 
namespace detail {
 
template <typename T = void> struct null {};
 
inline null<> localtime_r FMT_NOMACRO(...) { return null<>(); }
 
inline null<> localtime_s(...) { return null<>(); }
 
inline null<> gmtime_r(...) { return null<>(); }
 
inline null<> gmtime_s(...) { return null<>(); }
 
inline auto localtime_r FMT_NOMACRO(...) -> null<> { return null<>(); }
 
inline auto localtime_s(...) -> null<> { return null<>(); }
 
inline auto gmtime_r(...) -> null<> { return null<>(); }
 
inline auto gmtime_s(...) -> null<> { return null<>(); }
 

	
 
inline const std::locale& get_classic_locale() {
 
inline auto get_classic_locale() -> const std::locale& {
 
  static const auto& locale = std::locale::classic();
 
  return locale;
 
}
 
@@ -336,8 +339,6 @@ template <typename CodeUnit> struct code
 
  CodeUnit buf[max_size];
 
  CodeUnit* end;
 
};
 
template <typename CodeUnit>
 
constexpr const size_t codecvt_result<CodeUnit>::max_size;
 

	
 
template <typename CodeUnit>
 
void write_codecvt(codecvt_result<CodeUnit>& out, string_view in_buf,
 
@@ -377,8 +378,8 @@ auto write_encoded_tm_str(OutputIt out, 
 
    unit_t unit;
 
    write_codecvt(unit, in, loc);
 
    // In UTF-8 is used one to four one-byte code units.
 
    unicode_to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>
 
        u;
 
    auto u =
 
        to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>();
 
    if (!u.convert({unit.buf, to_unsigned(unit.end - unit.buf)}))
 
      FMT_THROW(format_error("failed to format time"));
 
    return copy_str<char>(u.c_str(), u.c_str() + u.size(), out);
 
@@ -408,8 +409,7 @@ inline void do_write(buffer<Char>& buf, 
 
  auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf);
 
  auto&& os = std::basic_ostream<Char>(&format_buf);
 
  os.imbue(loc);
 
  using iterator = std::ostreambuf_iterator<Char>;
 
  const auto& facet = std::use_facet<std::time_put<Char, iterator>>(loc);
 
  const auto& facet = std::use_facet<std::time_put<Char>>(loc);
 
  auto end = facet.put(os, os, Char(' '), &time, format, modifier);
 
  if (end.failed()) FMT_THROW(format_error("failed to format time"));
 
}
 
@@ -432,6 +432,51 @@ auto write(OutputIt out, const std::tm& 
 
  return write_encoded_tm_str(out, string_view(buf.data(), buf.size()), loc);
 
}
 

	
 
template <typename Rep1, typename Rep2>
 
struct is_same_arithmetic_type
 
    : public std::integral_constant<bool,
 
                                    (std::is_integral<Rep1>::value &&
 
                                     std::is_integral<Rep2>::value) ||
 
                                        (std::is_floating_point<Rep1>::value &&
 
                                         std::is_floating_point<Rep2>::value)> {
 
};
 

	
 
template <
 
    typename To, typename FromRep, typename FromPeriod,
 
    FMT_ENABLE_IF(is_same_arithmetic_type<FromRep, typename To::rep>::value)>
 
auto fmt_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To {
 
#if FMT_SAFE_DURATION_CAST
 
  // Throwing version of safe_duration_cast is only available for
 
  // integer to integer or float to float casts.
 
  int ec;
 
  To to = safe_duration_cast::safe_duration_cast<To>(from, ec);
 
  if (ec) FMT_THROW(format_error("cannot format duration"));
 
  return to;
 
#else
 
  // Standard duration cast, may overflow.
 
  return std::chrono::duration_cast<To>(from);
 
#endif
 
}
 

	
 
template <
 
    typename To, typename FromRep, typename FromPeriod,
 
    FMT_ENABLE_IF(!is_same_arithmetic_type<FromRep, typename To::rep>::value)>
 
auto fmt_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To {
 
  // Mixed integer <-> float cast is not supported by safe_duration_cast.
 
  return std::chrono::duration_cast<To>(from);
 
}
 

	
 
template <typename Duration>
 
auto to_time_t(
 
    std::chrono::time_point<std::chrono::system_clock, Duration> time_point)
 
    -> std::time_t {
 
  // Cannot use std::chrono::system_clock::to_time_t since this would first
 
  // require a cast to std::chrono::system_clock::time_point, which could
 
  // overflow.
 
  return fmt_duration_cast<std::chrono::duration<std::time_t>>(
 
             time_point.time_since_epoch())
 
      .count();
 
}
 
}  // namespace detail
 

	
 
FMT_BEGIN_EXPORT
 
@@ -441,29 +486,29 @@ FMT_BEGIN_EXPORT
 
  expressed in local time. Unlike ``std::localtime``, this function is
 
  thread-safe on most platforms.
 
 */
 
inline std::tm localtime(std::time_t time) {
 
inline auto localtime(std::time_t time) -> std::tm {
 
  struct dispatcher {
 
    std::time_t time_;
 
    std::tm tm_;
 

	
 
    dispatcher(std::time_t t) : time_(t) {}
 

	
 
    bool run() {
 
    auto run() -> bool {
 
      using namespace fmt::detail;
 
      return handle(localtime_r(&time_, &tm_));
 
    }
 

	
 
    bool handle(std::tm* tm) { return tm != nullptr; }
 
    auto handle(std::tm* tm) -> bool { return tm != nullptr; }
 

	
 
    bool handle(detail::null<>) {
 
    auto handle(detail::null<>) -> bool {
 
      using namespace fmt::detail;
 
      return fallback(localtime_s(&tm_, &time_));
 
    }
 

	
 
    bool fallback(int res) { return res == 0; }
 
    auto fallback(int res) -> bool { return res == 0; }
 

	
 
#if !FMT_MSC_VERSION
 
    bool fallback(detail::null<>) {
 
    auto fallback(detail::null<>) -> bool {
 
      using namespace fmt::detail;
 
      std::tm* tm = std::localtime(&time_);
 
      if (tm) tm_ = *tm;
 
@@ -480,8 +525,8 @@ inline std::tm localtime(std::time_t tim
 
#if FMT_USE_LOCAL_TIME
 
template <typename Duration>
 
inline auto localtime(std::chrono::local_time<Duration> time) -> std::tm {
 
  return localtime(std::chrono::system_clock::to_time_t(
 
      std::chrono::current_zone()->to_sys(time)));
 
  return localtime(
 
      detail::to_time_t(std::chrono::current_zone()->to_sys(time)));
 
}
 
#endif
 

	
 
@@ -490,90 +535,49 @@ inline auto localtime(std::chrono::local
 
  expressed in Coordinated Universal Time (UTC). Unlike ``std::gmtime``, this
 
  function is thread-safe on most platforms.
 
 */
 
inline std::tm gmtime(std::time_t time) {
 
inline auto gmtime(std::time_t time) -> std::tm {
 
  struct dispatcher {
 
    std::time_t time_;
 
    std::tm tm_;
 

	
 
    dispatcher(std::time_t t) : time_(t) {}
 

	
 
    bool run() {
 
    auto run() -> bool {
 
      using namespace fmt::detail;
 
      return handle(gmtime_r(&time_, &tm_));
 
    }
 

	
 
    bool handle(std::tm* tm) { return tm != nullptr; }
 
    auto handle(std::tm* tm) -> bool { return tm != nullptr; }
 

	
 
    bool handle(detail::null<>) {
 
    auto handle(detail::null<>) -> bool {
 
      using namespace fmt::detail;
 
      return fallback(gmtime_s(&tm_, &time_));
 
    }
 

	
 
    bool fallback(int res) { return res == 0; }
 
    auto fallback(int res) -> bool { return res == 0; }
 

	
 
#if !FMT_MSC_VERSION
 
    bool fallback(detail::null<>) {
 
    auto fallback(detail::null<>) -> bool {
 
      std::tm* tm = std::gmtime(&time_);
 
      if (tm) tm_ = *tm;
 
      return tm != nullptr;
 
    }
 
#endif
 
  };
 
  dispatcher gt(time);
 
  auto gt = dispatcher(time);
 
  // Too big time values may be unsupported.
 
  if (!gt.run()) FMT_THROW(format_error("time_t value out of range"));
 
  return gt.tm_;
 
}
 

	
 
inline std::tm gmtime(
 
    std::chrono::time_point<std::chrono::system_clock> time_point) {
 
  return gmtime(std::chrono::system_clock::to_time_t(time_point));
 
template <typename Duration>
 
inline auto gmtime(
 
    std::chrono::time_point<std::chrono::system_clock, Duration> time_point)
 
    -> std::tm {
 
  return gmtime(detail::to_time_t(time_point));
 
}
 

	
 
FMT_BEGIN_DETAIL_NAMESPACE
 

	
 
// DEPRECATED!
 
template <typename Char>
 
FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
 
                               format_specs<Char>& specs) -> const Char* {
 
  FMT_ASSERT(begin != end, "");
 
  auto align = align::none;
 
  auto p = begin + code_point_length(begin);
 
  if (end - p <= 0) p = begin;
 
  for (;;) {
 
    switch (to_ascii(*p)) {
 
    case '<':
 
      align = align::left;
 
      break;
 
    case '>':
 
      align = align::right;
 
      break;
 
    case '^':
 
      align = align::center;
 
      break;
 
    }
 
    if (align != align::none) {
 
      if (p != begin) {
 
        auto c = *begin;
 
        if (c == '}') return begin;
 
        if (c == '{') {
 
          throw_format_error("invalid fill character '{'");
 
          return begin;
 
        }
 
        specs.fill = {begin, to_unsigned(p - begin)};
 
        begin = p + 1;
 
      } else {
 
        ++begin;
 
      }
 
      break;
 
    } else if (p == begin) {
 
      break;
 
    }
 
    p = begin;
 
  }
 
  specs.align = align;
 
  return begin;
 
}
 
namespace detail {
 

	
 
// Writes two-digit numbers a, b and c separated by sep to buf.
 
// The method by Pavel Novikov based on
 
@@ -609,7 +613,8 @@ inline void write_digit2_separated(char*
 
  }
 
}
 

	
 
template <typename Period> FMT_CONSTEXPR inline const char* get_units() {
 
template <typename Period>
 
FMT_CONSTEXPR inline auto get_units() -> const char* {
 
  if (std::is_same<Period, std::atto>::value) return "as";
 
  if (std::is_same<Period, std::femto>::value) return "fs";
 
  if (std::is_same<Period, std::pico>::value) return "ps";
 
@@ -627,8 +632,9 @@ template <typename Period> FMT_CONSTEXPR
 
  if (std::is_same<Period, std::tera>::value) return "Ts";
 
  if (std::is_same<Period, std::peta>::value) return "Ps";
 
  if (std::is_same<Period, std::exa>::value) return "Es";
 
  if (std::is_same<Period, std::ratio<60>>::value) return "m";
 
  if (std::is_same<Period, std::ratio<60>>::value) return "min";
 
  if (std::is_same<Period, std::ratio<3600>>::value) return "h";
 
  if (std::is_same<Period, std::ratio<86400>>::value) return "d";
 
  return nullptr;
 
}
 

	
 
@@ -664,9 +670,8 @@ auto write_padding(OutputIt out, pad_typ
 

	
 
// Parses a put_time-like format string and invokes handler actions.
 
template <typename Char, typename Handler>
 
FMT_CONSTEXPR const Char* parse_chrono_format(const Char* begin,
 
                                              const Char* end,
 
                                              Handler&& handler) {
 
FMT_CONSTEXPR auto parse_chrono_format(const Char* begin, const Char* end,
 
                                       Handler&& handler) -> const Char* {
 
  if (begin == end || *begin == '}') return begin;
 
  if (*begin != '%') FMT_THROW(format_error("invalid format"));
 
  auto ptr = begin;
 
@@ -997,25 +1002,25 @@ struct tm_format_checker : null_chrono_s
 
  FMT_CONSTEXPR void on_tz_name() {}
 
};
 

	
 
inline const char* tm_wday_full_name(int wday) {
 
inline auto tm_wday_full_name(int wday) -> const char* {
 
  static constexpr const char* full_name_list[] = {
 
      "Sunday",   "Monday", "Tuesday", "Wednesday",
 
      "Thursday", "Friday", "Saturday"};
 
  return wday >= 0 && wday <= 6 ? full_name_list[wday] : "?";
 
}
 
inline const char* tm_wday_short_name(int wday) {
 
inline auto tm_wday_short_name(int wday) -> const char* {
 
  static constexpr const char* short_name_list[] = {"Sun", "Mon", "Tue", "Wed",
 
                                                    "Thu", "Fri", "Sat"};
 
  return wday >= 0 && wday <= 6 ? short_name_list[wday] : "???";
 
}
 

	
 
inline const char* tm_mon_full_name(int mon) {
 
inline auto tm_mon_full_name(int mon) -> const char* {
 
  static constexpr const char* full_name_list[] = {
 
      "January", "February", "March",     "April",   "May",      "June",
 
      "July",    "August",   "September", "October", "November", "December"};
 
  return mon >= 0 && mon <= 11 ? full_name_list[mon] : "?";
 
}
 
inline const char* tm_mon_short_name(int mon) {
 
inline auto tm_mon_short_name(int mon) -> const char* {
 
  static constexpr const char* short_name_list[] = {
 
      "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 
      "Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
 
@@ -1047,21 +1052,21 @@ inline void tzset_once() {
 

	
 
// Converts value to Int and checks that it's in the range [0, upper).
 
template <typename T, typename Int, FMT_ENABLE_IF(std::is_integral<T>::value)>
 
inline Int to_nonnegative_int(T value, Int upper) {
 
  FMT_ASSERT(std::is_unsigned<Int>::value ||
 
                 (value >= 0 && to_unsigned(value) <= to_unsigned(upper)),
 
             "invalid value");
 
  (void)upper;
 
inline auto to_nonnegative_int(T value, Int upper) -> Int {
 
  if (!std::is_unsigned<Int>::value &&
 
      (value < 0 || to_unsigned(value) > to_unsigned(upper))) {
 
    FMT_THROW(fmt::format_error("chrono value is out of range"));
 
  }
 
  return static_cast<Int>(value);
 
}
 
template <typename T, typename Int, FMT_ENABLE_IF(!std::is_integral<T>::value)>
 
inline Int to_nonnegative_int(T value, Int upper) {
 
inline auto to_nonnegative_int(T value, Int upper) -> Int {
 
  if (value < 0 || value > static_cast<T>(upper))
 
    FMT_THROW(format_error("invalid value"));
 
  return static_cast<Int>(value);
 
}
 

	
 
constexpr long long pow10(std::uint32_t n) {
 
constexpr auto pow10(std::uint32_t n) -> long long {
 
  return n == 0 ? 1 : 10 * pow10(n - 1);
 
}
 

	
 
@@ -1095,13 +1100,12 @@ void write_fractional_seconds(OutputIt& 
 
                                std::chrono::seconds::rep>::type,
 
      std::ratio<1, detail::pow10(num_fractional_digits)>>;
 

	
 
  const auto fractional =
 
      d - std::chrono::duration_cast<std::chrono::seconds>(d);
 
  const auto fractional = d - fmt_duration_cast<std::chrono::seconds>(d);
 
  const auto subseconds =
 
      std::chrono::treat_as_floating_point<
 
          typename subsecond_precision::rep>::value
 
          ? fractional.count()
 
          : std::chrono::duration_cast<subsecond_precision>(fractional).count();
 
          : fmt_duration_cast<subsecond_precision>(fractional).count();
 
  auto n = static_cast<uint32_or_64_or_128_t<long long>>(subseconds);
 
  const int num_digits = detail::count_digits(n);
 

	
 
@@ -1152,11 +1156,11 @@ void write_floating_seconds(memory_buffe
 
      num_fractional_digits = 6;
 
  }
 

	
 
  format_to(std::back_inserter(buf), FMT_STRING("{:.{}f}"),
 
            std::fmod(val * static_cast<rep>(Duration::period::num) /
 
                          static_cast<rep>(Duration::period::den),
 
                      static_cast<rep>(60)),
 
            num_fractional_digits);
 
  fmt::format_to(std::back_inserter(buf), FMT_STRING("{:.{}f}"),
 
                 std::fmod(val * static_cast<rep>(Duration::period::num) /
 
                               static_cast<rep>(Duration::period::den),
 
                           static_cast<rep>(60)),
 
                 num_fractional_digits);
 
}
 

	
 
template <typename OutputIt, typename Char,
 
@@ -1217,8 +1221,7 @@ class tm_writer {
 
    return static_cast<int>(l);
 
  }
 

	
 
  // Algorithm:
 
  // https://en.wikipedia.org/wiki/ISO_week_date#Calculating_the_week_number_from_a_month_and_day_of_the_month_or_ordinal_date
 
  // Algorithm: https://en.wikipedia.org/wiki/ISO_week_date.
 
  auto iso_year_weeks(long long curr_year) const noexcept -> int {
 
    const auto prev_year = curr_year - 1;
 
    const auto curr_p =
 
@@ -1358,7 +1361,7 @@ class tm_writer {
 
        subsecs_(subsecs),
 
        tm_(tm) {}
 

	
 
  OutputIt out() const { return out_; }
 
  auto out() const -> OutputIt { return out_; }
 

	
 
  FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
 
    out_ = copy_str<Char>(begin, end, out_);
 
@@ -1622,6 +1625,7 @@ struct chrono_format_checker : null_chro
 

	
 
  template <typename Char>
 
  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
 
  FMT_CONSTEXPR void on_day_of_year() {}
 
  FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
 
  FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
 
@@ -1640,16 +1644,16 @@ struct chrono_format_checker : null_chro
 

	
 
template <typename T,
 
          FMT_ENABLE_IF(std::is_integral<T>::value&& has_isfinite<T>::value)>
 
inline bool isfinite(T) {
 
inline auto isfinite(T) -> bool {
 
  return true;
 
}
 

	
 
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
 
inline T mod(T x, int y) {
 
inline auto mod(T x, int y) -> T {
 
  return x % static_cast<T>(y);
 
}
 
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
 
inline T mod(T x, int y) {
 
inline auto mod(T x, int y) -> T {
 
  return std::fmod(x, static_cast<T>(y));
 
}
 

	
 
@@ -1664,49 +1668,38 @@ template <typename T> struct make_unsign
 
  using type = typename std::make_unsigned<T>::type;
 
};
 

	
 
#if FMT_SAFE_DURATION_CAST
 
// throwing version of safe_duration_cast
 
template <typename To, typename FromRep, typename FromPeriod>
 
To fmt_safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) {
 
  int ec;
 
  To to = safe_duration_cast::safe_duration_cast<To>(from, ec);
 
  if (ec) FMT_THROW(format_error("cannot format duration"));
 
  return to;
 
}
 
#endif
 

	
 
template <typename Rep, typename Period,
 
          FMT_ENABLE_IF(std::is_integral<Rep>::value)>
 
inline std::chrono::duration<Rep, std::milli> get_milliseconds(
 
    std::chrono::duration<Rep, Period> d) {
 
inline auto get_milliseconds(std::chrono::duration<Rep, Period> d)
 
    -> std::chrono::duration<Rep, std::milli> {
 
  // this may overflow and/or the result may not fit in the
 
  // target type.
 
#if FMT_SAFE_DURATION_CAST
 
  using CommonSecondsType =
 
      typename std::common_type<decltype(d), std::chrono::seconds>::type;
 
  const auto d_as_common = fmt_safe_duration_cast<CommonSecondsType>(d);
 
  const auto d_as_common = fmt_duration_cast<CommonSecondsType>(d);
 
  const auto d_as_whole_seconds =
 
      fmt_safe_duration_cast<std::chrono::seconds>(d_as_common);
 
      fmt_duration_cast<std::chrono::seconds>(d_as_common);
 
  // this conversion should be nonproblematic
 
  const auto diff = d_as_common - d_as_whole_seconds;
 
  const auto ms =
 
      fmt_safe_duration_cast<std::chrono::duration<Rep, std::milli>>(diff);
 
      fmt_duration_cast<std::chrono::duration<Rep, std::milli>>(diff);
 
  return ms;
 
#else
 
  auto s = std::chrono::duration_cast<std::chrono::seconds>(d);
 
  return std::chrono::duration_cast<std::chrono::milliseconds>(d - s);
 
  auto s = fmt_duration_cast<std::chrono::seconds>(d);
 
  return fmt_duration_cast<std::chrono::milliseconds>(d - s);
 
#endif
 
}
 

	
 
template <typename Char, typename Rep, typename OutputIt,
 
          FMT_ENABLE_IF(std::is_integral<Rep>::value)>
 
OutputIt format_duration_value(OutputIt out, Rep val, int) {
 
auto format_duration_value(OutputIt out, Rep val, int) -> OutputIt {
 
  return write<Char>(out, val);
 
}
 

	
 
template <typename Char, typename Rep, typename OutputIt,
 
          FMT_ENABLE_IF(std::is_floating_point<Rep>::value)>
 
OutputIt format_duration_value(OutputIt out, Rep val, int precision) {
 
auto format_duration_value(OutputIt out, Rep val, int precision) -> OutputIt {
 
  auto specs = format_specs<Char>();
 
  specs.precision = precision;
 
  specs.type = precision >= 0 ? presentation_type::fixed_lower
 
@@ -1715,12 +1708,12 @@ OutputIt format_duration_value(OutputIt 
 
}
 

	
 
template <typename Char, typename OutputIt>
 
OutputIt copy_unit(string_view unit, OutputIt out, Char) {
 
auto copy_unit(string_view unit, OutputIt out, Char) -> OutputIt {
 
  return std::copy(unit.begin(), unit.end(), out);
 
}
 

	
 
template <typename OutputIt>
 
OutputIt copy_unit(string_view unit, OutputIt out, wchar_t) {
 
auto copy_unit(string_view unit, OutputIt out, wchar_t) -> OutputIt {
 
  // This works when wchar_t is UTF-32 because units only contain characters
 
  // that have the same representation in UTF-16 and UTF-32.
 
  utf8_to_utf16 u(unit);
 
@@ -1728,7 +1721,7 @@ OutputIt copy_unit(string_view unit, Out
 
}
 

	
 
template <typename Char, typename Period, typename OutputIt>
 
OutputIt format_duration_unit(OutputIt out) {
 
auto format_duration_unit(OutputIt out) -> OutputIt {
 
  if (const char* unit = get_units<Period>())
 
    return copy_unit(string_view(unit), out, Char());
 
  *out++ = '[';
 
@@ -1795,18 +1788,12 @@ struct chrono_formatter {
 

	
 
    // this may overflow and/or the result may not fit in the
 
    // target type.
 
#if FMT_SAFE_DURATION_CAST
 
    // might need checked conversion (rep!=Rep)
 
    auto tmpval = std::chrono::duration<rep, Period>(val);
 
    s = fmt_safe_duration_cast<seconds>(tmpval);
 
#else
 
    s = std::chrono::duration_cast<seconds>(
 
        std::chrono::duration<rep, Period>(val));
 
#endif
 
    s = fmt_duration_cast<seconds>(std::chrono::duration<rep, Period>(val));
 
  }
 

	
 
  // returns true if nan or inf, writes to out.
 
  bool handle_nan_inf() {
 
  auto handle_nan_inf() -> bool {
 
    if (isfinite(val)) {
 
      return false;
 
    }
 
@@ -1823,17 +1810,22 @@ struct chrono_formatter {
 
    return true;
 
  }
 

	
 
  Rep hour() const { return static_cast<Rep>(mod((s.count() / 3600), 24)); }
 
  auto days() const -> Rep { return static_cast<Rep>(s.count() / 86400); }
 
  auto hour() const -> Rep {
 
    return static_cast<Rep>(mod((s.count() / 3600), 24));
 
  }
 

	
 
  Rep hour12() const {
 
  auto hour12() const -> Rep {
 
    Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12));
 
    return hour <= 0 ? 12 : hour;
 
  }
 

	
 
  Rep minute() const { return static_cast<Rep>(mod((s.count() / 60), 60)); }
 
  Rep second() const { return static_cast<Rep>(mod(s.count(), 60)); }
 
  auto minute() const -> Rep {
 
    return static_cast<Rep>(mod((s.count() / 60), 60));
 
  }
 
  auto second() const -> Rep { return static_cast<Rep>(mod(s.count(), 60)); }
 

	
 
  std::tm time() const {
 
  auto time() const -> std::tm {
 
    auto time = std::tm();
 
    time.tm_hour = to_nonnegative_int(hour(), 24);
 
    time.tm_min = to_nonnegative_int(minute(), 60);
 
@@ -1901,10 +1893,14 @@ struct chrono_formatter {
 
  void on_dec0_week_of_year(numeric_system) {}
 
  void on_dec1_week_of_year(numeric_system) {}
 
  void on_iso_week_of_year(numeric_system) {}
 
  void on_day_of_year() {}
 
  void on_day_of_month(numeric_system) {}
 
  void on_day_of_month_space(numeric_system) {}
 

	
 
  void on_day_of_year() {
 
    if (handle_nan_inf()) return;
 
    write(days(), 0);
 
  }
 

	
 
  void on_24_hour(numeric_system ns, pad_type pad) {
 
    if (handle_nan_inf()) return;
 

	
 
@@ -1997,7 +1993,7 @@ struct chrono_formatter {
 
  }
 
};
 

	
 
FMT_END_DETAIL_NAMESPACE
 
}  // namespace detail
 

	
 
#if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907
 
using weekday = std::chrono::weekday;
 
@@ -2011,7 +2007,7 @@ class weekday {
 
  weekday() = default;
 
  explicit constexpr weekday(unsigned wd) noexcept
 
      : value(static_cast<unsigned char>(wd != 7 ? wd : 0)) {}
 
  constexpr unsigned c_encoding() const noexcept { return value; }
 
  constexpr auto c_encoding() const noexcept -> unsigned { return value; }
 
};
 

	
 
class year_month_day {};
 
@@ -2047,80 +2043,67 @@ template <typename Char> struct formatte
 
template <typename Rep, typename Period, typename Char>
 
struct formatter<std::chrono::duration<Rep, Period>, Char> {
 
 private:
 
  format_specs<Char> specs;
 
  int precision = -1;
 
  using arg_ref_type = detail::arg_ref<Char>;
 
  arg_ref_type width_ref;
 
  arg_ref_type precision_ref;
 
  bool localized = false;
 
  basic_string_view<Char> format_str;
 
  using duration = std::chrono::duration<Rep, Period>;
 

	
 
  using iterator = typename basic_format_parse_context<Char>::iterator;
 
  struct parse_range {
 
    iterator begin;
 
    iterator end;
 
  };
 

	
 
  FMT_CONSTEXPR parse_range do_parse(basic_format_parse_context<Char>& ctx) {
 
    auto begin = ctx.begin(), end = ctx.end();
 
    if (begin == end || *begin == '}') return {begin, begin};
 

	
 
    begin = detail::parse_align(begin, end, specs);
 
    if (begin == end) return {begin, begin};
 

	
 
    begin = detail::parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
 
    if (begin == end) return {begin, begin};
 

	
 
    auto checker = detail::chrono_format_checker();
 
    if (*begin == '.') {
 
      checker.has_precision_integral = !std::is_floating_point<Rep>::value;
 
      begin =
 
          detail::parse_precision(begin, end, precision, precision_ref, ctx);
 
    }
 
    if (begin != end && *begin == 'L') {
 
      ++begin;
 
      localized = true;
 
    }
 
    end = detail::parse_chrono_format(begin, end, checker);
 
    return {begin, end};
 
  }
 
  format_specs<Char> specs_;
 
  detail::arg_ref<Char> width_ref_;
 
  detail::arg_ref<Char> precision_ref_;
 
  bool localized_ = false;
 
  basic_string_view<Char> format_str_;
 

	
 
 public:
 
  FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
 
      -> decltype(ctx.begin()) {
 
    auto range = do_parse(ctx);
 
    format_str = basic_string_view<Char>(
 
        &*range.begin, detail::to_unsigned(range.end - range.begin));
 
    return range.end;
 
    auto it = ctx.begin(), end = ctx.end();
 
    if (it == end || *it == '}') return it;
 

	
 
    it = detail::parse_align(it, end, specs_);
 
    if (it == end) return it;
 

	
 
    it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx);
 
    if (it == end) return it;
 

	
 
    auto checker = detail::chrono_format_checker();
 
    if (*it == '.') {
 
      checker.has_precision_integral = !std::is_floating_point<Rep>::value;
 
      it = detail::parse_precision(it, end, specs_.precision, precision_ref_,
 
                                   ctx);
 
    }
 
    if (it != end && *it == 'L') {
 
      localized_ = true;
 
      ++it;
 
    }
 
    end = detail::parse_chrono_format(it, end, checker);
 
    format_str_ = {it, detail::to_unsigned(end - it)};
 
    return end;
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(const duration& d, FormatContext& ctx) const
 
  auto format(std::chrono::duration<Rep, Period> d, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    auto specs_copy = specs;
 
    auto precision_copy = precision;
 
    auto begin = format_str.begin(), end = format_str.end();
 
    auto specs = specs_;
 
    auto precision = specs.precision;
 
    specs.precision = -1;
 
    auto begin = format_str_.begin(), end = format_str_.end();
 
    // As a possible future optimization, we could avoid extra copying if width
 
    // is not specified.
 
    basic_memory_buffer<Char> buf;
 
    auto buf = basic_memory_buffer<Char>();
 
    auto out = std::back_inserter(buf);
 
    detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
 
                                                       width_ref, ctx);
 
    detail::handle_dynamic_spec<detail::precision_checker>(precision_copy,
 
                                                           precision_ref, ctx);
 
    detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_,
 
                                                       ctx);
 
    detail::handle_dynamic_spec<detail::precision_checker>(precision,
 
                                                           precision_ref_, ctx);
 
    if (begin == end || *begin == '}') {
 
      out = detail::format_duration_value<Char>(out, d.count(), precision_copy);
 
      out = detail::format_duration_value<Char>(out, d.count(), precision);
 
      detail::format_duration_unit<Char, Period>(out);
 
    } else {
 
      detail::chrono_formatter<FormatContext, decltype(out), Rep, Period> f(
 
          ctx, out, d);
 
      f.precision = precision_copy;
 
      f.localized = localized;
 
      using chrono_formatter =
 
          detail::chrono_formatter<FormatContext, decltype(out), Rep, Period>;
 
      auto f = chrono_formatter(ctx, out, d);
 
      f.precision = precision;
 
      f.localized = localized_;
 
      detail::parse_chrono_format(begin, end, f);
 
    }
 
    return detail::write(
 
        ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
 
        ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
 
  }
 
};
 

	
 
@@ -2128,34 +2111,33 @@ template <typename Char, typename Durati
 
struct formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
 
                 Char> : formatter<std::tm, Char> {
 
  FMT_CONSTEXPR formatter() {
 
    this->format_str = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
 
    this->format_str_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(std::chrono::time_point<std::chrono::system_clock, Duration> val,
 
              FormatContext& ctx) const -> decltype(ctx.out()) {
 
    using period = typename Duration::period;
 
    if (period::num != 1 || period::den != 1 ||
 
        std::is_floating_point<typename Duration::rep>::value) {
 
    if (detail::const_check(
 
            period::num != 1 || period::den != 1 ||
 
            std::is_floating_point<typename Duration::rep>::value)) {
 
      const auto epoch = val.time_since_epoch();
 
      auto subsecs = std::chrono::duration_cast<Duration>(
 
          epoch - std::chrono::duration_cast<std::chrono::seconds>(epoch));
 
      auto subsecs = detail::fmt_duration_cast<Duration>(
 
          epoch - detail::fmt_duration_cast<std::chrono::seconds>(epoch));
 

	
 
      if (subsecs.count() < 0) {
 
        auto second = std::chrono::seconds(1);
 
        auto second =
 
            detail::fmt_duration_cast<Duration>(std::chrono::seconds(1));
 
        if (epoch.count() < ((Duration::min)() + second).count())
 
          FMT_THROW(format_error("duration is too small"));
 
        subsecs += second;
 
        val -= second;
 
      }
 

	
 
      return formatter<std::tm, Char>::do_format(
 
          gmtime(std::chrono::time_point_cast<std::chrono::seconds>(val)), ctx,
 
          &subsecs);
 
      return formatter<std::tm, Char>::do_format(gmtime(val), ctx, &subsecs);
 
    }
 

	
 
    return formatter<std::tm, Char>::format(
 
        gmtime(std::chrono::time_point_cast<std::chrono::seconds>(val)), ctx);
 
    return formatter<std::tm, Char>::format(gmtime(val), ctx);
 
  }
 
};
 

	
 
@@ -2164,7 +2146,7 @@ template <typename Char, typename Durati
 
struct formatter<std::chrono::local_time<Duration>, Char>
 
    : formatter<std::tm, Char> {
 
  FMT_CONSTEXPR formatter() {
 
    this->format_str = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
 
    this->format_str_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
 
  }
 

	
 
  template <typename FormatContext>
 
@@ -2174,17 +2156,13 @@ struct formatter<std::chrono::local_time
 
    if (period::num != 1 || period::den != 1 ||
 
        std::is_floating_point<typename Duration::rep>::value) {
 
      const auto epoch = val.time_since_epoch();
 
      const auto subsecs = std::chrono::duration_cast<Duration>(
 
          epoch - std::chrono::duration_cast<std::chrono::seconds>(epoch));
 
      const auto subsecs = detail::fmt_duration_cast<Duration>(
 
          epoch - detail::fmt_duration_cast<std::chrono::seconds>(epoch));
 

	
 
      return formatter<std::tm, Char>::do_format(
 
          localtime(std::chrono::time_point_cast<std::chrono::seconds>(val)),
 
          ctx, &subsecs);
 
      return formatter<std::tm, Char>::do_format(localtime(val), ctx, &subsecs);
 
    }
 

	
 
    return formatter<std::tm, Char>::format(
 
        localtime(std::chrono::time_point_cast<std::chrono::seconds>(val)),
 
        ctx);
 
    return formatter<std::tm, Char>::format(localtime(val), ctx);
 
  }
 
};
 
#endif
 
@@ -2207,51 +2185,46 @@ struct formatter<std::chrono::time_point
 

	
 
template <typename Char> struct formatter<std::tm, Char> {
 
 private:
 
  format_specs<Char> specs;
 
  detail::arg_ref<Char> width_ref;
 
  format_specs<Char> specs_;
 
  detail::arg_ref<Char> width_ref_;
 

	
 
 protected:
 
  basic_string_view<Char> format_str;
 

	
 
  FMT_CONSTEXPR auto do_parse(basic_format_parse_context<Char>& ctx)
 
      -> decltype(ctx.begin()) {
 
    auto begin = ctx.begin(), end = ctx.end();
 
    if (begin == end || *begin == '}') return begin;
 

	
 
    begin = detail::parse_align(begin, end, specs);
 
    if (begin == end) return end;
 

	
 
    begin = detail::parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
 
    if (begin == end) return end;
 

	
 
    end = detail::parse_chrono_format(begin, end, detail::tm_format_checker());
 
    // Replace default format_str only if the new spec is not empty.
 
    if (end != begin) format_str = {begin, detail::to_unsigned(end - begin)};
 
    return end;
 
  }
 
  basic_string_view<Char> format_str_;
 

	
 
  template <typename FormatContext, typename Duration>
 
  auto do_format(const std::tm& tm, FormatContext& ctx,
 
                 const Duration* subsecs) const -> decltype(ctx.out()) {
 
    auto specs_copy = specs;
 
    basic_memory_buffer<Char> buf;
 
    auto specs = specs_;
 
    auto buf = basic_memory_buffer<Char>();
 
    auto out = std::back_inserter(buf);
 
    detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
 
                                                       width_ref, ctx);
 
    detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_,
 
                                                       ctx);
 

	
 
    const auto loc_ref = ctx.locale();
 
    auto loc_ref = ctx.locale();
 
    detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref);
 
    auto w =
 
        detail::tm_writer<decltype(out), Char, Duration>(loc, out, tm, subsecs);
 
    detail::parse_chrono_format(format_str.begin(), format_str.end(), w);
 
    detail::parse_chrono_format(format_str_.begin(), format_str_.end(), w);
 
    return detail::write(
 
        ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
 
        ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
 
  }
 

	
 
 public:
 
  FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
 
      -> decltype(ctx.begin()) {
 
    return this->do_parse(ctx);
 
    auto it = ctx.begin(), end = ctx.end();
 
    if (it == end || *it == '}') return it;
 

	
 
    it = detail::parse_align(it, end, specs_);
 
    if (it == end) return it;
 

	
 
    it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx);
 
    if (it == end) return it;
 

	
 
    end = detail::parse_chrono_format(it, end, detail::tm_format_checker());
 
    // Replace the default format_str only if the new spec is not empty.
 
    if (end != it) format_str_ = {it, detail::to_unsigned(end - it)};
 
    return end;
 
  }
 

	
 
  template <typename FormatContext>
src/3rdparty/fmt/core.h
Show inline comments
 
@@ -13,11 +13,12 @@
 
#include <cstring>  // std::strlen
 
#include <iterator>
 
#include <limits>
 
#include <memory>  // std::addressof
 
#include <string>
 
#include <type_traits>
 

	
 
// The fmt library version in the form major * 10000 + minor * 100 + patch.
 
#define FMT_VERSION 100000
 
#define FMT_VERSION 100200
 

	
 
#if defined(__clang__) && !defined(__ibmxl__)
 
#  define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
 
@@ -92,7 +93,7 @@
 
#ifndef FMT_USE_CONSTEXPR
 
#  if (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912 || \
 
       (FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L)) &&             \
 
      !FMT_ICC_VERSION && !defined(__NVCC__)
 
      !FMT_ICC_VERSION && (!defined(__NVCC__) || FMT_CPLUSPLUS >= 202002L)
 
#    define FMT_USE_CONSTEXPR 1
 
#  else
 
#    define FMT_USE_CONSTEXPR 0
 
@@ -104,9 +105,12 @@
 
#  define FMT_CONSTEXPR
 
#endif
 

	
 
#if ((FMT_CPLUSPLUS >= 202002L) &&                            \
 
     (!defined(_GLIBCXX_RELEASE) || _GLIBCXX_RELEASE > 9)) || \
 
    (FMT_CPLUSPLUS >= 201709L && FMT_GCC_VERSION >= 1002)
 
#if (FMT_CPLUSPLUS >= 202002L ||                                \
 
     (FMT_CPLUSPLUS >= 201709L && FMT_GCC_VERSION >= 1002)) &&  \
 
    ((!defined(_GLIBCXX_RELEASE) || _GLIBCXX_RELEASE >= 10) &&  \
 
     (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION >= 10000) && \
 
     (!FMT_MSC_VERSION || FMT_MSC_VERSION >= 1928)) &&          \
 
    defined(__cpp_lib_is_constant_evaluated)
 
#  define FMT_CONSTEXPR20 constexpr
 
#else
 
#  define FMT_CONSTEXPR20
 
@@ -162,9 +166,6 @@
 
#  endif
 
#endif
 

	
 
// An inline std::forward replacement.
 
#define FMT_FORWARD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)
 

	
 
#ifdef _MSC_VER
 
#  define FMT_UNCHECKED_ITERATOR(It) \
 
    using _Unchecked_type = It  // Mark iterator as checked.
 
@@ -181,24 +182,26 @@
 
    }
 
#endif
 

	
 
#ifndef FMT_MODULE_EXPORT
 
#  define FMT_MODULE_EXPORT
 
#ifndef FMT_EXPORT
 
#  define FMT_EXPORT
 
#  define FMT_BEGIN_EXPORT
 
#  define FMT_END_EXPORT
 
#endif
 

	
 
#if FMT_GCC_VERSION || FMT_CLANG_VERSION
 
#  define FMT_VISIBILITY(value) __attribute__((visibility(value)))
 
#else
 
#  define FMT_VISIBILITY(value)
 
#endif
 

	
 
#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
 
#  ifdef FMT_LIB_EXPORT
 
#  if defined(FMT_LIB_EXPORT)
 
#    define FMT_API __declspec(dllexport)
 
#  elif defined(FMT_SHARED)
 
#    define FMT_API __declspec(dllimport)
 
#  endif
 
#else
 
#  if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
 
#    if defined(__GNUC__) || defined(__clang__)
 
#      define FMT_API __attribute__((visibility("default")))
 
#    endif
 
#  endif
 
#elif defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
 
#  define FMT_API FMT_VISIBILITY("default")
 
#endif
 
#ifndef FMT_API
 
#  define FMT_API
 
@@ -224,8 +227,9 @@
 
        __apple_build_version__ >= 14000029L) &&                 \
 
       FMT_CPLUSPLUS >= 202002L) ||                              \
 
      (defined(__cpp_consteval) &&                               \
 
       (!FMT_MSC_VERSION || _MSC_FULL_VER >= 193030704))
 
// consteval is broken in MSVC before VS2022 and Apple clang before 14.
 
       (!FMT_MSC_VERSION || FMT_MSC_VERSION >= 1929))
 
// consteval is broken in MSVC before VS2019 version 16.10 and Apple clang
 
// before 14.
 
#    define FMT_CONSTEVAL consteval
 
#    define FMT_HAS_CONSTEVAL
 
#  else
 
@@ -244,10 +248,13 @@
 
#  endif
 
#endif
 

	
 
#if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
 
#  define FMT_INLINE_VARIABLE inline
 
#else
 
#  define FMT_INLINE_VARIABLE
 
// GCC < 5 requires this-> in decltype
 
#ifndef FMT_DECLTYPE_THIS
 
#  if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
 
#    define FMT_DECLTYPE_THIS this->
 
#  else
 
#    define FMT_DECLTYPE_THIS
 
#  endif
 
#endif
 

	
 
FMT_GCC_PRAGMA("GCC push_options")
 
@@ -266,11 +273,18 @@ template <typename T>
 
using remove_const_t = typename std::remove_const<T>::type;
 
template <typename T>
 
using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
 
template <typename T> struct type_identity { using type = T; };
 
template <typename T> struct type_identity {
 
  using type = T;
 
};
 
template <typename T> using type_identity_t = typename type_identity<T>::type;
 
template <typename T>
 
using underlying_t = typename std::underlying_type<T>::type;
 

	
 
// Checks whether T is a container with contiguous storage.
 
template <typename T> struct is_contiguous : std::false_type {};
 
template <typename Char>
 
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
 

	
 
struct monostate {
 
  constexpr monostate() {}
 
};
 
@@ -284,8 +298,11 @@ struct monostate {
 
#  define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0
 
#endif
 

	
 
// This is defined in core.h instead of format.h to avoid injecting in std.
 
// It is a template to avoid undesirable implicit conversions to std::byte.
 
#ifdef __cpp_lib_byte
 
inline auto format_as(std::byte b) -> unsigned char {
 
template <typename T, FMT_ENABLE_IF(std::is_same<T, std::byte>::value)>
 
inline auto format_as(T b) -> unsigned char {
 
  return static_cast<unsigned char>(b);
 
}
 
#endif
 
@@ -389,7 +406,7 @@ FMT_CONSTEXPR inline auto is_utf8() -> b
 
  compiled with a different ``-std`` option than the client code (which is not
 
  recommended).
 
 */
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename Char> class basic_string_view {
 
 private:
 
  const Char* data_;
 
@@ -449,15 +466,15 @@ template <typename Char> class basic_str
 
    size_ -= n;
 
  }
 

	
 
  FMT_CONSTEXPR_CHAR_TRAITS bool starts_with(
 
      basic_string_view<Char> sv) const noexcept {
 
  FMT_CONSTEXPR_CHAR_TRAITS auto starts_with(
 
      basic_string_view<Char> sv) const noexcept -> bool {
 
    return size_ >= sv.size_ &&
 
           std::char_traits<Char>::compare(data_, sv.data_, sv.size_) == 0;
 
  }
 
  FMT_CONSTEXPR_CHAR_TRAITS bool starts_with(Char c) const noexcept {
 
  FMT_CONSTEXPR_CHAR_TRAITS auto starts_with(Char c) const noexcept -> bool {
 
    return size_ >= 1 && std::char_traits<Char>::eq(*data_, c);
 
  }
 
  FMT_CONSTEXPR_CHAR_TRAITS bool starts_with(const Char* s) const {
 
  FMT_CONSTEXPR_CHAR_TRAITS auto starts_with(const Char* s) const -> bool {
 
    return starts_with(basic_string_view<Char>(s));
 
  }
 

	
 
@@ -492,11 +509,11 @@ template <typename Char> class basic_str
 
  }
 
};
 

	
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
using string_view = basic_string_view<char>;
 

	
 
/** Specifies if ``T`` is a character type. Can be specialized by users. */
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename T> struct is_char : std::false_type {};
 
template <> struct is_char<char> : std::true_type {};
 

	
 
@@ -595,10 +612,10 @@ FMT_TYPE_CONSTANT(const Char*, cstring_t
 
FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
 
FMT_TYPE_CONSTANT(const void*, pointer_type);
 

	
 
constexpr bool is_integral_type(type t) {
 
constexpr auto is_integral_type(type t) -> bool {
 
  return t > type::none_type && t <= type::last_integer_type;
 
}
 
constexpr bool is_arithmetic_type(type t) {
 
constexpr auto is_arithmetic_type(type t) -> bool {
 
  return t > type::none_type && t <= type::last_numeric_type;
 
}
 

	
 
@@ -622,6 +639,7 @@ enum {
 
  pointer_set = set(type::pointer_type)
 
};
 

	
 
// DEPRECATED!
 
FMT_NORETURN FMT_API void throw_format_error(const char* message);
 

	
 
struct error_handler {
 
@@ -634,6 +652,9 @@ struct error_handler {
 
};
 
}  // namespace detail
 

	
 
/** Throws ``format_error`` with a given message. */
 
using detail::throw_format_error;
 

	
 
/** String's character type. */
 
template <typename S> using char_t = typename detail::char_t_impl<S>::type;
 

	
 
@@ -644,7 +665,7 @@ template <typename S> using char_t = typ
 
  You can use the ``format_parse_context`` type alias for ``char`` instead.
 
  \endrst
 
 */
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename Char> class basic_format_parse_context {
 
 private:
 
  basic_string_view<Char> format_str_;
 
@@ -710,7 +731,7 @@ template <typename Char> class basic_for
 
  FMT_CONSTEXPR void check_dynamic_spec(int arg_id);
 
};
 

	
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
using format_parse_context = basic_format_parse_context<char>;
 

	
 
namespace detail {
 
@@ -751,72 +772,6 @@ class compile_parse_context : public bas
 
#endif
 
  }
 
};
 
}  // namespace detail
 

	
 
template <typename Char>
 
FMT_CONSTEXPR void basic_format_parse_context<Char>::do_check_arg_id(int id) {
 
  // Argument id is only checked at compile-time during parsing because
 
  // formatting has its own validation.
 
  if (detail::is_constant_evaluated() &&
 
      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
 
    using context = detail::compile_parse_context<Char>;
 
    if (id >= static_cast<context*>(this)->num_args())
 
      detail::throw_format_error("argument not found");
 
  }
 
}
 

	
 
template <typename Char>
 
FMT_CONSTEXPR void basic_format_parse_context<Char>::check_dynamic_spec(
 
    int arg_id) {
 
  if (detail::is_constant_evaluated() &&
 
      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
 
    using context = detail::compile_parse_context<Char>;
 
    static_cast<context*>(this)->check_dynamic_spec(arg_id);
 
  }
 
}
 

	
 
FMT_MODULE_EXPORT template <typename Context> class basic_format_arg;
 
FMT_MODULE_EXPORT template <typename Context> class basic_format_args;
 
FMT_MODULE_EXPORT template <typename Context> class dynamic_format_arg_store;
 

	
 
// A formatter for objects of type T.
 
FMT_MODULE_EXPORT
 
template <typename T, typename Char = char, typename Enable = void>
 
struct formatter {
 
  // A deleted default constructor indicates a disabled formatter.
 
  formatter() = delete;
 
};
 

	
 
// Specifies if T has an enabled formatter specialization. A type can be
 
// formattable even if it doesn't have a formatter e.g. via a conversion.
 
template <typename T, typename Context>
 
using has_formatter =
 
    std::is_constructible<typename Context::template formatter_type<T>>;
 

	
 
// Checks whether T is a container with contiguous storage.
 
template <typename T> struct is_contiguous : std::false_type {};
 
template <typename Char>
 
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
 

	
 
class appender;
 

	
 
namespace detail {
 

	
 
template <typename Context, typename T>
 
constexpr auto has_const_formatter_impl(T*)
 
    -> decltype(typename Context::template formatter_type<T>().format(
 
                    std::declval<const T&>(), std::declval<Context&>()),
 
                true) {
 
  return true;
 
}
 
template <typename Context>
 
constexpr auto has_const_formatter_impl(...) -> bool {
 
  return false;
 
}
 
template <typename T, typename Context>
 
constexpr auto has_const_formatter() -> bool {
 
  return has_const_formatter_impl<Context>(static_cast<T*>(nullptr));
 
}
 

	
 
// Extracts a reference to the container from back_insert_iterator.
 
template <typename Container>
 
@@ -862,7 +817,7 @@ template <typename T> class buffer {
 
 protected:
 
  // Don't initialize ptr_ since it is not accessed to save a few cycles.
 
  FMT_MSC_WARNING(suppress : 26495)
 
  buffer(size_t sz) noexcept : size_(sz), capacity_(sz) {}
 
  FMT_CONSTEXPR buffer(size_t sz) noexcept : size_(sz), capacity_(sz) {}
 

	
 
  FMT_CONSTEXPR20 buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) noexcept
 
      : ptr_(p), size_(sz), capacity_(cap) {}
 
@@ -877,6 +832,7 @@ template <typename T> class buffer {
 
  }
 

	
 
  /** Increases the buffer capacity to hold at least *capacity* elements. */
 
  // DEPRECATED!
 
  virtual FMT_CONSTEXPR20 void grow(size_t capacity) = 0;
 

	
 
 public:
 
@@ -898,10 +854,8 @@ template <typename T> class buffer {
 
  /** Returns the capacity of this buffer. */
 
  constexpr auto capacity() const noexcept -> size_t { return capacity_; }
 

	
 
  /** Returns a pointer to the buffer data. */
 
  /** Returns a pointer to the buffer data (not null-terminated). */
 
  FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; }
 

	
 
  /** Returns a pointer to the buffer data. */
 
  FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; }
 

	
 
  /** Clears this buffer. */
 
@@ -1094,6 +1048,79 @@ template <typename T = char> class count
 

	
 
  auto count() -> size_t { return count_ + this->size(); }
 
};
 
}  // namespace detail
 

	
 
template <typename Char>
 
FMT_CONSTEXPR void basic_format_parse_context<Char>::do_check_arg_id(int id) {
 
  // Argument id is only checked at compile-time during parsing because
 
  // formatting has its own validation.
 
  if (detail::is_constant_evaluated() &&
 
      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
 
    using context = detail::compile_parse_context<Char>;
 
    if (id >= static_cast<context*>(this)->num_args())
 
      detail::throw_format_error("argument not found");
 
  }
 
}
 

	
 
template <typename Char>
 
FMT_CONSTEXPR void basic_format_parse_context<Char>::check_dynamic_spec(
 
    int arg_id) {
 
  if (detail::is_constant_evaluated() &&
 
      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
 
    using context = detail::compile_parse_context<Char>;
 
    static_cast<context*>(this)->check_dynamic_spec(arg_id);
 
  }
 
}
 

	
 
FMT_EXPORT template <typename Context> class basic_format_arg;
 
FMT_EXPORT template <typename Context> class basic_format_args;
 
FMT_EXPORT template <typename Context> class dynamic_format_arg_store;
 

	
 
// A formatter for objects of type T.
 
FMT_EXPORT
 
template <typename T, typename Char = char, typename Enable = void>
 
struct formatter {
 
  // A deleted default constructor indicates a disabled formatter.
 
  formatter() = delete;
 
};
 

	
 
// Specifies if T has an enabled formatter specialization. A type can be
 
// formattable even if it doesn't have a formatter e.g. via a conversion.
 
template <typename T, typename Context>
 
using has_formatter =
 
    std::is_constructible<typename Context::template formatter_type<T>>;
 

	
 
// An output iterator that appends to a buffer.
 
// It is used to reduce symbol sizes for the common case.
 
class appender : public std::back_insert_iterator<detail::buffer<char>> {
 
  using base = std::back_insert_iterator<detail::buffer<char>>;
 

	
 
 public:
 
  using std::back_insert_iterator<detail::buffer<char>>::back_insert_iterator;
 
  appender(base it) noexcept : base(it) {}
 
  FMT_UNCHECKED_ITERATOR(appender);
 

	
 
  auto operator++() noexcept -> appender& { return *this; }
 
  auto operator++(int) noexcept -> appender { return *this; }
 
};
 

	
 
namespace detail {
 

	
 
template <typename Context, typename T>
 
constexpr auto has_const_formatter_impl(T*)
 
    -> decltype(typename Context::template formatter_type<T>().format(
 
                    std::declval<const T&>(), std::declval<Context&>()),
 
                true) {
 
  return true;
 
}
 
template <typename Context>
 
constexpr auto has_const_formatter_impl(...) -> bool {
 
  return false;
 
}
 
template <typename T, typename Context>
 
constexpr auto has_const_formatter() -> bool {
 
  return has_const_formatter_impl<Context>(static_cast<T*>(nullptr));
 
}
 

	
 
template <typename T>
 
using buffer_appender = conditional_t<std::is_same<T, char>::value, appender,
 
@@ -1269,9 +1296,9 @@ template <typename Context> class value 
 
  FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
 
      : named_args{args, size} {}
 

	
 
  template <typename T> FMT_CONSTEXPR FMT_INLINE value(T& val) {
 
    using value_type = remove_cvref_t<T>;
 
    custom.value = const_cast<value_type*>(&val);
 
  template <typename T> FMT_CONSTEXPR20 FMT_INLINE value(T& val) {
 
    using value_type = remove_const_t<T>;
 
    custom.value = const_cast<value_type*>(std::addressof(val));
 
    // Get the formatter type through the context to allow different contexts
 
    // have different extension points, e.g. `formatter<T>` for `format` and
 
    // `printf_formatter<T>` for `printf`.
 
@@ -1292,13 +1319,11 @@ template <typename Context> class value 
 
    parse_ctx.advance_to(f.parse(parse_ctx));
 
    using qualified_type =
 
        conditional_t<has_const_formatter<T, Context>(), const T, T>;
 
    // Calling format through a mutable reference is deprecated.
 
    ctx.advance_to(f.format(*static_cast<qualified_type*>(arg), ctx));
 
  }
 
};
 

	
 
template <typename Context, typename T>
 
FMT_CONSTEXPR auto make_arg(T&& value) -> basic_format_arg<Context>;
 

	
 
// To minimize the number of types we need to deal with, long is translated
 
// either to int or to long long depending on its size.
 
enum { long_short = sizeof(long) == sizeof(int) };
 
@@ -1308,7 +1333,7 @@ using ulong_type = conditional_t<long_sh
 
template <typename T> struct format_as_result {
 
  template <typename U,
 
            FMT_ENABLE_IF(std::is_enum<U>::value || std::is_class<U>::value)>
 
  static auto map(U*) -> decltype(format_as(std::declval<U>()));
 
  static auto map(U*) -> remove_cvref_t<decltype(format_as(std::declval<U>()))>;
 
  static auto map(...) -> void;
 

	
 
  using type = decltype(map(static_cast<T*>(nullptr)));
 
@@ -1410,9 +1435,8 @@ template <typename Context> struct arg_m
 
      FMT_ENABLE_IF(
 
          std::is_pointer<T>::value || std::is_member_pointer<T>::value ||
 
          std::is_function<typename std::remove_pointer<T>::type>::value ||
 
          (std::is_convertible<const T&, const void*>::value &&
 
           !std::is_convertible<const T&, const char_type*>::value &&
 
           !has_formatter<T, Context>::value))>
 
          (std::is_array<T>::value &&
 
           !std::is_convertible<T, const char_type*>::value))>
 
  FMT_CONSTEXPR auto map(const T&) -> unformattable_pointer {
 
    return {};
 
  }
 
@@ -1426,39 +1450,39 @@ template <typename Context> struct arg_m
 
  // Only map owning types because mapping views can be unsafe.
 
  template <typename T, typename U = format_as_t<T>,
 
            FMT_ENABLE_IF(std::is_arithmetic<U>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> decltype(this->map(U())) {
 
  FMT_CONSTEXPR FMT_INLINE auto map(const T& val)
 
      -> decltype(FMT_DECLTYPE_THIS map(U())) {
 
    return map(format_as(val));
 
  }
 

	
 
  template <typename T, typename U = remove_cvref_t<T>>
 
  struct formattable
 
      : bool_constant<has_const_formatter<U, Context>() ||
 
                      (has_formatter<U, Context>::value &&
 
                       !std::is_const<remove_reference_t<T>>::value)> {};
 
  template <typename T, typename U = remove_const_t<T>>
 
  struct formattable : bool_constant<has_const_formatter<U, Context>() ||
 
                                     (has_formatter<U, Context>::value &&
 
                                      !std::is_const<T>::value)> {};
 

	
 
  template <typename T, FMT_ENABLE_IF(formattable<T>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto do_map(T&& val) -> T& {
 
  FMT_CONSTEXPR FMT_INLINE auto do_map(T& val) -> T& {
 
    return val;
 
  }
 
  template <typename T, FMT_ENABLE_IF(!formattable<T>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto do_map(T&&) -> unformattable {
 
  FMT_CONSTEXPR FMT_INLINE auto do_map(T&) -> unformattable {
 
    return {};
 
  }
 

	
 
  template <typename T, typename U = remove_cvref_t<T>,
 
  template <typename T, typename U = remove_const_t<T>,
 
            FMT_ENABLE_IF((std::is_class<U>::value || std::is_enum<U>::value ||
 
                           std::is_union<U>::value) &&
 
                          !is_string<U>::value && !is_char<U>::value &&
 
                          !is_named_arg<U>::value &&
 
                          !std::is_arithmetic<format_as_t<U>>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(T&& val)
 
      -> decltype(this->do_map(std::forward<T>(val))) {
 
    return do_map(std::forward<T>(val));
 
  FMT_CONSTEXPR FMT_INLINE auto map(T& val)
 
      -> decltype(FMT_DECLTYPE_THIS do_map(val)) {
 
    return do_map(val);
 
  }
 

	
 
  template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
 
  FMT_CONSTEXPR FMT_INLINE auto map(const T& named_arg)
 
      -> decltype(this->map(named_arg.value)) {
 
      -> decltype(FMT_DECLTYPE_THIS map(named_arg.value)) {
 
    return map(named_arg.value);
 
  }
 

	
 
@@ -1476,31 +1500,132 @@ enum { packed_arg_bits = 4 };
 
enum { max_packed_args = 62 / packed_arg_bits };
 
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
 
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
 
}  // namespace detail
 

	
 
// An output iterator that appends to a buffer.
 
// It is used to reduce symbol sizes for the common case.
 
class appender : public std::back_insert_iterator<detail::buffer<char>> {
 
  using base = std::back_insert_iterator<detail::buffer<char>>;
 

	
 
template <typename Char, typename InputIt>
 
auto copy_str(InputIt begin, InputIt end, appender out) -> appender {
 
  get_container(out).append(begin, end);
 
  return out;
 
}
 
template <typename Char, typename InputIt>
 
auto copy_str(InputIt begin, InputIt end,
 
              std::back_insert_iterator<std::string> out)
 
    -> std::back_insert_iterator<std::string> {
 
  get_container(out).append(begin, end);
 
  return out;
 
}
 

	
 
template <typename Char, typename R, typename OutputIt>
 
FMT_CONSTEXPR auto copy_str(R&& rng, OutputIt out) -> OutputIt {
 
  return detail::copy_str<Char>(rng.begin(), rng.end(), out);
 
}
 

	
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
 
// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
 
template <typename...> struct void_t_impl {
 
  using type = void;
 
};
 
template <typename... T> using void_t = typename void_t_impl<T...>::type;
 
#else
 
template <typename...> using void_t = void;
 
#endif
 

	
 
template <typename It, typename T, typename Enable = void>
 
struct is_output_iterator : std::false_type {};
 

	
 
template <typename It, typename T>
 
struct is_output_iterator<
 
    It, T,
 
    void_t<typename std::iterator_traits<It>::iterator_category,
 
           decltype(*std::declval<It>() = std::declval<T>())>>
 
    : std::true_type {};
 

	
 
template <typename It> struct is_back_insert_iterator : std::false_type {};
 
template <typename Container>
 
struct is_back_insert_iterator<std::back_insert_iterator<Container>>
 
    : std::true_type {};
 

	
 
// A type-erased reference to an std::locale to avoid a heavy <locale> include.
 
class locale_ref {
 
 private:
 
  const void* locale_;  // A type-erased pointer to std::locale.
 

	
 
 public:
 
  using std::back_insert_iterator<detail::buffer<char>>::back_insert_iterator;
 
  appender(base it) noexcept : base(it) {}
 
  FMT_UNCHECKED_ITERATOR(appender);
 

	
 
  auto operator++() noexcept -> appender& { return *this; }
 
  auto operator++(int) noexcept -> appender { return *this; }
 
  constexpr FMT_INLINE locale_ref() : locale_(nullptr) {}
 
  template <typename Locale> explicit locale_ref(const Locale& loc);
 

	
 
  explicit operator bool() const noexcept { return locale_ != nullptr; }
 

	
 
  template <typename Locale> auto get() const -> Locale;
 
};
 

	
 
// A formatting argument. It is a trivially copyable/constructible type to
 
// allow storage in basic_memory_buffer.
 
template <typename> constexpr auto encode_types() -> unsigned long long {
 
  return 0;
 
}
 

	
 
template <typename Context, typename Arg, typename... Args>
 
constexpr auto encode_types() -> unsigned long long {
 
  return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
 
         (encode_types<Context, Args...>() << packed_arg_bits);
 
}
 

	
 
#if defined(__cpp_if_constexpr)
 
// This type is intentionally undefined, only used for errors
 
template <typename T, typename Char> struct type_is_unformattable_for;
 
#endif
 

	
 
template <bool PACKED, typename Context, typename T, FMT_ENABLE_IF(PACKED)>
 
FMT_CONSTEXPR FMT_INLINE auto make_arg(T& val) -> value<Context> {
 
  using arg_type = remove_cvref_t<decltype(arg_mapper<Context>().map(val))>;
 

	
 
  constexpr bool formattable_char =
 
      !std::is_same<arg_type, unformattable_char>::value;
 
  static_assert(formattable_char, "Mixing character types is disallowed.");
 

	
 
  // Formatting of arbitrary pointers is disallowed. If you want to format a
 
  // pointer cast it to `void*` or `const void*`. In particular, this forbids
 
  // formatting of `[const] volatile char*` printed as bool by iostreams.
 
  constexpr bool formattable_pointer =
 
      !std::is_same<arg_type, unformattable_pointer>::value;
 
  static_assert(formattable_pointer,
 
                "Formatting of non-void pointers is disallowed.");
 

	
 
  constexpr bool formattable = !std::is_same<arg_type, unformattable>::value;
 
#if defined(__cpp_if_constexpr)
 
  if constexpr (!formattable) {
 
    type_is_unformattable_for<T, typename Context::char_type> _;
 
  }
 
#endif
 
  static_assert(
 
      formattable,
 
      "Cannot format an argument. To make type T formattable provide a "
 
      "formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
 
  return {arg_mapper<Context>().map(val)};
 
}
 

	
 
template <typename Context, typename T>
 
FMT_CONSTEXPR auto make_arg(T& val) -> basic_format_arg<Context> {
 
  auto arg = basic_format_arg<Context>();
 
  arg.type_ = mapped_type_constant<T, Context>::value;
 
  arg.value_ = make_arg<true, Context>(val);
 
  return arg;
 
}
 

	
 
template <bool PACKED, typename Context, typename T, FMT_ENABLE_IF(!PACKED)>
 
FMT_CONSTEXPR inline auto make_arg(T& val) -> basic_format_arg<Context> {
 
  return make_arg<Context>(val);
 
}
 
}  // namespace detail
 
FMT_BEGIN_EXPORT
 

	
 
// A formatting argument. Context is a template parameter for the compiled API
 
// where output can be unbuffered.
 
template <typename Context> class basic_format_arg {
 
 private:
 
  detail::value<Context> value_;
 
  detail::type type_;
 

	
 
  template <typename ContextType, typename T>
 
  friend FMT_CONSTEXPR auto detail::make_arg(T&& value)
 
  friend FMT_CONSTEXPR auto detail::make_arg(T& value)
 
      -> basic_format_arg<ContextType>;
 

	
 
  template <typename Visitor, typename Ctx>
 
@@ -1545,6 +1670,15 @@ template <typename Context> class basic_
 
  auto is_arithmetic() const -> bool {
 
    return detail::is_arithmetic_type(type_);
 
  }
 

	
 
  FMT_INLINE auto format_custom(const char_type* parse_begin,
 
                                typename Context::parse_context_type& parse_ctx,
 
                                Context& ctx) -> bool {
 
    if (type_ != detail::type::custom_type) return false;
 
    parse_ctx.advance_to(parse_begin);
 
    value_.custom.format(value_.custom.value, parse_ctx, ctx);
 
    return true;
 
  }
 
};
 

	
 
/**
 
@@ -1554,7 +1688,7 @@ template <typename Context> class basic_
 
  ``vis(value)`` will be called with the value of type ``double``.
 
  \endrst
 
 */
 
FMT_MODULE_EXPORT
 
// DEPRECATED!
 
template <typename Visitor, typename Context>
 
FMT_CONSTEXPR FMT_INLINE auto visit_format_arg(
 
    Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
 
@@ -1596,123 +1730,6 @@ FMT_CONSTEXPR FMT_INLINE auto visit_form
 
  return vis(monostate());
 
}
 

	
 
namespace detail {
 

	
 
template <typename Char, typename InputIt>
 
auto copy_str(InputIt begin, InputIt end, appender out) -> appender {
 
  get_container(out).append(begin, end);
 
  return out;
 
}
 

	
 
template <typename Char, typename R, typename OutputIt>
 
FMT_CONSTEXPR auto copy_str(R&& rng, OutputIt out) -> OutputIt {
 
  return detail::copy_str<Char>(rng.begin(), rng.end(), out);
 
}
 

	
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
 
// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
 
template <typename...> struct void_t_impl { using type = void; };
 
template <typename... T> using void_t = typename void_t_impl<T...>::type;
 
#else
 
template <typename...> using void_t = void;
 
#endif
 

	
 
template <typename It, typename T, typename Enable = void>
 
struct is_output_iterator : std::false_type {};
 

	
 
template <typename It, typename T>
 
struct is_output_iterator<
 
    It, T,
 
    void_t<typename std::iterator_traits<It>::iterator_category,
 
           decltype(*std::declval<It>() = std::declval<T>())>>
 
    : std::true_type {};
 

	
 
template <typename It> struct is_back_insert_iterator : std::false_type {};
 
template <typename Container>
 
struct is_back_insert_iterator<std::back_insert_iterator<Container>>
 
    : std::true_type {};
 

	
 
template <typename It>
 
struct is_contiguous_back_insert_iterator : std::false_type {};
 
template <typename Container>
 
struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
 
    : is_contiguous<Container> {};
 
template <>
 
struct is_contiguous_back_insert_iterator<appender> : std::true_type {};
 

	
 
// A type-erased reference to an std::locale to avoid a heavy <locale> include.
 
class locale_ref {
 
 private:
 
  const void* locale_;  // A type-erased pointer to std::locale.
 

	
 
 public:
 
  constexpr FMT_INLINE locale_ref() : locale_(nullptr) {}
 
  template <typename Locale> explicit locale_ref(const Locale& loc);
 

	
 
  explicit operator bool() const noexcept { return locale_ != nullptr; }
 

	
 
  template <typename Locale> auto get() const -> Locale;
 
};
 

	
 
template <typename> constexpr auto encode_types() -> unsigned long long {
 
  return 0;
 
}
 

	
 
template <typename Context, typename Arg, typename... Args>
 
constexpr auto encode_types() -> unsigned long long {
 
  return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
 
         (encode_types<Context, Args...>() << packed_arg_bits);
 
}
 

	
 
template <typename Context, typename T>
 
FMT_CONSTEXPR FMT_INLINE auto make_value(T&& val) -> value<Context> {
 
  using arg_type = remove_cvref_t<decltype(arg_mapper<Context>().map(val))>;
 

	
 
  constexpr bool formattable_char =
 
      !std::is_same<arg_type, unformattable_char>::value;
 
  static_assert(formattable_char, "Mixing character types is disallowed.");
 

	
 
  // Formatting of arbitrary pointers is disallowed. If you want to format a
 
  // pointer cast it to `void*` or `const void*`. In particular, this forbids
 
  // formatting of `[const] volatile char*` printed as bool by iostreams.
 
  constexpr bool formattable_pointer =
 
      !std::is_same<arg_type, unformattable_pointer>::value;
 
  static_assert(formattable_pointer,
 
                "Formatting of non-void pointers is disallowed.");
 

	
 
  constexpr bool formattable = !std::is_same<arg_type, unformattable>::value;
 
  static_assert(
 
      formattable,
 
      "Cannot format an argument. To make type T formattable provide a "
 
      "formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
 
  return {arg_mapper<Context>().map(val)};
 
}
 

	
 
template <typename Context, typename T>
 
FMT_CONSTEXPR auto make_arg(T&& value) -> basic_format_arg<Context> {
 
  auto arg = basic_format_arg<Context>();
 
  arg.type_ = mapped_type_constant<T, Context>::value;
 
  arg.value_ = make_value<Context>(value);
 
  return arg;
 
}
 

	
 
// The DEPRECATED type template parameter is there to avoid an ODR violation
 
// when using a fallback formatter in one translation unit and an implicit
 
// conversion in another (not recommended).
 
template <bool IS_PACKED, typename Context, type, typename T,
 
          FMT_ENABLE_IF(IS_PACKED)>
 
FMT_CONSTEXPR FMT_INLINE auto make_arg(T&& val) -> value<Context> {
 
  return make_value<Context>(val);
 
}
 

	
 
template <bool IS_PACKED, typename Context, type, typename T,
 
          FMT_ENABLE_IF(!IS_PACKED)>
 
FMT_CONSTEXPR inline auto make_arg(T&& value) -> basic_format_arg<Context> {
 
  return make_arg<Context>(value);
 
}
 
}  // namespace detail
 
FMT_BEGIN_EXPORT
 

	
 
// Formatting context.
 
template <typename OutputIt, typename Char> class basic_format_context {
 
 private:
 
@@ -1750,6 +1767,7 @@ template <typename OutputIt, typename Ch
 
  }
 
  auto args() const -> const format_args& { return args_; }
 

	
 
  // DEPRECATED!
 
  FMT_CONSTEXPR auto error_handler() -> detail::error_handler { return {}; }
 
  void on_error(const char* message) { error_handler().on_error(message); }
 

	
 
@@ -1772,7 +1790,7 @@ using format_context = buffer_context<ch
 
template <typename T, typename Char = char>
 
using is_formattable = bool_constant<!std::is_base_of<
 
    detail::unformattable, decltype(detail::arg_mapper<buffer_context<Char>>()
 
                                        .map(std::declval<T>()))>::value>;
 
                                        .map(std::declval<T&>()))>::value>;
 

	
 
/**
 
  \rst
 
@@ -1790,7 +1808,7 @@ class format_arg_store
 
{
 
 private:
 
  static const size_t num_args = sizeof...(Args);
 
  static const size_t num_named_args = detail::count_named_args<Args...>();
 
  static constexpr size_t num_named_args = detail::count_named_args<Args...>();
 
  static const bool is_packed = num_args <= detail::max_packed_args;
 

	
 
  using value_type = conditional_t<is_packed, detail::value<Context>,
 
@@ -1811,16 +1829,14 @@ class format_arg_store
 

	
 
 public:
 
  template <typename... T>
 
  FMT_CONSTEXPR FMT_INLINE format_arg_store(T&&... args)
 
  FMT_CONSTEXPR FMT_INLINE format_arg_store(T&... args)
 
      :
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
        basic_format_args<Context>(*this),
 
#endif
 
        data_{detail::make_arg<
 
            is_packed, Context,
 
            detail::mapped_type_constant<remove_cvref_t<T>, Context>::value>(
 
            FMT_FORWARD(args))...} {
 
    detail::init_named_args(data_.named_args(), 0, 0, args...);
 
        data_{detail::make_arg<is_packed, Context>(args)...} {
 
    if (detail::const_check(num_named_args != 0))
 
      detail::init_named_args(data_.named_args(), 0, 0, args...);
 
  }
 
};
 

	
 
@@ -1828,14 +1844,15 @@ class format_arg_store
 
  \rst
 
  Constructs a `~fmt::format_arg_store` object that contains references to
 
  arguments and can be implicitly converted to `~fmt::format_args`. `Context`
 
  can be omitted in which case it defaults to `~fmt::context`.
 
  can be omitted in which case it defaults to `~fmt::format_context`.
 
  See `~fmt::arg` for lifetime considerations.
 
  \endrst
 
 */
 
// Arguments are taken by lvalue references to avoid some lifetime issues.
 
template <typename Context = format_context, typename... T>
 
constexpr auto make_format_args(T&&... args)
 
constexpr auto make_format_args(T&... args)
 
    -> format_arg_store<Context, remove_cvref_t<T>...> {
 
  return {FMT_FORWARD(args)...};
 
  return {args...};
 
}
 

	
 
/**
 
@@ -1863,7 +1880,7 @@ FMT_END_EXPORT
 
  ``vformat``::
 

	
 
    void vlog(string_view format_str, format_args args);  // OK
 
    format_args args = make_format_args(42);  // Error: dangling reference
 
    format_args args = make_format_args();  // Error: dangling reference
 
  \endrst
 
 */
 
template <typename Context> class basic_format_args {
 
@@ -1980,7 +1997,7 @@ template <typename Context> class basic_
 
/** An alias to ``basic_format_args<format_context>``. */
 
// A separate type would result in shorter symbols but break ABI compatibility
 
// between clang and gcc on ARM (#1919).
 
FMT_MODULE_EXPORT using format_args = basic_format_args<format_context>;
 
FMT_EXPORT using format_args = basic_format_args<format_context>;
 

	
 
// We cannot use enum classes as bit fields because of a gcc bug, so we put them
 
// in namespaces instead (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414).
 
@@ -2312,9 +2329,12 @@ FMT_CONSTEXPR FMT_INLINE auto parse_form
 
    dynamic_format_specs<Char>& specs;
 
    type arg_type;
 

	
 
    FMT_CONSTEXPR auto operator()(pres type, int set) -> const Char* {
 
      if (!in(arg_type, set)) throw_format_error("invalid format specifier");
 
      specs.type = type;
 
    FMT_CONSTEXPR auto operator()(pres pres_type, int set) -> const Char* {
 
      if (!in(arg_type, set)) {
 
        if (arg_type == type::none_type) return begin;
 
        throw_format_error("invalid format specifier");
 
      }
 
      specs.type = pres_type;
 
      return begin + 1;
 
    }
 
  } parse_presentation_type{begin, specs, arg_type};
 
@@ -2331,6 +2351,7 @@ FMT_CONSTEXPR FMT_INLINE auto parse_form
 
    case '+':
 
    case '-':
 
    case ' ':
 
      if (arg_type == type::none_type) return begin;
 
      enter_state(state::sign, in(arg_type, sint_set | float_set));
 
      switch (c) {
 
      case '+':
 
@@ -2346,14 +2367,17 @@ FMT_CONSTEXPR FMT_INLINE auto parse_form
 
      ++begin;
 
      break;
 
    case '#':
 
      if (arg_type == type::none_type) return begin;
 
      enter_state(state::hash, is_arithmetic_type(arg_type));
 
      specs.alt = true;
 
      ++begin;
 
      break;
 
    case '0':
 
      enter_state(state::zero);
 
      if (!is_arithmetic_type(arg_type))
 
      if (!is_arithmetic_type(arg_type)) {
 
        if (arg_type == type::none_type) return begin;
 
        throw_format_error("format specifier requires numeric argument");
 
      }
 
      if (specs.align == align::none) {
 
        // Ignore 0 if align is specified for compatibility with std::format.
 
        specs.align = align::numeric;
 
@@ -2375,12 +2399,14 @@ FMT_CONSTEXPR FMT_INLINE auto parse_form
 
      begin = parse_dynamic_spec(begin, end, specs.width, specs.width_ref, ctx);
 
      break;
 
    case '.':
 
      if (arg_type == type::none_type) return begin;
 
      enter_state(state::precision,
 
                  in(arg_type, float_set | string_set | cstring_set));
 
      begin = parse_precision(begin, end, specs.precision, specs.precision_ref,
 
                              ctx);
 
      break;
 
    case 'L':
 
      if (arg_type == type::none_type) return begin;
 
      enter_state(state::locale, is_arithmetic_type(arg_type));
 
      specs.localized = true;
 
      ++begin;
 
@@ -2414,6 +2440,8 @@ FMT_CONSTEXPR FMT_INLINE auto parse_form
 
    case 'G':
 
      return parse_presentation_type(pres::general_upper, float_set);
 
    case 'c':
 
      if (arg_type == type::bool_type)
 
        throw_format_error("invalid format specifier");
 
      return parse_presentation_type(pres::chr, integral_set);
 
    case 's':
 
      return parse_presentation_type(pres::string,
 
@@ -2552,7 +2580,17 @@ FMT_CONSTEXPR auto parse_format_specs(Pa
 
      mapped_type_constant<T, context>::value != type::custom_type,
 
      decltype(arg_mapper<context>().map(std::declval<const T&>())),
 
      typename strip_named_arg<T>::type>;
 
#if defined(__cpp_if_constexpr)
 
  if constexpr (std::is_default_constructible<
 
                    formatter<mapped_type, char_type>>::value) {
 
    return formatter<mapped_type, char_type>().parse(ctx);
 
  } else {
 
    type_is_unformattable_for<T, char_type> _;
 
    return ctx.begin();
 
  }
 
#else
 
  return formatter<mapped_type, char_type>().parse(ctx);
 
#endif
 
}
 

	
 
// Checks char specs and returns true iff the presentation type is char-like.
 
@@ -2568,8 +2606,6 @@ FMT_CONSTEXPR auto check_char_specs(cons
 
  return true;
 
}
 

	
 
constexpr FMT_INLINE_VARIABLE int invalid_arg_index = -1;
 

	
 
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
 
template <int N, typename T, typename... Args, typename Char>
 
constexpr auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
 
@@ -2579,7 +2615,7 @@ constexpr auto get_arg_index_by_name(bas
 
  if constexpr (sizeof...(Args) > 0)
 
    return get_arg_index_by_name<N + 1, Args...>(name);
 
  (void)name;  // Workaround an MSVC bug about "unused" parameter.
 
  return invalid_arg_index;
 
  return -1;
 
}
 
#endif
 

	
 
@@ -2590,7 +2626,7 @@ FMT_CONSTEXPR auto get_arg_index_by_name
 
    return get_arg_index_by_name<0, Args...>(name);
 
#endif
 
  (void)name;
 
  return invalid_arg_index;
 
  return -1;
 
}
 

	
 
template <typename Char, typename... Args> class format_string_checker {
 
@@ -2604,15 +2640,15 @@ template <typename Char, typename... Arg
 
  // needed for compile-time checks: https://godbolt.org/z/GvWzcTjh1.
 
  using parse_func = const Char* (*)(parse_context_type&);
 

	
 
  type types_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
 
  parse_context_type context_;
 
  parse_func parse_funcs_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
 
  type types_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
 

	
 
 public:
 
  explicit FMT_CONSTEXPR format_string_checker(basic_string_view<Char> fmt)
 
      : context_(fmt, num_args, types_),
 
        parse_funcs_{&parse_format_specs<Args, parse_context_type>...},
 
        types_{mapped_type_constant<Args, buffer_context<Char>>::value...} {}
 
      : types_{mapped_type_constant<Args, buffer_context<Char>>::value...},
 
        context_(fmt, num_args, types_),
 
        parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {}
 

	
 
  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
 

	
 
@@ -2623,7 +2659,7 @@ template <typename Char, typename... Arg
 
  FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
 
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
 
    auto index = get_arg_index_by_name<Args...>(id);
 
    if (index == invalid_arg_index) on_error("named argument is not found");
 
    if (index < 0) on_error("named argument is not found");
 
    return index;
 
#else
 
    (void)id;
 
@@ -2632,7 +2668,9 @@ template <typename Char, typename... Arg
 
#endif
 
  }
 

	
 
  FMT_CONSTEXPR void on_replacement_field(int, const Char*) {}
 
  FMT_CONSTEXPR void on_replacement_field(int id, const Char* begin) {
 
    on_format_specs(id, begin, begin);  // Call parse() on empty specs.
 
  }
 

	
 
  FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*)
 
      -> const Char* {
 
@@ -2669,7 +2707,9 @@ template <typename Char = char> struct v
 
  using type = basic_format_args<
 
      basic_format_context<std::back_insert_iterator<buffer<Char>>, Char>>;
 
};
 
template <> struct vformat_args<char> { using type = format_args; };
 
template <> struct vformat_args<char> {
 
  using type = format_args;
 
};
 

	
 
// Use vformat_args and avoid type_identity to keep symbols short.
 
template <typename Char>
 
@@ -2715,27 +2755,6 @@ struct formatter<T, Char,
 
      -> decltype(ctx.out());
 
};
 

	
 
#define FMT_FORMAT_AS(Type, Base)                                        \
 
  template <typename Char>                                               \
 
  struct formatter<Type, Char> : formatter<Base, Char> {                 \
 
    template <typename FormatContext>                                    \
 
    auto format(const Type& val, FormatContext& ctx) const               \
 
        -> decltype(ctx.out()) {                                         \
 
      return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \
 
    }                                                                    \
 
  }
 

	
 
FMT_FORMAT_AS(signed char, int);
 
FMT_FORMAT_AS(unsigned char, unsigned);
 
FMT_FORMAT_AS(short, int);
 
FMT_FORMAT_AS(unsigned short, unsigned);
 
FMT_FORMAT_AS(long, long long);
 
FMT_FORMAT_AS(unsigned long, unsigned long long);
 
FMT_FORMAT_AS(Char*, const Char*);
 
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
 
FMT_FORMAT_AS(std::nullptr_t, const void*);
 
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
 

	
 
template <typename Char = char> struct runtime_format_string {
 
  basic_string_view<Char> str;
 
};
src/3rdparty/fmt/format-inl.h
Show inline comments
 
@@ -18,7 +18,7 @@
 
#  include <locale>
 
#endif
 

	
 
#ifdef _WIN32
 
#if defined(_WIN32) && !defined(FMT_WINDOWS_NO_WCHAR)
 
#  include <io.h>  // _isatty
 
#endif
 

	
 
@@ -58,8 +58,8 @@ FMT_FUNC void format_error_code(detail::
 
  error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
 
  auto it = buffer_appender<char>(out);
 
  if (message.size() <= inline_buffer_size - error_code_size)
 
    format_to(it, FMT_STRING("{}{}"), message, SEP);
 
  format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code);
 
    fmt::format_to(it, FMT_STRING("{}{}"), message, SEP);
 
  fmt::format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code);
 
  FMT_ASSERT(out.size() <= inline_buffer_size, "");
 
}
 

	
 
@@ -73,9 +73,8 @@ FMT_FUNC void report_error(format_func f
 
}
 

	
 
// A wrapper around fwrite that throws on error.
 
inline void fwrite_fully(const void* ptr, size_t size, size_t count,
 
                         FILE* stream) {
 
  size_t written = std::fwrite(ptr, size, count, stream);
 
inline void fwrite_fully(const void* ptr, size_t count, FILE* stream) {
 
  size_t written = std::fwrite(ptr, 1, count, stream);
 
  if (written < count)
 
    FMT_THROW(system_error(errno, FMT_STRING("cannot write to file")));
 
}
 
@@ -86,7 +85,7 @@ locale_ref::locale_ref(const Locale& loc
 
  static_assert(std::is_same<Locale, std::locale>::value, "");
 
}
 

	
 
template <typename Locale> Locale locale_ref::get() const {
 
template <typename Locale> auto locale_ref::get() const -> Locale {
 
  static_assert(std::is_same<Locale, std::locale>::value, "");
 
  return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
 
}
 
@@ -98,7 +97,8 @@ FMT_FUNC auto thousands_sep_impl(locale_
 
  auto thousands_sep = grouping.empty() ? Char() : facet.thousands_sep();
 
  return {std::move(grouping), thousands_sep};
 
}
 
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
 
template <typename Char>
 
FMT_FUNC auto decimal_point_impl(locale_ref loc) -> Char {
 
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
 
      .decimal_point();
 
}
 
@@ -144,24 +144,25 @@ FMT_API FMT_FUNC auto format_facet<std::
 
}
 
#endif
 

	
 
FMT_FUNC std::system_error vsystem_error(int error_code, string_view fmt,
 
                                         format_args args) {
 
FMT_FUNC auto vsystem_error(int error_code, string_view fmt, format_args args)
 
    -> std::system_error {
 
  auto ec = std::error_code(error_code, std::generic_category());
 
  return std::system_error(ec, vformat(fmt, args));
 
}
 

	
 
namespace detail {
 

	
 
template <typename F> inline bool operator==(basic_fp<F> x, basic_fp<F> y) {
 
template <typename F>
 
inline auto operator==(basic_fp<F> x, basic_fp<F> y) -> bool {
 
  return x.f == y.f && x.e == y.e;
 
}
 

	
 
// Compilers should be able to optimize this into the ror instruction.
 
FMT_CONSTEXPR inline uint32_t rotr(uint32_t n, uint32_t r) noexcept {
 
FMT_CONSTEXPR inline auto rotr(uint32_t n, uint32_t r) noexcept -> uint32_t {
 
  r &= 31;
 
  return (n >> r) | (n << (32 - r));
 
}
 
FMT_CONSTEXPR inline uint64_t rotr(uint64_t n, uint32_t r) noexcept {
 
FMT_CONSTEXPR inline auto rotr(uint64_t n, uint32_t r) noexcept -> uint64_t {
 
  r &= 63;
 
  return (n >> r) | (n << (64 - r));
 
}
 
@@ -170,14 +171,14 @@ FMT_CONSTEXPR inline uint64_t rotr(uint6
 
namespace dragonbox {
 
// Computes upper 64 bits of multiplication of a 32-bit unsigned integer and a
 
// 64-bit unsigned integer.
 
inline uint64_t umul96_upper64(uint32_t x, uint64_t y) noexcept {
 
inline auto umul96_upper64(uint32_t x, uint64_t y) noexcept -> uint64_t {
 
  return umul128_upper64(static_cast<uint64_t>(x) << 32, y);
 
}
 

	
 
// Computes lower 128 bits of multiplication of a 64-bit unsigned integer and a
 
// 128-bit unsigned integer.
 
inline uint128_fallback umul192_lower128(uint64_t x,
 
                                         uint128_fallback y) noexcept {
 
inline auto umul192_lower128(uint64_t x, uint128_fallback y) noexcept
 
    -> uint128_fallback {
 
  uint64_t high = x * y.high();
 
  uint128_fallback high_low = umul128(x, y.low());
 
  return {high + high_low.high(), high_low.low()};
 
@@ -185,12 +186,12 @@ inline uint128_fallback umul192_lower128
 

	
 
// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
 
// 64-bit unsigned integer.
 
inline uint64_t umul96_lower64(uint32_t x, uint64_t y) noexcept {
 
inline auto umul96_lower64(uint32_t x, uint64_t y) noexcept -> uint64_t {
 
  return x * y;
 
}
 

	
 
// Various fast log computations.
 
inline int floor_log10_pow2_minus_log10_4_over_3(int e) noexcept {
 
inline auto floor_log10_pow2_minus_log10_4_over_3(int e) noexcept -> int {
 
  FMT_ASSERT(e <= 2936 && e >= -2985, "too large exponent");
 
  return (e * 631305 - 261663) >> 21;
 
}
 
@@ -204,7 +205,7 @@ FMT_INLINE_VARIABLE constexpr struct {
 
// divisible by pow(10, N).
 
// Precondition: n <= pow(10, N + 1).
 
template <int N>
 
bool check_divisibility_and_divide_by_pow10(uint32_t& n) noexcept {
 
auto check_divisibility_and_divide_by_pow10(uint32_t& n) noexcept -> bool {
 
  // The numbers below are chosen such that:
 
  //   1. floor(n/d) = floor(nm / 2^k) where d=10 or d=100,
 
  //   2. nm mod 2^k < m if and only if n is divisible by d,
 
@@ -229,7 +230,7 @@ bool check_divisibility_and_divide_by_po
 

	
 
// Computes floor(n / pow(10, N)) for small n and N.
 
// Precondition: n <= pow(10, N + 1).
 
template <int N> uint32_t small_division_by_pow10(uint32_t n) noexcept {
 
template <int N> auto small_division_by_pow10(uint32_t n) noexcept -> uint32_t {
 
  constexpr auto info = div_small_pow10_infos[N - 1];
 
  FMT_ASSERT(n <= info.divisor * 10, "n is too large");
 
  constexpr uint32_t magic_number =
 
@@ -238,12 +239,12 @@ template <int N> uint32_t small_division
 
}
 

	
 
// Computes floor(n / 10^(kappa + 1)) (float)
 
inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) noexcept {
 
inline auto divide_by_10_to_kappa_plus_1(uint32_t n) noexcept -> uint32_t {
 
  // 1374389535 = ceil(2^37/100)
 
  return static_cast<uint32_t>((static_cast<uint64_t>(n) * 1374389535) >> 37);
 
}
 
// Computes floor(n / 10^(kappa + 1)) (double)
 
inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) noexcept {
 
inline auto divide_by_10_to_kappa_plus_1(uint64_t n) noexcept -> uint64_t {
 
  // 2361183241434822607 = ceil(2^(64+7)/1000)
 
  return umul128_upper64(n, 2361183241434822607ull) >> 7;
 
}
 
@@ -255,7 +256,7 @@ template <> struct cache_accessor<float>
 
  using carrier_uint = float_info<float>::carrier_uint;
 
  using cache_entry_type = uint64_t;
 

	
 
  static uint64_t get_cached_power(int k) noexcept {
 
  static auto get_cached_power(int k) noexcept -> uint64_t {
 
    FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k,
 
               "k is out of range");
 
    static constexpr const uint64_t pow10_significands[] = {
 
@@ -297,20 +298,23 @@ template <> struct cache_accessor<float>
 
    bool is_integer;
 
  };
 

	
 
  static compute_mul_result compute_mul(
 
      carrier_uint u, const cache_entry_type& cache) noexcept {
 
  static auto compute_mul(carrier_uint u,
 
                          const cache_entry_type& cache) noexcept
 
      -> compute_mul_result {
 
    auto r = umul96_upper64(u, cache);
 
    return {static_cast<carrier_uint>(r >> 32),
 
            static_cast<carrier_uint>(r) == 0};
 
  }
 

	
 
  static uint32_t compute_delta(const cache_entry_type& cache,
 
                                int beta) noexcept {
 
  static auto compute_delta(const cache_entry_type& cache, int beta) noexcept
 
      -> uint32_t {
 
    return static_cast<uint32_t>(cache >> (64 - 1 - beta));
 
  }
 

	
 
  static compute_mul_parity_result compute_mul_parity(
 
      carrier_uint two_f, const cache_entry_type& cache, int beta) noexcept {
 
  static auto compute_mul_parity(carrier_uint two_f,
 
                                 const cache_entry_type& cache,
 
                                 int beta) noexcept
 
      -> compute_mul_parity_result {
 
    FMT_ASSERT(beta >= 1, "");
 
    FMT_ASSERT(beta < 64, "");
 

	
 
@@ -319,22 +323,22 @@ template <> struct cache_accessor<float>
 
            static_cast<uint32_t>(r >> (32 - beta)) == 0};
 
  }
 

	
 
  static carrier_uint compute_left_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept {
 
  static auto compute_left_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
 
    return static_cast<carrier_uint>(
 
        (cache - (cache >> (num_significand_bits<float>() + 2))) >>
 
        (64 - num_significand_bits<float>() - 1 - beta));
 
  }
 

	
 
  static carrier_uint compute_right_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept {
 
  static auto compute_right_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
 
    return static_cast<carrier_uint>(
 
        (cache + (cache >> (num_significand_bits<float>() + 1))) >>
 
        (64 - num_significand_bits<float>() - 1 - beta));
 
  }
 

	
 
  static carrier_uint compute_round_up_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept {
 
  static auto compute_round_up_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
 
    return (static_cast<carrier_uint>(
 
                cache >> (64 - num_significand_bits<float>() - 2 - beta)) +
 
            1) /
 
@@ -346,7 +350,7 @@ template <> struct cache_accessor<double
 
  using carrier_uint = float_info<double>::carrier_uint;
 
  using cache_entry_type = uint128_fallback;
 

	
 
  static uint128_fallback get_cached_power(int k) noexcept {
 
  static auto get_cached_power(int k) noexcept -> uint128_fallback {
 
    FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k,
 
               "k is out of range");
 

	
 
@@ -985,8 +989,7 @@ template <> struct cache_accessor<double
 
      {0xe0accfa875af45a7, 0x93eb1b80a33b8606},
 
      {0x8c6c01c9498d8b88, 0xbc72f130660533c4},
 
      {0xaf87023b9bf0ee6a, 0xeb8fad7c7f8680b5},
 
      { 0xdb68c2ca82ed2a05,
 
        0xa67398db9f6820e2 }
 
      {0xdb68c2ca82ed2a05, 0xa67398db9f6820e2},
 
#else
 
      {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
 
      {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
 
@@ -1071,19 +1074,22 @@ template <> struct cache_accessor<double
 
    bool is_integer;
 
  };
 

	
 
  static compute_mul_result compute_mul(
 
      carrier_uint u, const cache_entry_type& cache) noexcept {
 
  static auto compute_mul(carrier_uint u,
 
                          const cache_entry_type& cache) noexcept
 
      -> compute_mul_result {
 
    auto r = umul192_upper128(u, cache);
 
    return {r.high(), r.low() == 0};
 
  }
 

	
 
  static uint32_t compute_delta(cache_entry_type const& cache,
 
                                int beta) noexcept {
 
  static auto compute_delta(cache_entry_type const& cache, int beta) noexcept
 
      -> uint32_t {
 
    return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta));
 
  }
 

	
 
  static compute_mul_parity_result compute_mul_parity(
 
      carrier_uint two_f, const cache_entry_type& cache, int beta) noexcept {
 
  static auto compute_mul_parity(carrier_uint two_f,
 
                                 const cache_entry_type& cache,
 
                                 int beta) noexcept
 
      -> compute_mul_parity_result {
 
    FMT_ASSERT(beta >= 1, "");
 
    FMT_ASSERT(beta < 64, "");
 

	
 
@@ -1092,35 +1098,35 @@ template <> struct cache_accessor<double
 
            ((r.high() << beta) | (r.low() >> (64 - beta))) == 0};
 
  }
 

	
 
  static carrier_uint compute_left_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept {
 
  static auto compute_left_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
 
    return (cache.high() -
 
            (cache.high() >> (num_significand_bits<double>() + 2))) >>
 
           (64 - num_significand_bits<double>() - 1 - beta);
 
  }
 

	
 
  static carrier_uint compute_right_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept {
 
  static auto compute_right_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
 
    return (cache.high() +
 
            (cache.high() >> (num_significand_bits<double>() + 1))) >>
 
           (64 - num_significand_bits<double>() - 1 - beta);
 
  }
 

	
 
  static carrier_uint compute_round_up_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept {
 
  static auto compute_round_up_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
 
    return ((cache.high() >> (64 - num_significand_bits<double>() - 2 - beta)) +
 
            1) /
 
           2;
 
  }
 
};
 

	
 
FMT_FUNC uint128_fallback get_cached_power(int k) noexcept {
 
FMT_FUNC auto get_cached_power(int k) noexcept -> uint128_fallback {
 
  return cache_accessor<double>::get_cached_power(k);
 
}
 

	
 
// Various integer checks
 
template <typename T>
 
bool is_left_endpoint_integer_shorter_interval(int exponent) noexcept {
 
auto is_left_endpoint_integer_shorter_interval(int exponent) noexcept -> bool {
 
  const int case_shorter_interval_left_endpoint_lower_threshold = 2;
 
  const int case_shorter_interval_left_endpoint_upper_threshold = 3;
 
  return exponent >= case_shorter_interval_left_endpoint_lower_threshold &&
 
@@ -1128,16 +1134,12 @@ bool is_left_endpoint_integer_shorter_in
 
}
 

	
 
// Remove trailing zeros from n and return the number of zeros removed (float)
 
FMT_INLINE int remove_trailing_zeros(uint32_t& n) noexcept {
 
FMT_INLINE int remove_trailing_zeros(uint32_t& n, int s = 0) noexcept {
 
  FMT_ASSERT(n != 0, "");
 
  // Modular inverse of 5 (mod 2^32): (mod_inv_5 * 5) mod 2^32 = 1.
 
  // See https://github.com/fmtlib/fmt/issues/3163 for more details.
 
  const uint32_t mod_inv_5 = 0xcccccccd;
 
  // Casts are needed to workaround a bug in MSVC 19.22 and older.
 
  const uint32_t mod_inv_25 =
 
      static_cast<uint32_t>(uint64_t(mod_inv_5) * mod_inv_5);
 
  constexpr uint32_t mod_inv_5 = 0xcccccccd;
 
  constexpr uint32_t mod_inv_25 = 0xc28f5c29;  // = mod_inv_5 * mod_inv_5
 

	
 
  int s = 0;
 
  while (true) {
 
    auto q = rotr(n * mod_inv_25, 2);
 
    if (q > max_value<uint32_t>() / 100) break;
 
@@ -1162,32 +1164,17 @@ FMT_INLINE int remove_trailing_zeros(uin
 

	
 
  // Is n is divisible by 10^8?
 
  if ((nm.high() & ((1ull << (90 - 64)) - 1)) == 0 && nm.low() < magic_number) {
 
    // If yes, work with the quotient.
 
    // If yes, work with the quotient...
 
    auto n32 = static_cast<uint32_t>(nm.high() >> (90 - 64));
 

	
 
    const uint32_t mod_inv_5 = 0xcccccccd;
 
    const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5;
 

	
 
    int s = 8;
 
    while (true) {
 
      auto q = rotr(n32 * mod_inv_25, 2);
 
      if (q > max_value<uint32_t>() / 100) break;
 
      n32 = q;
 
      s += 2;
 
    }
 
    auto q = rotr(n32 * mod_inv_5, 1);
 
    if (q <= max_value<uint32_t>() / 10) {
 
      n32 = q;
 
      s |= 1;
 
    }
 

	
 
    // ... and use the 32 bit variant of the function
 
    int s = remove_trailing_zeros(n32, 8);
 
    n = n32;
 
    return s;
 
  }
 

	
 
  // If n is not divisible by 10^8, work with n itself.
 
  const uint64_t mod_inv_5 = 0xcccccccccccccccd;
 
  const uint64_t mod_inv_25 = mod_inv_5 * mod_inv_5;
 
  constexpr uint64_t mod_inv_5 = 0xcccccccccccccccd;
 
  constexpr uint64_t mod_inv_25 = 0x8f5c28f5c28f5c29;  // mod_inv_5 * mod_inv_5
 

	
 
  int s = 0;
 
  while (true) {
 
@@ -1253,7 +1240,7 @@ FMT_INLINE decimal_fp<T> shorter_interva
 
  return ret_value;
 
}
 

	
 
template <typename T> decimal_fp<T> to_decimal(T x) noexcept {
 
template <typename T> auto to_decimal(T x) noexcept -> decimal_fp<T> {
 
  // Step 1: integer promotion & Schubfach multiplier calculation.
 

	
 
  using carrier_uint = typename float_info<T>::carrier_uint;
 
@@ -1392,15 +1379,15 @@ template <> struct formatter<detail::big
 
    for (auto i = n.bigits_.size(); i > 0; --i) {
 
      auto value = n.bigits_[i - 1u];
 
      if (first) {
 
        out = format_to(out, FMT_STRING("{:x}"), value);
 
        out = fmt::format_to(out, FMT_STRING("{:x}"), value);
 
        first = false;
 
        continue;
 
      }
 
      out = format_to(out, FMT_STRING("{:08x}"), value);
 
      out = fmt::format_to(out, FMT_STRING("{:08x}"), value);
 
    }
 
    if (n.exp_ > 0)
 
      out = format_to(out, FMT_STRING("p{}"),
 
                      n.exp_ * detail::bigint::bigit_bits);
 
      out = fmt::format_to(out, FMT_STRING("p{}"),
 
                           n.exp_ * detail::bigint::bigit_bits);
 
    return out;
 
  }
 
};
 
@@ -1436,7 +1423,7 @@ FMT_FUNC void report_system_error(int er
 
  report_error(format_system_error, error_code, message);
 
}
 

	
 
FMT_FUNC std::string vformat(string_view fmt, format_args args) {
 
FMT_FUNC auto vformat(string_view fmt, format_args args) -> std::string {
 
  // Don't optimize the "{}" case to keep the binary size small and because it
 
  // can be better optimized in fmt::format anyway.
 
  auto buffer = memory_buffer();
 
@@ -1445,33 +1432,38 @@ FMT_FUNC std::string vformat(string_view
 
}
 

	
 
namespace detail {
 
#ifndef _WIN32
 
FMT_FUNC bool write_console(std::FILE*, string_view) { return false; }
 
#if !defined(_WIN32) || defined(FMT_WINDOWS_NO_WCHAR)
 
FMT_FUNC auto write_console(int, string_view) -> bool { return false; }
 
#else
 
using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>;
 
extern "C" __declspec(dllimport) int __stdcall WriteConsoleW(  //
 
    void*, const void*, dword, dword*, void*);
 

	
 
FMT_FUNC bool write_console(std::FILE* f, string_view text) {
 
  auto fd = _fileno(f);
 
  if (!_isatty(fd)) return false;
 
FMT_FUNC bool write_console(int fd, string_view text) {
 
  auto u16 = utf8_to_utf16(text);
 
  auto written = dword();
 
  return WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)), u16.c_str(),
 
                       static_cast<uint32_t>(u16.size()), &written, nullptr);
 
                       static_cast<dword>(u16.size()), nullptr, nullptr) != 0;
 
}
 
#endif
 

	
 
#ifdef _WIN32
 
// Print assuming legacy (non-Unicode) encoding.
 
FMT_FUNC void vprint_mojibake(std::FILE* f, string_view fmt, format_args args) {
 
  auto buffer = memory_buffer();
 
  detail::vformat_to(buffer, fmt,
 
                     basic_format_args<buffer_context<char>>(args));
 
  fwrite_fully(buffer.data(), 1, buffer.size(), f);
 
  detail::vformat_to(buffer, fmt, args);
 
  fwrite_fully(buffer.data(), buffer.size(), f);
 
}
 
#endif
 

	
 
FMT_FUNC void print(std::FILE* f, string_view text) {
 
  if (!write_console(f, text)) fwrite_fully(text.data(), 1, text.size(), f);
 
#ifdef _WIN32
 
  int fd = _fileno(f);
 
  if (_isatty(fd)) {
 
    std::fflush(f);
 
    if (write_console(fd, text)) return;
 
  }
 
#endif
 
  fwrite_fully(text.data(), text.size(), f);
 
}
 
}  // namespace detail
 

	
src/3rdparty/fmt/format.h
Show inline comments
 
@@ -43,14 +43,15 @@
 
#include <system_error>      // std::system_error
 

	
 
#ifdef __cpp_lib_bit_cast
 
#  include <bit>  // std::bitcast
 
#  include <bit>  // std::bit_cast
 
#endif
 

	
 
#include "core.h"
 

	
 
#ifndef FMT_BEGIN_DETAIL_NAMESPACE
 
#  define FMT_BEGIN_DETAIL_NAMESPACE namespace detail {
 
#  define FMT_END_DETAIL_NAMESPACE }
 
#if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
 
#  define FMT_INLINE_VARIABLE inline
 
#else
 
#  define FMT_INLINE_VARIABLE
 
#endif
 

	
 
#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
 
@@ -78,16 +79,25 @@
 
#  endif
 
#endif
 

	
 
#if FMT_GCC_VERSION
 
#  define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
 
#else
 
#  define FMT_GCC_VISIBILITY_HIDDEN
 
#ifndef FMT_NO_UNIQUE_ADDRESS
 
#  if FMT_CPLUSPLUS >= 202002L
 
#    if FMT_HAS_CPP_ATTRIBUTE(no_unique_address)
 
#      define FMT_NO_UNIQUE_ADDRESS [[no_unique_address]]
 
// VS2019 v16.10 and later except clang-cl (https://reviews.llvm.org/D110485)
 
#    elif (FMT_MSC_VERSION >= 1929) && !FMT_CLANG_VERSION
 
#      define FMT_NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
 
#    endif
 
#  endif
 
#endif
 

	
 
#ifdef __NVCC__
 
#  define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
 
#ifndef FMT_NO_UNIQUE_ADDRESS
 
#  define FMT_NO_UNIQUE_ADDRESS
 
#endif
 

	
 
// Visibility when compiled as a shared library/object.
 
#if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
 
#  define FMT_SO_VISIBILITY(value) FMT_VISIBILITY(value)
 
#else
 
#  define FMT_CUDA_VERSION 0
 
#  define FMT_SO_VISIBILITY(value)
 
#endif
 

	
 
#ifdef __has_builtin
 
@@ -120,10 +130,8 @@ FMT_END_NAMESPACE
 
#      define FMT_THROW(x) throw x
 
#    endif
 
#  else
 
#    define FMT_THROW(x)               \
 
      do {                             \
 
        FMT_ASSERT(false, (x).what()); \
 
      } while (false)
 
#    define FMT_THROW(x) \
 
      ::fmt::detail::assert_fail(__FILE__, __LINE__, (x).what())
 
#  endif
 
#endif
 

	
 
@@ -145,7 +153,10 @@ FMT_END_NAMESPACE
 

	
 
#ifndef FMT_USE_USER_DEFINED_LITERALS
 
// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
 
#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
 
//
 
// GCC before 4.9 requires a space in `operator"" _a` which is invalid in later
 
// compiler versions.
 
#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 409 || \
 
       FMT_MSC_VERSION >= 1900) &&                                     \
 
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
 
#    define FMT_USE_USER_DEFINED_LITERALS 1
 
@@ -266,19 +277,6 @@ FMT_END_NAMESPACE
 
#endif
 

	
 
FMT_BEGIN_NAMESPACE
 

	
 
template <typename...> struct disjunction : std::false_type {};
 
template <typename P> struct disjunction<P> : P {};
 
template <typename P1, typename... Pn>
 
struct disjunction<P1, Pn...>
 
    : conditional_t<bool(P1::value), P1, disjunction<Pn...>> {};
 

	
 
template <typename...> struct conjunction : std::true_type {};
 
template <typename P> struct conjunction<P> : P {};
 
template <typename P1, typename... Pn>
 
struct conjunction<P1, Pn...>
 
    : conditional_t<bool(P1::value), conjunction<Pn...>, P1> {};
 

	
 
namespace detail {
 

	
 
FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
 
@@ -300,37 +298,6 @@ template <typename CharT, CharT... C>
 
constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)];
 
#endif
 

	
 
template <typename Streambuf> class formatbuf : public Streambuf {
 
 private:
 
  using char_type = typename Streambuf::char_type;
 
  using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0));
 
  using int_type = typename Streambuf::int_type;
 
  using traits_type = typename Streambuf::traits_type;
 

	
 
  buffer<char_type>& buffer_;
 

	
 
 public:
 
  explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {}
 

	
 
 protected:
 
  // The put area is always empty. This makes the implementation simpler and has
 
  // the advantage that the streambuf and the buffer are always in sync and
 
  // sputc never writes into uninitialized memory. A disadvantage is that each
 
  // call to sputc always results in a (virtual) call to overflow. There is no
 
  // disadvantage here for sputn since this always results in a call to xsputn.
 

	
 
  auto overflow(int_type ch) -> int_type override {
 
    if (!traits_type::eq_int_type(ch, traits_type::eof()))
 
      buffer_.push_back(static_cast<char_type>(ch));
 
    return ch;
 
  }
 

	
 
  auto xsputn(const char_type* s, streamsize count) -> streamsize override {
 
    buffer_.append(s, s + count);
 
    return count;
 
  }
 
};
 

	
 
// Implementation of std::bit_cast for pre-C++20.
 
template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
 
FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
 
@@ -362,14 +329,12 @@ class uint128_fallback {
 
 private:
 
  uint64_t lo_, hi_;
 

	
 
  friend uint128_fallback umul128(uint64_t x, uint64_t y) noexcept;
 

	
 
 public:
 
  constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
 
  constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
 

	
 
  constexpr uint64_t high() const noexcept { return hi_; }
 
  constexpr uint64_t low() const noexcept { return lo_; }
 
  constexpr auto high() const noexcept -> uint64_t { return hi_; }
 
  constexpr auto low() const noexcept -> uint64_t { return lo_; }
 

	
 
  template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
 
  constexpr explicit operator T() const {
 
@@ -445,7 +410,7 @@ class uint128_fallback {
 
    hi_ &= n.hi_;
 
  }
 

	
 
  FMT_CONSTEXPR20 uint128_fallback& operator+=(uint64_t n) noexcept {
 
  FMT_CONSTEXPR20 auto operator+=(uint64_t n) noexcept -> uint128_fallback& {
 
    if (is_constant_evaluated()) {
 
      lo_ += n;
 
      hi_ += (lo_ < n ? 1 : 0);
 
@@ -536,6 +501,8 @@ FMT_INLINE void assume(bool condition) {
 
  (void)condition;
 
#if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
 
  __builtin_assume(condition);
 
#elif FMT_GCC_VERSION
 
  if (!condition) __builtin_unreachable();
 
#endif
 
}
 

	
 
@@ -554,20 +521,6 @@ inline auto get_data(Container& c) -> ty
 
  return c.data();
 
}
 

	
 
#if defined(_SECURE_SCL) && _SECURE_SCL
 
// Make a checked iterator to avoid MSVC warnings.
 
template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
 
template <typename T>
 
constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> {
 
  return {p, size};
 
}
 
#else
 
template <typename T> using checked_ptr = T*;
 
template <typename T> constexpr auto make_checked(T* p, size_t) -> T* {
 
  return p;
 
}
 
#endif
 

	
 
// Attempts to reserve space for n extra characters in the output range.
 
// Returns a pointer to the reserved range or a reference to it.
 
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
 
@@ -575,12 +528,12 @@ template <typename Container, FMT_ENABLE
 
__attribute__((no_sanitize("undefined")))
 
#endif
 
inline auto
 
reserve(std::back_insert_iterator<Container> it, size_t n)
 
    -> checked_ptr<typename Container::value_type> {
 
reserve(std::back_insert_iterator<Container> it, size_t n) ->
 
    typename Container::value_type* {
 
  Container& c = get_container(it);
 
  size_t size = c.size();
 
  c.resize(size + n);
 
  return make_checked(get_data(c) + size, n);
 
  return get_data(c) + size;
 
}
 

	
 
template <typename T>
 
@@ -612,8 +565,8 @@ template <typename T> auto to_pointer(bu
 
}
 

	
 
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
 
inline auto base_iterator(std::back_insert_iterator<Container>& it,
 
                          checked_ptr<typename Container::value_type>)
 
inline auto base_iterator(std::back_insert_iterator<Container> it,
 
                          typename Container::value_type*)
 
    -> std::back_insert_iterator<Container> {
 
  return it;
 
}
 
@@ -747,7 +700,7 @@ inline auto compute_width(basic_string_v
 
}
 

	
 
// Computes approximate display width of a UTF-8 string.
 
FMT_CONSTEXPR inline size_t compute_width(string_view s) {
 
FMT_CONSTEXPR inline auto compute_width(string_view s) -> size_t {
 
  size_t num_code_points = 0;
 
  // It is not a lambda for compatibility with C++14.
 
  struct count_code_points {
 
@@ -794,12 +747,17 @@ inline auto code_point_index(basic_strin
 

	
 
// Calculates the index of the nth code point in a UTF-8 string.
 
inline auto code_point_index(string_view s, size_t n) -> size_t {
 
  const char* data = s.data();
 
  size_t num_code_points = 0;
 
  for (size_t i = 0, size = s.size(); i != size; ++i) {
 
    if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i;
 
  }
 
  return s.size();
 
  size_t result = s.size();
 
  const char* begin = s.begin();
 
  for_each_codepoint(s, [begin, &n, &result](uint32_t, string_view sv) {
 
    if (n != 0) {
 
      --n;
 
      return true;
 
    }
 
    result = to_unsigned(sv.begin() - begin);
 
    return false;
 
  });
 
  return result;
 
}
 

	
 
inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
 
@@ -881,7 +839,7 @@ void buffer<T>::append(const U* begin, c
 
    try_reserve(size_ + count);
 
    auto free_cap = capacity_ - size_;
 
    if (free_cap < count) count = free_cap;
 
    std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
 
    std::uninitialized_copy_n(begin, count, ptr_ + size_);
 
    size_ += count;
 
    begin += count;
 
  }
 
@@ -909,7 +867,7 @@ enum { inline_buffer_size = 500 };
 
  **Example**::
 

	
 
     auto out = fmt::memory_buffer();
 
     format_to(std::back_inserter(out), "The answer is {}.", 42);
 
     fmt::format_to(std::back_inserter(out), "The answer is {}.", 42);
 

	
 
  This will append the following output to the ``out`` object:
 

	
 
@@ -926,8 +884,8 @@ class basic_memory_buffer final : public
 
 private:
 
  T store_[SIZE];
 

	
 
  // Don't inherit from Allocator avoid generating type_info for it.
 
  Allocator alloc_;
 
  // Don't inherit from Allocator to avoid generating type_info for it.
 
  FMT_NO_UNIQUE_ADDRESS Allocator alloc_;
 

	
 
  // Deallocate memory allocated by the buffer.
 
  FMT_CONSTEXPR20 void deallocate() {
 
@@ -948,9 +906,10 @@ class basic_memory_buffer final : public
 
    T* old_data = this->data();
 
    T* new_data =
 
        std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
 
    // Suppress a bogus -Wstringop-overflow in gcc 13.1 (#3481).
 
    detail::assume(this->size() <= new_capacity);
 
    // The following code doesn't throw, so the raw pointer above doesn't leak.
 
    std::uninitialized_copy(old_data, old_data + this->size(),
 
                            detail::make_checked(new_data, new_capacity));
 
    std::uninitialized_copy_n(old_data, this->size(), new_data);
 
    this->set(new_data, new_capacity);
 
    // deallocate must not throw according to the standard, but even if it does,
 
    // the buffer already uses the new storage and will deallocate it in
 
@@ -978,8 +937,7 @@ class basic_memory_buffer final : public
 
    size_t size = other.size(), capacity = other.capacity();
 
    if (data == other.store_) {
 
      this->set(store_, capacity);
 
      detail::copy_str<T>(other.store_, other.store_ + size,
 
                          detail::make_checked(store_, capacity));
 
      detail::copy_str<T>(other.store_, other.store_ + size, store_);
 
    } else {
 
      this->set(data, capacity);
 
      // Set pointer to the inline array so that delete is not called
 
@@ -1025,7 +983,6 @@ class basic_memory_buffer final : public
 
  /** Increases the buffer capacity to *new_capacity*. */
 
  void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
 

	
 
  // Directly append data into the buffer
 
  using detail::buffer<T>::append;
 
  template <typename ContiguousRange>
 
  void append(const ContiguousRange& range) {
 
@@ -1041,9 +998,10 @@ struct is_contiguous<basic_memory_buffer
 

	
 
FMT_END_EXPORT
 
namespace detail {
 
FMT_API bool write_console(std::FILE* f, string_view text);
 
FMT_API auto write_console(int fd, string_view text) -> bool;
 
FMT_API void print(std::FILE*, string_view);
 
}  // namespace detail
 

	
 
FMT_BEGIN_EXPORT
 

	
 
// Suppress a misleading warning in older versions of clang.
 
@@ -1052,7 +1010,7 @@ FMT_BEGIN_EXPORT
 
#endif
 

	
 
/** An error reported from a formatting function. */
 
class FMT_API format_error : public std::runtime_error {
 
class FMT_SO_VISIBILITY("default") format_error : public std::runtime_error {
 
 public:
 
  using std::runtime_error::runtime_error;
 
};
 
@@ -1128,7 +1086,7 @@ template <typename Locale> class format_
 
  }
 
};
 

	
 
FMT_BEGIN_DETAIL_NAMESPACE
 
namespace detail {
 

	
 
// Returns true if value is negative, false otherwise.
 
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
 
@@ -1159,13 +1117,13 @@ using uint32_or_64_or_128_t =
 
template <typename T>
 
using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
 

	
 
#define FMT_POWERS_OF_10(factor)                                             \
 
  factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
 
      (factor)*1000000, (factor)*10000000, (factor)*100000000,               \
 
      (factor)*1000000000
 
#define FMT_POWERS_OF_10(factor)                                  \
 
  factor * 10, (factor) * 100, (factor) * 1000, (factor) * 10000, \
 
      (factor) * 100000, (factor) * 1000000, (factor) * 10000000, \
 
      (factor) * 100000000, (factor) * 1000000000
 

	
 
// Converts value in the range [0, 100) to a string.
 
constexpr const char* digits2(size_t value) {
 
constexpr auto digits2(size_t value) -> const char* {
 
  // GCC generates slightly better code when value is pointer-size.
 
  return &"0001020304050607080910111213141516171819"
 
         "2021222324252627282930313233343536373839"
 
@@ -1175,7 +1133,7 @@ constexpr const char* digits2(size_t val
 
}
 

	
 
// Sign is a template parameter to workaround a bug in gcc 4.8.
 
template <typename Char, typename Sign> constexpr Char sign(Sign s) {
 
template <typename Char, typename Sign> constexpr auto sign(Sign s) -> Char {
 
#if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
 
  static_assert(std::is_same<Sign, sign_t>::value, "");
 
#endif
 
@@ -1257,7 +1215,7 @@ FMT_CONSTEXPR auto count_digits(UInt n) 
 
FMT_INLINE auto do_count_digits(uint32_t n) -> int {
 
// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
 
// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
 
#  define FMT_INC(T) (((sizeof(#  T) - 1ull) << 32) - T)
 
#  define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
 
  static constexpr uint64_t table[] = {
 
      FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8
 
      FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64
 
@@ -1393,14 +1351,14 @@ FMT_CONSTEXPR auto format_uint(Char* buf
 
}
 

	
 
template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
 
inline auto format_uint(It out, UInt value, int num_digits, bool upper = false)
 
    -> It {
 
FMT_CONSTEXPR inline auto format_uint(It out, UInt value, int num_digits,
 
                                      bool upper = false) -> It {
 
  if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
 
    format_uint<BASE_BITS>(ptr, value, num_digits, upper);
 
    return out;
 
  }
 
  // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
 
  char buffer[num_bits<UInt>() / BASE_BITS + 1];
 
  char buffer[num_bits<UInt>() / BASE_BITS + 1] = {};
 
  format_uint<BASE_BITS>(buffer, value, num_digits, upper);
 
  return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
 
}
 
@@ -1418,47 +1376,54 @@ class utf8_to_utf16 {
 
  auto str() const -> std::wstring { return {&buffer_[0], size()}; }
 
};
 

	
 
enum class to_utf8_error_policy { abort, replace };
 

	
 
// A converter from UTF-16/UTF-32 (host endian) to UTF-8.
 
template <typename WChar, typename Buffer = memory_buffer>
 
class unicode_to_utf8 {
 
template <typename WChar, typename Buffer = memory_buffer> class to_utf8 {
 
 private:
 
  Buffer buffer_;
 

	
 
 public:
 
  unicode_to_utf8() {}
 
  explicit unicode_to_utf8(basic_string_view<WChar> s) {
 
  to_utf8() {}
 
  explicit to_utf8(basic_string_view<WChar> s,
 
                   to_utf8_error_policy policy = to_utf8_error_policy::abort) {
 
    static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
 
                  "Expect utf16 or utf32");
 

	
 
    if (!convert(s))
 
    if (!convert(s, policy))
 
      FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
 
                                                      : "invalid utf32"));
 
  }
 
  operator string_view() const { return string_view(&buffer_[0], size()); }
 
  size_t size() const { return buffer_.size() - 1; }
 
  const char* c_str() const { return &buffer_[0]; }
 
  std::string str() const { return std::string(&buffer_[0], size()); }
 
  auto size() const -> size_t { return buffer_.size() - 1; }
 
  auto c_str() const -> const char* { return &buffer_[0]; }
 
  auto str() const -> std::string { return std::string(&buffer_[0], size()); }
 

	
 
  // Performs conversion returning a bool instead of throwing exception on
 
  // conversion error. This method may still throw in case of memory allocation
 
  // error.
 
  bool convert(basic_string_view<WChar> s) {
 
    if (!convert(buffer_, s)) return false;
 
  auto convert(basic_string_view<WChar> s,
 
               to_utf8_error_policy policy = to_utf8_error_policy::abort)
 
      -> bool {
 
    if (!convert(buffer_, s, policy)) return false;
 
    buffer_.push_back(0);
 
    return true;
 
  }
 
  static bool convert(Buffer& buf, basic_string_view<WChar> s) {
 
  static auto convert(Buffer& buf, basic_string_view<WChar> s,
 
                      to_utf8_error_policy policy = to_utf8_error_policy::abort)
 
      -> bool {
 
    for (auto p = s.begin(); p != s.end(); ++p) {
 
      uint32_t c = static_cast<uint32_t>(*p);
 
      if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
 
        // surrogate pair
 
        // Handle a surrogate pair.
 
        ++p;
 
        if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
 
          return false;
 
          if (policy == to_utf8_error_policy::abort) return false;
 
          buf.append(string_view("\xEF\xBF\xBD"));
 
          --p;
 
        } else {
 
          c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
 
        }
 
        c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
 
      }
 
      if (c < 0x80) {
 
      } else if (c < 0x80) {
 
        buf.push_back(static_cast<char>(c));
 
      } else if (c < 0x800) {
 
        buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
 
@@ -1481,14 +1446,14 @@ class unicode_to_utf8 {
 
};
 

	
 
// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
 
inline uint128_fallback umul128(uint64_t x, uint64_t y) noexcept {
 
inline auto umul128(uint64_t x, uint64_t y) noexcept -> uint128_fallback {
 
#if FMT_USE_INT128
 
  auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
 
  return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
 
#elif defined(_MSC_VER) && defined(_M_X64)
 
  auto result = uint128_fallback();
 
  result.lo_ = _umul128(x, y, &result.hi_);
 
  return result;
 
  auto hi = uint64_t();
 
  auto lo = _umul128(x, y, &hi);
 
  return {hi, lo};
 
#else
 
  const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
 

	
 
@@ -1512,19 +1477,19 @@ inline uint128_fallback umul128(uint64_t
 
namespace dragonbox {
 
// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
 
// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
 
inline int floor_log10_pow2(int e) noexcept {
 
inline auto floor_log10_pow2(int e) noexcept -> int {
 
  FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
 
  static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
 
  return (e * 315653) >> 20;
 
}
 

	
 
inline int floor_log2_pow10(int e) noexcept {
 
inline auto floor_log2_pow10(int e) noexcept -> int {
 
  FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
 
  return (e * 1741647) >> 19;
 
}
 

	
 
// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
 
inline uint64_t umul128_upper64(uint64_t x, uint64_t y) noexcept {
 
inline auto umul128_upper64(uint64_t x, uint64_t y) noexcept -> uint64_t {
 
#if FMT_USE_INT128
 
  auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
 
  return static_cast<uint64_t>(p >> 64);
 
@@ -1537,14 +1502,14 @@ inline uint64_t umul128_upper64(uint64_t
 

	
 
// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
 
// 128-bit unsigned integer.
 
inline uint128_fallback umul192_upper128(uint64_t x,
 
                                         uint128_fallback y) noexcept {
 
inline auto umul192_upper128(uint64_t x, uint128_fallback y) noexcept
 
    -> uint128_fallback {
 
  uint128_fallback r = umul128(x, y.high());
 
  r += umul128_upper64(x, y.low());
 
  return r;
 
}
 

	
 
FMT_API uint128_fallback get_cached_power(int k) noexcept;
 
FMT_API auto get_cached_power(int k) noexcept -> uint128_fallback;
 

	
 
// Type-specific information that Dragonbox uses.
 
template <typename T, typename Enable = void> struct float_info;
 
@@ -1598,14 +1563,14 @@ template <typename T> FMT_API auto to_de
 
}  // namespace dragonbox
 

	
 
// Returns true iff Float has the implicit bit which is not stored.
 
template <typename Float> constexpr bool has_implicit_bit() {
 
template <typename Float> constexpr auto has_implicit_bit() -> bool {
 
  // An 80-bit FP number has a 64-bit significand an no implicit bit.
 
  return std::numeric_limits<Float>::digits != 64;
 
}
 

	
 
// Returns the number of significand bits stored in Float. The implicit bit is
 
// not counted since it is not stored.
 
template <typename Float> constexpr int num_significand_bits() {
 
template <typename Float> constexpr auto num_significand_bits() -> int {
 
  // std::numeric_limits may not support __float128.
 
  return is_float128<Float>() ? 112
 
                              : (std::numeric_limits<Float>::digits -
 
@@ -1698,7 +1663,7 @@ using fp = basic_fp<unsigned long long>;
 

	
 
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
 
template <int SHIFT = 0, typename F>
 
FMT_CONSTEXPR basic_fp<F> normalize(basic_fp<F> value) {
 
FMT_CONSTEXPR auto normalize(basic_fp<F> value) -> basic_fp<F> {
 
  // Handle subnormals.
 
  const auto implicit_bit = F(1) << num_significand_bits<double>();
 
  const auto shifted_implicit_bit = implicit_bit << SHIFT;
 
@@ -1715,7 +1680,7 @@ FMT_CONSTEXPR basic_fp<F> normalize(basi
 
}
 

	
 
// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
 
FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
 
FMT_CONSTEXPR inline auto multiply(uint64_t lhs, uint64_t rhs) -> uint64_t {
 
#if FMT_USE_INT128
 
  auto product = static_cast<__uint128_t>(lhs) * rhs;
 
  auto f = static_cast<uint64_t>(product >> 64);
 
@@ -1732,124 +1697,13 @@ FMT_CONSTEXPR inline uint64_t multiply(u
 
#endif
 
}
 

	
 
FMT_CONSTEXPR inline fp operator*(fp x, fp y) {
 
FMT_CONSTEXPR inline auto operator*(fp x, fp y) -> fp {
 
  return {multiply(x.f, y.f), x.e + y.e + 64};
 
}
 

	
 
template <typename T = void> struct basic_data {
 
  // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
 
  // These are generated by support/compute-powers.py.
 
  static constexpr uint64_t pow10_significands[87] = {
 
      0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
 
      0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
 
      0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
 
      0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
 
      0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
 
      0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
 
      0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
 
      0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
 
      0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
 
      0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
 
      0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
 
      0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
 
      0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
 
      0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
 
      0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
 
      0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
 
      0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
 
      0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
 
      0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
 
      0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
 
      0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
 
      0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
 
      0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
 
      0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
 
      0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
 
      0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
 
      0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
 
      0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
 
      0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
 
  };
 

	
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
#  pragma GCC diagnostic push
 
#  pragma GCC diagnostic ignored "-Wnarrowing"
 
#endif
 
  // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
 
  // to significands above.
 
  static constexpr int16_t pow10_exponents[87] = {
 
      -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
 
      -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,  -688, -661,
 
      -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,  -422,  -396, -369,
 
      -343,  -316,  -289,  -263,  -236,  -210,  -183,  -157,  -130,  -103, -77,
 
      -50,   -24,   3,     30,    56,    83,    109,   136,   162,   189,  216,
 
      242,   269,   295,   322,   348,   375,   402,   428,   455,   481,  508,
 
      534,   561,   588,   614,   641,   667,   694,   720,   747,   774,  800,
 
      827,   853,   880,   907,   933,   960,   986,   1013,  1039,  1066};
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
#  pragma GCC diagnostic pop
 
#endif
 

	
 
  static constexpr uint64_t power_of_10_64[20] = {
 
      1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL),
 
      10000000000000000000ULL};
 

	
 
  // For checking rounding thresholds.
 
  // The kth entry is chosen to be the smallest integer such that the
 
  // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
 
  static constexpr uint32_t fractional_part_rounding_thresholds[8] = {
 
      2576980378,  // ceil(2^31 + 2^32/10^1)
 
      2190433321,  // ceil(2^31 + 2^32/10^2)
 
      2151778616,  // ceil(2^31 + 2^32/10^3)
 
      2147913145,  // ceil(2^31 + 2^32/10^4)
 
      2147526598,  // ceil(2^31 + 2^32/10^5)
 
      2147487943,  // ceil(2^31 + 2^32/10^6)
 
      2147484078,  // ceil(2^31 + 2^32/10^7)
 
      2147483691   // ceil(2^31 + 2^32/10^8)
 
  };
 
};
 

	
 
#if FMT_CPLUSPLUS < 201703L
 
template <typename T> constexpr uint64_t basic_data<T>::pow10_significands[];
 
template <typename T> constexpr int16_t basic_data<T>::pow10_exponents[];
 
template <typename T> constexpr uint64_t basic_data<T>::power_of_10_64[];
 
template <typename T>
 
constexpr uint32_t basic_data<T>::fractional_part_rounding_thresholds[];
 
#endif
 

	
 
// This is a struct rather than an alias to avoid shadowing warnings in gcc.
 
struct data : basic_data<> {};
 

	
 
// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
 
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
 
FMT_CONSTEXPR inline fp get_cached_power(int min_exponent,
 
                                         int& pow10_exponent) {
 
  const int shift = 32;
 
  // log10(2) = 0x0.4d104d427de7fbcc...
 
  const int64_t significand = 0x4d104d427de7fbcc;
 
  int index = static_cast<int>(
 
      ((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) +
 
       ((int64_t(1) << shift) - 1))  // ceil
 
      >> 32                          // arithmetic shift
 
  );
 
  // Decimal exponent of the first (smallest) cached power of 10.
 
  const int first_dec_exp = -348;
 
  // Difference between 2 consecutive decimal exponents in cached powers of 10.
 
  const int dec_exp_step = 8;
 
  index = (index - first_dec_exp - 1) / dec_exp_step + 1;
 
  pow10_exponent = first_dec_exp + index * dec_exp_step;
 
  // Using *(x + index) instead of x[index] avoids an issue with some compilers
 
  // using the EDG frontend (e.g. nvhpc/22.3 in C++17 mode).
 
  return {*(data::pow10_significands + index),
 
          *(data::pow10_exponents + index)};
 
}
 

	
 
template <typename T>
 
template <typename T, bool doublish = num_bits<T>() == num_bits<double>()>
 
using convert_float_result =
 
    conditional_t<std::is_same<T, float>::value ||
 
                      std::numeric_limits<T>::digits ==
 
                          std::numeric_limits<double>::digits,
 
                  double, T>;
 
    conditional_t<std::is_same<T, float>::value || doublish, double, T>;
 

	
 
template <typename T>
 
constexpr auto convert_float(T value) -> convert_float_result<T> {
 
@@ -1970,7 +1824,7 @@ inline auto find_escape(const char* begi
 
  [] {                                                                        \
 
    /* Use the hidden visibility as a workaround for a GCC bug (#1973). */    \
 
    /* Use a macro-like name to avoid shadowing warnings. */                  \
 
    struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base {              \
 
    struct FMT_VISIBILITY("hidden") FMT_COMPILE_STRING : base {               \
 
      using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \
 
      FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                                 \
 
      operator fmt::basic_string_view<char_type>() const {                    \
 
@@ -2065,11 +1919,13 @@ auto write_escaped_string(OutputIt out, 
 

	
 
template <typename Char, typename OutputIt>
 
auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
 
  Char v_array[1] = {v};
 
  *out++ = static_cast<Char>('\'');
 
  if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
 
      v == static_cast<Char>('\'')) {
 
    out = write_escaped_cp(
 
        out, find_escape_result<Char>{&v, &v + 1, static_cast<uint32_t>(v)});
 
    out = write_escaped_cp(out,
 
                           find_escape_result<Char>{v_array, v_array + 1,
 
                                                    static_cast<uint32_t>(v)});
 
  } else {
 
    *out++ = v;
 
  }
 
@@ -2158,10 +2014,10 @@ template <typename Char> class digit_gro
 
    std::string::const_iterator group;
 
    int pos;
 
  };
 
  next_state initial_state() const { return {grouping_.begin(), 0}; }
 
  auto initial_state() const -> next_state { return {grouping_.begin(), 0}; }
 

	
 
  // Returns the next digit group separator position.
 
  int next(next_state& state) const {
 
  auto next(next_state& state) const -> int {
 
    if (thousands_sep_.empty()) return max_value<int>();
 
    if (state.group == grouping_.end()) return state.pos += grouping_.back();
 
    if (*state.group <= 0 || *state.group == max_value<char>())
 
@@ -2180,9 +2036,9 @@ template <typename Char> class digit_gro
 
  digit_grouping(std::string grouping, std::basic_string<Char> sep)
 
      : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {}
 

	
 
  bool has_separator() const { return !thousands_sep_.empty(); }
 

	
 
  int count_separators(int num_digits) const {
 
  auto has_separator() const -> bool { return !thousands_sep_.empty(); }
 

	
 
  auto count_separators(int num_digits) const -> int {
 
    int count = 0;
 
    auto state = initial_state();
 
    while (num_digits > next(state)) ++count;
 
@@ -2191,7 +2047,7 @@ template <typename Char> class digit_gro
 

	
 
  // Applies grouping to digits and write the output to out.
 
  template <typename Out, typename C>
 
  Out apply(Out out, basic_string_view<C> digits) const {
 
  auto apply(Out out, basic_string_view<C> digits) const -> Out {
 
    auto num_digits = static_cast<int>(digits.size());
 
    auto separators = basic_memory_buffer<int>();
 
    separators.push_back(0);
 
@@ -2214,24 +2070,66 @@ template <typename Char> class digit_gro
 
  }
 
};
 

	
 
FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
 
  prefix |= prefix != 0 ? value << 8 : value;
 
  prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
 
}
 

	
 
// Writes a decimal integer with digit grouping.
 
template <typename OutputIt, typename UInt, typename Char>
 
auto write_int(OutputIt out, UInt value, unsigned prefix,
 
               const format_specs<Char>& specs,
 
               const digit_grouping<Char>& grouping) -> OutputIt {
 
  static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
 
  int num_digits = count_digits(value);
 
  char digits[40];
 
  format_decimal(digits, value, num_digits);
 
  unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits +
 
                              grouping.count_separators(num_digits));
 
  int num_digits = 0;
 
  auto buffer = memory_buffer();
 
  switch (specs.type) {
 
  case presentation_type::none:
 
  case presentation_type::dec: {
 
    num_digits = count_digits(value);
 
    format_decimal<char>(appender(buffer), value, num_digits);
 
    break;
 
  }
 
  case presentation_type::hex_lower:
 
  case presentation_type::hex_upper: {
 
    bool upper = specs.type == presentation_type::hex_upper;
 
    if (specs.alt)
 
      prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
 
    num_digits = count_digits<4>(value);
 
    format_uint<4, char>(appender(buffer), value, num_digits, upper);
 
    break;
 
  }
 
  case presentation_type::bin_lower:
 
  case presentation_type::bin_upper: {
 
    bool upper = specs.type == presentation_type::bin_upper;
 
    if (specs.alt)
 
      prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
 
    num_digits = count_digits<1>(value);
 
    format_uint<1, char>(appender(buffer), value, num_digits);
 
    break;
 
  }
 
  case presentation_type::oct: {
 
    num_digits = count_digits<3>(value);
 
    // Octal prefix '0' is counted as a digit, so only add it if precision
 
    // is not greater than the number of digits.
 
    if (specs.alt && specs.precision <= num_digits && value != 0)
 
      prefix_append(prefix, '0');
 
    format_uint<3, char>(appender(buffer), value, num_digits);
 
    break;
 
  }
 
  case presentation_type::chr:
 
    return write_char(out, static_cast<Char>(value), specs);
 
  default:
 
    throw_format_error("invalid format specifier");
 
  }
 

	
 
  unsigned size = (prefix != 0 ? prefix >> 24 : 0) + to_unsigned(num_digits) +
 
                  to_unsigned(grouping.count_separators(num_digits));
 
  return write_padded<align::right>(
 
      out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
 
        if (prefix != 0) {
 
          char sign = static_cast<char>(prefix);
 
          *it++ = static_cast<Char>(sign);
 
        }
 
        return grouping.apply(it, string_view(digits, to_unsigned(num_digits)));
 
        for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
 
          *it++ = static_cast<Char>(p & 0xff);
 
        return grouping.apply(it, string_view(buffer.data(), buffer.size()));
 
      });
 
}
 

	
 
@@ -2244,11 +2142,6 @@ inline auto write_loc(OutputIt, loc_valu
 
  return false;
 
}
 

	
 
FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
 
  prefix |= prefix != 0 ? value << 8 : value;
 
  prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
 
}
 

	
 
template <typename UInt> struct write_int_arg {
 
  UInt abs_value;
 
  unsigned prefix;
 
@@ -2395,25 +2288,25 @@ class counting_iterator {
 

	
 
  FMT_CONSTEXPR counting_iterator() : count_(0) {}
 

	
 
  FMT_CONSTEXPR size_t count() const { return count_; }
 

	
 
  FMT_CONSTEXPR counting_iterator& operator++() {
 
  FMT_CONSTEXPR auto count() const -> size_t { return count_; }
 

	
 
  FMT_CONSTEXPR auto operator++() -> counting_iterator& {
 
    ++count_;
 
    return *this;
 
  }
 
  FMT_CONSTEXPR counting_iterator operator++(int) {
 
  FMT_CONSTEXPR auto operator++(int) -> counting_iterator {
 
    auto it = *this;
 
    ++*this;
 
    return it;
 
  }
 

	
 
  FMT_CONSTEXPR friend counting_iterator operator+(counting_iterator it,
 
                                                   difference_type n) {
 
  FMT_CONSTEXPR friend auto operator+(counting_iterator it, difference_type n)
 
      -> counting_iterator {
 
    it.count_ += static_cast<size_t>(n);
 
    return it;
 
  }
 

	
 
  FMT_CONSTEXPR value_type operator*() const { return {}; }
 
  FMT_CONSTEXPR auto operator*() const -> value_type { return {}; }
 
};
 

	
 
template <typename Char, typename OutputIt>
 
@@ -2448,9 +2341,10 @@ template <typename Char, typename Output
 
FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
 
                         const format_specs<Char>& specs, locale_ref)
 
    -> OutputIt {
 
  return specs.type != presentation_type::pointer
 
             ? write(out, basic_string_view<Char>(s), specs, {})
 
             : write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
 
  if (specs.type == presentation_type::pointer)
 
    return write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
 
  if (!s) throw_format_error("string pointer is null");
 
  return write(out, basic_string_view<Char>(s), specs, {});
 
}
 

	
 
template <typename Char, typename OutputIt, typename T,
 
@@ -2475,6 +2369,49 @@ FMT_CONSTEXPR auto write(OutputIt out, T
 
  return base_iterator(out, it);
 
}
 

	
 
// DEPRECATED!
 
template <typename Char>
 
FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
 
                               format_specs<Char>& specs) -> const Char* {
 
  FMT_ASSERT(begin != end, "");
 
  auto align = align::none;
 
  auto p = begin + code_point_length(begin);
 
  if (end - p <= 0) p = begin;
 
  for (;;) {
 
    switch (to_ascii(*p)) {
 
    case '<':
 
      align = align::left;
 
      break;
 
    case '>':
 
      align = align::right;
 
      break;
 
    case '^':
 
      align = align::center;
 
      break;
 
    }
 
    if (align != align::none) {
 
      if (p != begin) {
 
        auto c = *begin;
 
        if (c == '}') return begin;
 
        if (c == '{') {
 
          throw_format_error("invalid fill character '{'");
 
          return begin;
 
        }
 
        specs.fill = {begin, to_unsigned(p - begin)};
 
        begin = p + 1;
 
      } else {
 
        ++begin;
 
      }
 
      break;
 
    } else if (p == begin) {
 
      break;
 
    }
 
    p = begin;
 
  }
 
  specs.align = align;
 
  return begin;
 
}
 

	
 
// A floating-point presentation format.
 
enum class float_format : unsigned char {
 
  general,  // General: exponent notation or fixed point based on magnitude.
 
@@ -2493,9 +2430,8 @@ struct float_specs {
 
  bool showpoint : 1;
 
};
 

	
 
template <typename ErrorHandler = error_handler, typename Char>
 
FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs,
 
                                         ErrorHandler&& eh = {})
 
template <typename Char>
 
FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs)
 
    -> float_specs {
 
  auto result = float_specs();
 
  result.showpoint = specs.alt;
 
@@ -2531,7 +2467,7 @@ FMT_CONSTEXPR auto parse_float_type_spec
 
    result.format = float_format::hex;
 
    break;
 
  default:
 
    eh.on_error("invalid format specifier");
 
    throw_format_error("invalid format specifier");
 
    break;
 
  }
 
  return result;
 
@@ -2770,12 +2706,12 @@ template <typename Char> class fallback_
 
 public:
 
  constexpr fallback_digit_grouping(locale_ref, bool) {}
 

	
 
  constexpr bool has_separator() const { return false; }
 

	
 
  constexpr int count_separators(int) const { return 0; }
 
  constexpr auto has_separator() const -> bool { return false; }
 

	
 
  constexpr auto count_separators(int) const -> int { return 0; }
 

	
 
  template <typename Out, typename C>
 
  constexpr Out apply(Out out, basic_string_view<C>) const {
 
  constexpr auto apply(Out out, basic_string_view<C>) const -> Out {
 
    return out;
 
  }
 
};
 
@@ -2794,7 +2730,7 @@ FMT_CONSTEXPR20 auto write_float(OutputI
 
  }
 
}
 

	
 
template <typename T> constexpr bool isnan(T value) {
 
template <typename T> constexpr auto isnan(T value) -> bool {
 
  return !(value >= value);  // std::isnan doesn't support __float128.
 
}
 

	
 
@@ -2807,14 +2743,14 @@ struct has_isfinite<T, enable_if_t<sizeo
 

	
 
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
 
                                        has_isfinite<T>::value)>
 
FMT_CONSTEXPR20 bool isfinite(T value) {
 
FMT_CONSTEXPR20 auto isfinite(T value) -> bool {
 
  constexpr T inf = T(std::numeric_limits<double>::infinity());
 
  if (is_constant_evaluated())
 
    return !detail::isnan(value) && value < inf && value > -inf;
 
  return std::isfinite(value);
 
}
 
template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
 
FMT_CONSTEXPR bool isfinite(T value) {
 
FMT_CONSTEXPR auto isfinite(T value) -> bool {
 
  T inf = T(std::numeric_limits<double>::infinity());
 
  // std::isfinite doesn't support __float128.
 
  return !detail::isnan(value) && value < inf && value > -inf;
 
@@ -2833,78 +2769,6 @@ FMT_INLINE FMT_CONSTEXPR bool signbit(T 
 
  return std::signbit(static_cast<double>(value));
 
}
 

	
 
enum class round_direction { unknown, up, down };
 

	
 
// Given the divisor (normally a power of 10), the remainder = v % divisor for
 
// some number v and the error, returns whether v should be rounded up, down, or
 
// whether the rounding direction can't be determined due to error.
 
// error should be less than divisor / 2.
 
FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor,
 
                                                         uint64_t remainder,
 
                                                         uint64_t error) {
 
  FMT_ASSERT(remainder < divisor, "");  // divisor - remainder won't overflow.
 
  FMT_ASSERT(error < divisor, "");      // divisor - error won't overflow.
 
  FMT_ASSERT(error < divisor - error, "");  // error * 2 won't overflow.
 
  // Round down if (remainder + error) * 2 <= divisor.
 
  if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
 
    return round_direction::down;
 
  // Round up if (remainder - error) * 2 >= divisor.
 
  if (remainder >= error &&
 
      remainder - error >= divisor - (remainder - error)) {
 
    return round_direction::up;
 
  }
 
  return round_direction::unknown;
 
}
 

	
 
namespace digits {
 
enum result {
 
  more,  // Generate more digits.
 
  done,  // Done generating digits.
 
  error  // Digit generation cancelled due to an error.
 
};
 
}
 

	
 
struct gen_digits_handler {
 
  char* buf;
 
  int size;
 
  int precision;
 
  int exp10;
 
  bool fixed;
 

	
 
  FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor,
 
                                        uint64_t remainder, uint64_t error,
 
                                        bool integral) {
 
    FMT_ASSERT(remainder < divisor, "");
 
    buf[size++] = digit;
 
    if (!integral && error >= remainder) return digits::error;
 
    if (size < precision) return digits::more;
 
    if (!integral) {
 
      // Check if error * 2 < divisor with overflow prevention.
 
      // The check is not needed for the integral part because error = 1
 
      // and divisor > (1 << 32) there.
 
      if (error >= divisor || error >= divisor - error) return digits::error;
 
    } else {
 
      FMT_ASSERT(error == 1 && divisor > 2, "");
 
    }
 
    auto dir = get_round_direction(divisor, remainder, error);
 
    if (dir != round_direction::up)
 
      return dir == round_direction::down ? digits::done : digits::error;
 
    ++buf[size - 1];
 
    for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
 
      buf[i] = '0';
 
      ++buf[i - 1];
 
    }
 
    if (buf[0] > '9') {
 
      buf[0] = '1';
 
      if (fixed)
 
        buf[size++] = '0';
 
      else
 
        ++exp10;
 
    }
 
    return digits::done;
 
  }
 
};
 

	
 
inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
 
  // Adjust fixed precision by exponent because it is relative to decimal
 
  // point.
 
@@ -2913,101 +2777,6 @@ inline FMT_CONSTEXPR20 void adjust_preci
 
  precision += exp10;
 
}
 

	
 
// Generates output using the Grisu digit-gen algorithm.
 
// error: the size of the region (lower, upper) outside of which numbers
 
// definitely do not round to value (Delta in Grisu3).
 
FMT_INLINE FMT_CONSTEXPR20 auto grisu_gen_digits(fp value, uint64_t error,
 
                                                 int& exp,
 
                                                 gen_digits_handler& handler)
 
    -> digits::result {
 
  const fp one(1ULL << -value.e, value.e);
 
  // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
 
  // zero because it contains a product of two 64-bit numbers with MSB set (due
 
  // to normalization) - 1, shifted right by at most 60 bits.
 
  auto integral = static_cast<uint32_t>(value.f >> -one.e);
 
  FMT_ASSERT(integral != 0, "");
 
  FMT_ASSERT(integral == value.f >> -one.e, "");
 
  // The fractional part of scaled value (p2 in Grisu) c = value % one.
 
  uint64_t fractional = value.f & (one.f - 1);
 
  exp = count_digits(integral);  // kappa in Grisu.
 
  // Non-fixed formats require at least one digit and no precision adjustment.
 
  if (handler.fixed) {
 
    adjust_precision(handler.precision, exp + handler.exp10);
 
    // Check if precision is satisfied just by leading zeros, e.g.
 
    // format("{:.2f}", 0.001) gives "0.00" without generating any digits.
 
    if (handler.precision <= 0) {
 
      if (handler.precision < 0) return digits::done;
 
      // Divide by 10 to prevent overflow.
 
      uint64_t divisor = data::power_of_10_64[exp - 1] << -one.e;
 
      auto dir = get_round_direction(divisor, value.f / 10, error * 10);
 
      if (dir == round_direction::unknown) return digits::error;
 
      handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0';
 
      return digits::done;
 
    }
 
  }
 
  // Generate digits for the integral part. This can produce up to 10 digits.
 
  do {
 
    uint32_t digit = 0;
 
    auto divmod_integral = [&](uint32_t divisor) {
 
      digit = integral / divisor;
 
      integral %= divisor;
 
    };
 
    // This optimization by Milo Yip reduces the number of integer divisions by
 
    // one per iteration.
 
    switch (exp) {
 
    case 10:
 
      divmod_integral(1000000000);
 
      break;
 
    case 9:
 
      divmod_integral(100000000);
 
      break;
 
    case 8:
 
      divmod_integral(10000000);
 
      break;
 
    case 7:
 
      divmod_integral(1000000);
 
      break;
 
    case 6:
 
      divmod_integral(100000);
 
      break;
 
    case 5:
 
      divmod_integral(10000);
 
      break;
 
    case 4:
 
      divmod_integral(1000);
 
      break;
 
    case 3:
 
      divmod_integral(100);
 
      break;
 
    case 2:
 
      divmod_integral(10);
 
      break;
 
    case 1:
 
      digit = integral;
 
      integral = 0;
 
      break;
 
    default:
 
      FMT_ASSERT(false, "invalid number of digits");
 
    }
 
    --exp;
 
    auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
 
    auto result = handler.on_digit(static_cast<char>('0' + digit),
 
                                   data::power_of_10_64[exp] << -one.e,
 
                                   remainder, error, true);
 
    if (result != digits::more) return result;
 
  } while (exp > 0);
 
  // Generate digits for the fractional part.
 
  for (;;) {
 
    fractional *= 10;
 
    error *= 10;
 
    char digit = static_cast<char>('0' + (fractional >> -one.e));
 
    fractional &= one.f - 1;
 
    --exp;
 
    auto result = handler.on_digit(digit, one.f, fractional, error, false);
 
    if (result != digits::more) return result;
 
  }
 
}
 

	
 
class bigint {
 
 private:
 
  // A bigint is stored as an array of bigits (big digits), with bigit at index
 
@@ -3018,10 +2787,10 @@ class bigint {
 
  basic_memory_buffer<bigit, bigits_capacity> bigits_;
 
  int exp_;
 

	
 
  FMT_CONSTEXPR20 bigit operator[](int index) const {
 
  FMT_CONSTEXPR20 auto operator[](int index) const -> bigit {
 
    return bigits_[to_unsigned(index)];
 
  }
 
  FMT_CONSTEXPR20 bigit& operator[](int index) {
 
  FMT_CONSTEXPR20 auto operator[](int index) -> bigit& {
 
    return bigits_[to_unsigned(index)];
 
  }
 

	
 
@@ -3108,7 +2877,7 @@ class bigint {
 
    auto size = other.bigits_.size();
 
    bigits_.resize(size);
 
    auto data = other.bigits_.data();
 
    std::copy(data, data + size, make_checked(bigits_.data(), size));
 
    copy_str<bigit>(data, data + size, bigits_.data());
 
    exp_ = other.exp_;
 
  }
 

	
 
@@ -3117,11 +2886,11 @@ class bigint {
 
    assign(uint64_or_128_t<Int>(n));
 
  }
 

	
 
  FMT_CONSTEXPR20 int num_bigits() const {
 
  FMT_CONSTEXPR20 auto num_bigits() const -> int {
 
    return static_cast<int>(bigits_.size()) + exp_;
 
  }
 

	
 
  FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) {
 
  FMT_NOINLINE FMT_CONSTEXPR20 auto operator<<=(int shift) -> bigint& {
 
    FMT_ASSERT(shift >= 0, "");
 
    exp_ += shift / bigit_bits;
 
    shift %= bigit_bits;
 
@@ -3136,13 +2905,15 @@ class bigint {
 
    return *this;
 
  }
 

	
 
  template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) {
 
  template <typename Int>
 
  FMT_CONSTEXPR20 auto operator*=(Int value) -> bigint& {
 
    FMT_ASSERT(value > 0, "");
 
    multiply(uint32_or_64_or_128_t<Int>(value));
 
    return *this;
 
  }
 

	
 
  friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) {
 
  friend FMT_CONSTEXPR20 auto compare(const bigint& lhs, const bigint& rhs)
 
      -> int {
 
    int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
 
    if (num_lhs_bigits != num_rhs_bigits)
 
      return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
 
@@ -3159,8 +2930,9 @@ class bigint {
 
  }
 

	
 
  // Returns compare(lhs1 + lhs2, rhs).
 
  friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2,
 
                                         const bigint& rhs) {
 
  friend FMT_CONSTEXPR20 auto add_compare(const bigint& lhs1,
 
                                          const bigint& lhs2, const bigint& rhs)
 
      -> int {
 
    auto minimum = [](int a, int b) { return a < b ? a : b; };
 
    auto maximum = [](int a, int b) { return a > b ? a : b; };
 
    int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits());
 
@@ -3241,13 +3013,13 @@ class bigint {
 
    bigits_.resize(to_unsigned(num_bigits + exp_difference));
 
    for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
 
      bigits_[j] = bigits_[i];
 
    std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
 
    std::uninitialized_fill_n(bigits_.data(), exp_difference, 0u);
 
    exp_ -= exp_difference;
 
  }
 

	
 
  // Divides this bignum by divisor, assigning the remainder to this and
 
  // returning the quotient.
 
  FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) {
 
  FMT_CONSTEXPR20 auto divmod_assign(const bigint& divisor) -> int {
 
    FMT_ASSERT(this != &divisor, "");
 
    if (compare(*this, divisor) < 0) return 0;
 
    FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
 
@@ -3322,6 +3094,7 @@ FMT_CONSTEXPR20 inline void format_drago
 
  }
 
  int even = static_cast<int>((value.f & 1) == 0);
 
  if (!upper) upper = &lower;
 
  bool shortest = num_digits < 0;
 
  if ((flags & dragon::fixup) != 0) {
 
    if (add_compare(numerator, *upper, denominator) + even <= 0) {
 
      --exp10;
 
@@ -3334,7 +3107,7 @@ FMT_CONSTEXPR20 inline void format_drago
 
    if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
 
  }
 
  // Invariant: value == (numerator / denominator) * pow(10, exp10).
 
  if (num_digits < 0) {
 
  if (shortest) {
 
    // Generate the shortest representation.
 
    num_digits = 0;
 
    char* data = buf.data();
 
@@ -3364,7 +3137,7 @@ FMT_CONSTEXPR20 inline void format_drago
 
  }
 
  // Generate the given number of digits.
 
  exp10 -= num_digits - 1;
 
  if (num_digits == 0) {
 
  if (num_digits <= 0) {
 
    denominator *= 10;
 
    auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
 
    buf.push_back(digit);
 
@@ -3389,7 +3162,10 @@ FMT_CONSTEXPR20 inline void format_drago
 
      }
 
      if (buf[0] == overflow) {
 
        buf[0] = '1';
 
        ++exp10;
 
        if ((flags & dragon::fixed) != 0)
 
          buf.push_back('0');
 
        else
 
          ++exp10;
 
      }
 
      return;
 
    }
 
@@ -3486,6 +3262,17 @@ FMT_CONSTEXPR20 void format_hexfloat(Flo
 
  format_hexfloat(static_cast<double>(value), precision, specs, buf);
 
}
 

	
 
constexpr auto fractional_part_rounding_thresholds(int index) -> uint32_t {
 
  // For checking rounding thresholds.
 
  // The kth entry is chosen to be the smallest integer such that the
 
  // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
 
  // It is equal to ceil(2^31 + 2^32/10^(k + 1)).
 
  // These are stored in a string literal because we cannot have static arrays
 
  // in constexpr functions and non-static ones are poorly optimized.
 
  return U"\x9999999a\x828f5c29\x80418938\x80068db9\x8000a7c6\x800010c7"
 
         U"\x800001ae\x8000002b"[index];
 
}
 

	
 
template <typename Float>
 
FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
 
                                  buffer<char>& buf) -> int {
 
@@ -3508,7 +3295,7 @@ FMT_CONSTEXPR20 auto format_float(Float 
 
  int exp = 0;
 
  bool use_dragon = true;
 
  unsigned dragon_flags = 0;
 
  if (!is_fast_float<Float>()) {
 
  if (!is_fast_float<Float>() || is_constant_evaluated()) {
 
    const auto inv_log2_10 = 0.3010299956639812;  // 1 / log2(10)
 
    using info = dragonbox::float_info<decltype(converted_value)>;
 
    const auto f = basic_fp<typename info::carrier_uint>(converted_value);
 
@@ -3516,10 +3303,11 @@ FMT_CONSTEXPR20 auto format_float(Float 
 
    //   10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
 
    // This is based on log10(value) == log2(value) / log2(10) and approximation
 
    // of log2(value) by e + num_fraction_bits idea from double-conversion.
 
    exp = static_cast<int>(
 
        std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10));
 
    auto e = (f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10;
 
    exp = static_cast<int>(e);
 
    if (e > exp) ++exp;  // Compute ceil.
 
    dragon_flags = dragon::fixup;
 
  } else if (!is_constant_evaluated() && precision < 0) {
 
  } else if (precision < 0) {
 
    // Use Dragonbox for the shortest format.
 
    if (specs.binary32) {
 
      auto dec = dragonbox::to_decimal(static_cast<float>(value));
 
@@ -3529,25 +3317,6 @@ FMT_CONSTEXPR20 auto format_float(Float 
 
    auto dec = dragonbox::to_decimal(static_cast<double>(value));
 
    write<char>(buffer_appender<char>(buf), dec.significand);
 
    return dec.exponent;
 
  } else if (is_constant_evaluated()) {
 
    // Use Grisu + Dragon4 for the given precision:
 
    // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
 
    const int min_exp = -60;  // alpha in Grisu.
 
    int cached_exp10 = 0;     // K in Grisu.
 
    fp normalized = normalize(fp(converted_value));
 
    const auto cached_pow = get_cached_power(
 
        min_exp - (normalized.e + fp::num_significand_bits), cached_exp10);
 
    normalized = normalized * cached_pow;
 
    gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
 
    if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error &&
 
        !is_constant_evaluated()) {
 
      exp += handler.exp10;
 
      buf.try_resize(to_unsigned(handler.size));
 
      use_dragon = false;
 
    } else {
 
      exp += handler.size - cached_exp10 - 1;
 
      precision = handler.precision;
 
    }
 
  } else {
 
    // Extract significand bits and exponent bits.
 
    using info = dragonbox::float_info<double>;
 
@@ -3566,7 +3335,7 @@ FMT_CONSTEXPR20 auto format_float(Float 
 
      significand <<= 1;
 
    } else {
 
      // Normalize subnormal inputs.
 
      FMT_ASSERT(significand != 0, "zeros should not appear hear");
 
      FMT_ASSERT(significand != 0, "zeros should not appear here");
 
      int shift = countl_zero(significand);
 
      FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
 
                 "");
 
@@ -3603,9 +3372,7 @@ FMT_CONSTEXPR20 auto format_float(Float 
 
    }
 

	
 
    // Compute the actual number of decimal digits to print.
 
    if (fixed) {
 
      adjust_precision(precision, exp + digits_in_the_first_segment);
 
    }
 
    if (fixed) adjust_precision(precision, exp + digits_in_the_first_segment);
 

	
 
    // Use Dragon4 only when there might be not enough digits in the first
 
    // segment.
 
@@ -3710,12 +3477,12 @@ FMT_CONSTEXPR20 auto format_float(Float 
 
          //    fractional part is strictly larger than 1/2.
 
          if (precision < 9) {
 
            uint32_t fractional_part = static_cast<uint32_t>(prod);
 
            should_round_up = fractional_part >=
 
                                  data::fractional_part_rounding_thresholds
 
                                      [8 - number_of_digits_to_print] ||
 
                              ((fractional_part >> 31) &
 
                               ((digits & 1) | (second_third_subsegments != 0) |
 
                                has_more_segments)) != 0;
 
            should_round_up =
 
                fractional_part >= fractional_part_rounding_thresholds(
 
                                       8 - number_of_digits_to_print) ||
 
                ((fractional_part >> 31) &
 
                 ((digits & 1) | (second_third_subsegments != 0) |
 
                  has_more_segments)) != 0;
 
          }
 
          // Rounding at the subsegment boundary.
 
          // In this case, the fractional part is at least 1/2 if and only if
 
@@ -3750,12 +3517,12 @@ FMT_CONSTEXPR20 auto format_float(Float 
 
            // of 19 digits, so in this case the third segment should be
 
            // consisting of a genuine digit from the input.
 
            uint32_t fractional_part = static_cast<uint32_t>(prod);
 
            should_round_up = fractional_part >=
 
                                  data::fractional_part_rounding_thresholds
 
                                      [8 - number_of_digits_to_print] ||
 
                              ((fractional_part >> 31) &
 
                               ((digits & 1) | (third_subsegment != 0) |
 
                                has_more_segments)) != 0;
 
            should_round_up =
 
                fractional_part >= fractional_part_rounding_thresholds(
 
                                       8 - number_of_digits_to_print) ||
 
                ((fractional_part >> 31) &
 
                 ((digits & 1) | (third_subsegment != 0) |
 
                  has_more_segments)) != 0;
 
          }
 
          // Rounding at the subsegment boundary.
 
          else {
 
@@ -3987,8 +3754,11 @@ template <typename Char, typename Output
 
FMT_CONSTEXPR auto write(OutputIt out, const T& value)
 
    -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type,
 
                   OutputIt> {
 
  auto formatter = typename Context::template formatter_type<T>();
 
  auto parse_ctx = typename Context::parse_context_type({});
 
  formatter.parse(parse_ctx);
 
  auto ctx = Context(out, {}, {});
 
  return typename Context::template formatter_type<T>().format(value, ctx);
 
  return formatter.format(value, ctx);
 
}
 

	
 
// An argument visitor that formats the argument and writes it via the output
 
@@ -4031,74 +3801,50 @@ template <typename Char> struct arg_form
 
  }
 
};
 

	
 
template <typename Char> struct custom_formatter {
 
  basic_format_parse_context<Char>& parse_ctx;
 
  buffer_context<Char>& ctx;
 

	
 
  void operator()(
 
      typename basic_format_arg<buffer_context<Char>>::handle h) const {
 
    h.format(parse_ctx, ctx);
 
  }
 
  template <typename T> void operator()(T) const {}
 
};
 

	
 
template <typename ErrorHandler> class width_checker {
 
 public:
 
  explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}
 

	
 
struct width_checker {
 
  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
 
  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
 
    if (is_negative(value)) handler_.on_error("negative width");
 
    if (is_negative(value)) throw_format_error("negative width");
 
    return static_cast<unsigned long long>(value);
 
  }
 

	
 
  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
 
  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
 
    handler_.on_error("width is not integer");
 
    throw_format_error("width is not integer");
 
    return 0;
 
  }
 

	
 
 private:
 
  ErrorHandler& handler_;
 
};
 

	
 
template <typename ErrorHandler> class precision_checker {
 
 public:
 
  explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}
 

	
 
struct precision_checker {
 
  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
 
  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
 
    if (is_negative(value)) handler_.on_error("negative precision");
 
    if (is_negative(value)) throw_format_error("negative precision");
 
    return static_cast<unsigned long long>(value);
 
  }
 

	
 
  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
 
  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
 
    handler_.on_error("precision is not integer");
 
    throw_format_error("precision is not integer");
 
    return 0;
 
  }
 

	
 
 private:
 
  ErrorHandler& handler_;
 
};
 

	
 
template <template <typename> class Handler, typename FormatArg,
 
          typename ErrorHandler>
 
FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int {
 
  unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
 
  if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
 
template <typename Handler, typename FormatArg>
 
FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg) -> int {
 
  unsigned long long value = visit_format_arg(Handler(), arg);
 
  if (value > to_unsigned(max_value<int>()))
 
    throw_format_error("number is too big");
 
  return static_cast<int>(value);
 
}
 

	
 
template <typename Context, typename ID>
 
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) ->
 
    typename Context::format_arg {
 
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> decltype(ctx.arg(id)) {
 
  auto arg = ctx.arg(id);
 
  if (!arg) ctx.on_error("argument not found");
 
  return arg;
 
}
 

	
 
template <template <typename> class Handler, typename Context>
 
template <typename Handler, typename Context>
 
FMT_CONSTEXPR void handle_dynamic_spec(int& value,
 
                                       arg_ref<typename Context::char_type> ref,
 
                                       Context& ctx) {
 
@@ -4106,26 +3852,15 @@ FMT_CONSTEXPR void handle_dynamic_spec(i
 
  case arg_id_kind::none:
 
    break;
 
  case arg_id_kind::index:
 
    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index),
 
                                              ctx.error_handler());
 
    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index));
 
    break;
 
  case arg_id_kind::name:
 
    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name),
 
                                              ctx.error_handler());
 
    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name));
 
    break;
 
  }
 
}
 

	
 
#if FMT_USE_USER_DEFINED_LITERALS
 
template <typename Char> struct udl_formatter {
 
  basic_string_view<Char> str;
 

	
 
  template <typename... T>
 
  auto operator()(T&&... args) const -> std::basic_string<Char> {
 
    return vformat(str, fmt::make_format_args<buffer_context<Char>>(args...));
 
  }
 
};
 

	
 
#  if FMT_USE_NONTYPE_TEMPLATE_ARGS
 
template <typename T, typename Char, size_t N,
 
          fmt::detail_exported::fixed_string<Char, N> Str>
 
@@ -4179,28 +3914,28 @@ FMT_API void format_error_code(buffer<ch
 

	
 
FMT_API void report_error(format_func func, int error_code,
 
                          const char* message) noexcept;
 
FMT_END_DETAIL_NAMESPACE
 
}  // namespace detail
 

	
 
FMT_API auto vsystem_error(int error_code, string_view format_str,
 
                           format_args args) -> std::system_error;
 

	
 
/**
 
 \rst
 
 Constructs :class:`std::system_error` with a message formatted with
 
 ``fmt::format(fmt, args...)``.
 
  \rst
 
  Constructs :class:`std::system_error` with a message formatted with
 
  ``fmt::format(fmt, args...)``.
 
  *error_code* is a system error code as given by ``errno``.
 

	
 
 **Example**::
 

	
 
   // This throws std::system_error with the description
 
   //   cannot open file 'madeup': No such file or directory
 
   // or similar (system message may vary).
 
   const char* filename = "madeup";
 
   std::FILE* file = std::fopen(filename, "r");
 
   if (!file)
 
     throw fmt::system_error(errno, "cannot open file '{}'", filename);
 
 \endrst
 
*/
 
  **Example**::
 

	
 
    // This throws std::system_error with the description
 
    //   cannot open file 'madeup': No such file or directory
 
    // or similar (system message may vary).
 
    const char* filename = "madeup";
 
    std::FILE* file = std::fopen(filename, "r");
 
    if (!file)
 
      throw fmt::system_error(errno, "cannot open file '{}'", filename);
 
  \endrst
 
 */
 
template <typename... T>
 
auto system_error(int error_code, format_string<T...> fmt, T&&... args)
 
    -> std::system_error {
 
@@ -4292,32 +4027,32 @@ class format_int {
 

	
 
template <typename T, typename Char>
 
struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>>
 
    : private formatter<detail::format_as_t<T>> {
 
  using base = formatter<detail::format_as_t<T>>;
 
  using base::parse;
 

	
 
    : formatter<detail::format_as_t<T>, Char> {
 
  template <typename FormatContext>
 
  auto format(const T& value, FormatContext& ctx) const -> decltype(ctx.out()) {
 
    using base = formatter<detail::format_as_t<T>, Char>;
 
    return base::format(format_as(value), ctx);
 
  }
 
};
 

	
 
template <typename Char>
 
struct formatter<void*, Char> : formatter<const void*, Char> {
 
  template <typename FormatContext>
 
  auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) {
 
    return formatter<const void*, Char>::format(val, ctx);
 
  }
 
};
 
#define FMT_FORMAT_AS(Type, Base) \
 
  template <typename Char>        \
 
  struct formatter<Type, Char> : formatter<Base, Char> {}
 

	
 
FMT_FORMAT_AS(signed char, int);
 
FMT_FORMAT_AS(unsigned char, unsigned);
 
FMT_FORMAT_AS(short, int);
 
FMT_FORMAT_AS(unsigned short, unsigned);
 
FMT_FORMAT_AS(long, detail::long_type);
 
FMT_FORMAT_AS(unsigned long, detail::ulong_type);
 
FMT_FORMAT_AS(Char*, const Char*);
 
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
 
FMT_FORMAT_AS(std::nullptr_t, const void*);
 
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
 
FMT_FORMAT_AS(void*, const void*);
 

	
 
template <typename Char, size_t N>
 
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
 
  template <typename FormatContext>
 
  FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    return formatter<basic_string_view<Char>, Char>::format(val, ctx);
 
  }
 
};
 
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {};
 

	
 
/**
 
  \rst
 
@@ -4393,7 +4128,9 @@ template <> struct formatter<bytes> {
 
};
 

	
 
// group_digits_view is not derived from view because it copies the argument.
 
template <typename T> struct group_digits_view { T value; };
 
template <typename T> struct group_digits_view {
 
  T value;
 
};
 

	
 
/**
 
  \rst
 
@@ -4434,6 +4171,59 @@ template <typename T> struct formatter<g
 
  }
 
};
 

	
 
template <typename T> struct nested_view {
 
  const formatter<T>* fmt;
 
  const T* value;
 
};
 

	
 
template <typename T> struct formatter<nested_view<T>> {
 
  FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* {
 
    return ctx.begin();
 
  }
 
  auto format(nested_view<T> view, format_context& ctx) const
 
      -> decltype(ctx.out()) {
 
    return view.fmt->format(*view.value, ctx);
 
  }
 
};
 

	
 
template <typename T> struct nested_formatter {
 
 private:
 
  int width_;
 
  detail::fill_t<char> fill_;
 
  align_t align_ : 4;
 
  formatter<T> formatter_;
 

	
 
 public:
 
  constexpr nested_formatter() : width_(0), align_(align_t::none) {}
 

	
 
  FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* {
 
    auto specs = detail::dynamic_format_specs<char>();
 
    auto it = parse_format_specs(ctx.begin(), ctx.end(), specs, ctx,
 
                                 detail::type::none_type);
 
    width_ = specs.width;
 
    fill_ = specs.fill;
 
    align_ = specs.align;
 
    ctx.advance_to(it);
 
    return formatter_.parse(ctx);
 
  }
 

	
 
  template <typename F>
 
  auto write_padded(format_context& ctx, F write) const -> decltype(ctx.out()) {
 
    if (width_ == 0) return write(ctx.out());
 
    auto buf = memory_buffer();
 
    write(std::back_inserter(buf));
 
    auto specs = format_specs<>();
 
    specs.width = width_;
 
    specs.fill = fill_;
 
    specs.align = align_;
 
    return detail::write(ctx.out(), string_view(buf.data(), buf.size()), specs);
 
  }
 

	
 
  auto nested(const T& value) const -> nested_view<T> {
 
    return nested_view<T>{&formatter_, &value};
 
  }
 
};
 

	
 
// DEPRECATED! join_view will be moved to ranges.h.
 
template <typename It, typename Sentinel, typename Char = char>
 
struct join_view : detail::view {
 
@@ -4523,7 +4313,8 @@ auto join(Range&& range, string_view sep
 
    std::string answer = fmt::to_string(42);
 
  \endrst
 
 */
 
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
 
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
 
                                    !detail::has_format_as<T>::value)>
 
inline auto to_string(const T& value) -> std::string {
 
  auto buffer = memory_buffer();
 
  detail::write<char>(appender(buffer), value);
 
@@ -4548,7 +4339,15 @@ FMT_NODISCARD auto to_string(const basic
 
  return std::basic_string<Char>(buf.data(), size);
 
}
 

	
 
FMT_BEGIN_DETAIL_NAMESPACE
 
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
 
                                    detail::has_format_as<T>::value)>
 
inline auto to_string(const T& value) -> std::string {
 
  return to_string(format_as(value));
 
}
 

	
 
FMT_END_EXPORT
 

	
 
namespace detail {
 

	
 
template <typename Char>
 
void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
 
@@ -4556,7 +4355,7 @@ void vformat_to(buffer<Char>& buf, basic
 
  auto out = buffer_appender<Char>(buf);
 
  if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
 
    auto arg = args.get(0);
 
    if (!arg) error_handler().on_error("argument not found");
 
    if (!arg) throw_format_error("argument not found");
 
    visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
 
    return;
 
  }
 
@@ -4583,7 +4382,7 @@ void vformat_to(buffer<Char>& buf, basic
 
    }
 
    FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
 
      int arg_id = context.arg_id(id);
 
      if (arg_id < 0) on_error("argument not found");
 
      if (arg_id < 0) throw_format_error("argument not found");
 
      return arg_id;
 
    }
 

	
 
@@ -4598,11 +4397,9 @@ void vformat_to(buffer<Char>& buf, basic
 
    auto on_format_specs(int id, const Char* begin, const Char* end)
 
        -> const Char* {
 
      auto arg = get_arg(context, id);
 
      if (arg.type() == type::custom_type) {
 
        parse_context.advance_to(begin);
 
        visit_format_arg(custom_formatter<Char>{parse_context, context}, arg);
 
      // Not using a visitor for custom types gives better codegen.
 
      if (arg.format_custom(begin, parse_context, context))
 
        return parse_context.begin();
 
      }
 
      auto specs = detail::dynamic_format_specs<Char>();
 
      begin = parse_format_specs(begin, end, specs, parse_context, arg.type());
 
      detail::handle_dynamic_spec<detail::width_checker>(
 
@@ -4610,7 +4407,7 @@ void vformat_to(buffer<Char>& buf, basic
 
      detail::handle_dynamic_spec<detail::precision_checker>(
 
          specs.precision, specs.precision_ref, context);
 
      if (begin == end || *begin != '}')
 
        on_error("missing '}' in format string");
 
        throw_format_error("missing '}' in format string");
 
      auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
 
      context.advance_to(visit_format_arg(f, arg));
 
      return begin;
 
@@ -4619,6 +4416,8 @@ void vformat_to(buffer<Char>& buf, basic
 
  detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
 
}
 

	
 
FMT_BEGIN_EXPORT
 

	
 
#ifndef FMT_HEADER_ONLY
 
extern template FMT_API void vformat_to(buffer<char>&, string_view,
 
                                        typename vformat_args<>::type,
 
@@ -4631,7 +4430,7 @@ extern template FMT_API auto decimal_poi
 
extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
 
#endif  // FMT_HEADER_ONLY
 

	
 
FMT_END_DETAIL_NAMESPACE
 
}  // namespace detail
 

	
 
#if FMT_USE_USER_DEFINED_LITERALS
 
inline namespace literals {
 
@@ -4651,7 +4450,7 @@ template <detail_exported::fixed_string 
 
  return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>();
 
}
 
#  else
 
constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> {
 
constexpr auto operator""_a(const char* s, size_t) -> detail::udl_arg<char> {
 
  return {s};
 
}
 
#  endif
 
@@ -4711,16 +4510,16 @@ formatter<T, Char,
 
                      detail::type::custom_type>>::format(const T& val,
 
                                                          FormatContext& ctx)
 
    const -> decltype(ctx.out()) {
 
  if (specs_.width_ref.kind != detail::arg_id_kind::none ||
 
      specs_.precision_ref.kind != detail::arg_id_kind::none) {
 
    auto specs = specs_;
 
    detail::handle_dynamic_spec<detail::width_checker>(specs.width,
 
                                                       specs.width_ref, ctx);
 
    detail::handle_dynamic_spec<detail::precision_checker>(
 
        specs.precision, specs.precision_ref, ctx);
 
    return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
 
  if (specs_.width_ref.kind == detail::arg_id_kind::none &&
 
      specs_.precision_ref.kind == detail::arg_id_kind::none) {
 
    return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
 
  }
 
  return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
 
  auto specs = specs_;
 
  detail::handle_dynamic_spec<detail::width_checker>(specs.width,
 
                                                     specs.width_ref, ctx);
 
  detail::handle_dynamic_spec<detail::precision_checker>(
 
      specs.precision, specs.precision_ref, ctx);
 
  return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
 
}
 

	
 
FMT_END_NAMESPACE
src/3rdparty/fmt/ostream.h
Show inline comments
 
@@ -10,18 +10,49 @@
 

	
 
#include <fstream>  // std::filebuf
 

	
 
#if defined(_WIN32) && defined(__GLIBCXX__)
 
#  include <ext/stdio_filebuf.h>
 
#  include <ext/stdio_sync_filebuf.h>
 
#elif defined(_WIN32) && defined(_LIBCPP_VERSION)
 
#  include <__std_stream>
 
#ifdef _WIN32
 
#  ifdef __GLIBCXX__
 
#    include <ext/stdio_filebuf.h>
 
#    include <ext/stdio_sync_filebuf.h>
 
#  endif
 
#  include <io.h>
 
#endif
 

	
 
#include "format.h"
 

	
 
FMT_BEGIN_NAMESPACE
 
namespace detail {
 

	
 
namespace detail {
 
template <typename Streambuf> class formatbuf : public Streambuf {
 
 private:
 
  using char_type = typename Streambuf::char_type;
 
  using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0));
 
  using int_type = typename Streambuf::int_type;
 
  using traits_type = typename Streambuf::traits_type;
 

	
 
  buffer<char_type>& buffer_;
 

	
 
 public:
 
  explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {}
 

	
 
 protected:
 
  // The put area is always empty. This makes the implementation simpler and has
 
  // the advantage that the streambuf and the buffer are always in sync and
 
  // sputc never writes into uninitialized memory. A disadvantage is that each
 
  // call to sputc always results in a (virtual) call to overflow. There is no
 
  // disadvantage here for sputn since this always results in a call to xsputn.
 

	
 
  auto overflow(int_type ch) -> int_type override {
 
    if (!traits_type::eq_int_type(ch, traits_type::eof()))
 
      buffer_.push_back(static_cast<char_type>(ch));
 
    return ch;
 
  }
 

	
 
  auto xsputn(const char_type* s, streamsize count) -> streamsize override {
 
    buffer_.append(s, s + count);
 
    return count;
 
  }
 
};
 

	
 
// Generate a unique explicit instantion in every translation unit using a tag
 
// type in an anonymous namespace.
 
@@ -37,36 +68,40 @@ class file_access {
 
template class file_access<file_access_tag, std::filebuf,
 
                           &std::filebuf::_Myfile>;
 
auto get_file(std::filebuf&) -> FILE*;
 
#elif defined(_WIN32) && defined(_LIBCPP_VERSION)
 
template class file_access<file_access_tag, std::__stdoutbuf<char>,
 
                           &std::__stdoutbuf<char>::__file_>;
 
auto get_file(std::__stdoutbuf<char>&) -> FILE*;
 
#endif
 

	
 
inline bool write_ostream_unicode(std::ostream& os, fmt::string_view data) {
 
inline auto write_ostream_unicode(std::ostream& os, fmt::string_view data)
 
    -> bool {
 
  FILE* f = nullptr;
 
#if FMT_MSC_VERSION
 
  if (auto* buf = dynamic_cast<std::filebuf*>(os.rdbuf()))
 
    if (FILE* f = get_file(*buf)) return write_console(f, data);
 
    f = get_file(*buf);
 
  else
 
    return false;
 
#elif defined(_WIN32) && defined(__GLIBCXX__)
 
  auto* rdbuf = os.rdbuf();
 
  FILE* c_file;
 
  if (auto* sfbuf = dynamic_cast<__gnu_cxx::stdio_sync_filebuf<char>*>(rdbuf))
 
    c_file = sfbuf->file();
 
    f = sfbuf->file();
 
  else if (auto* fbuf = dynamic_cast<__gnu_cxx::stdio_filebuf<char>*>(rdbuf))
 
    c_file = fbuf->file();
 
    f = fbuf->file();
 
  else
 
    return false;
 
  if (c_file) return write_console(c_file, data);
 
#elif defined(_WIN32) && defined(_LIBCPP_VERSION)
 
  if (auto* buf = dynamic_cast<std::__stdoutbuf<char>*>(os.rdbuf()))
 
    if (FILE* f = get_file(*buf)) return write_console(f, data);
 
#else
 
  ignore_unused(os, data);
 
  ignore_unused(os, data, f);
 
#endif
 
#ifdef _WIN32
 
  if (f) {
 
    int fd = _fileno(f);
 
    if (_isatty(fd)) {
 
      os.flush();
 
      return write_console(fd, data);
 
    }
 
  }
 
#endif
 
  return false;
 
}
 
inline bool write_ostream_unicode(std::wostream&,
 
                                  fmt::basic_string_view<wchar_t>) {
 
inline auto write_ostream_unicode(std::wostream&,
 
                                  fmt::basic_string_view<wchar_t>) -> bool {
 
  return false;
 
}
 

	
 
@@ -87,18 +122,19 @@ void write_buffer(std::basic_ostream<Cha
 
}
 

	
 
template <typename Char, typename T>
 
void format_value(buffer<Char>& buf, const T& value,
 
                  locale_ref loc = locale_ref()) {
 
void format_value(buffer<Char>& buf, const T& value) {
 
  auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf);
 
  auto&& output = std::basic_ostream<Char>(&format_buf);
 
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
 
  if (loc) output.imbue(loc.get<std::locale>());
 
  output.imbue(std::locale::classic());  // The default is always unlocalized.
 
#endif
 
  output << value;
 
  output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
 
}
 

	
 
template <typename T> struct streamed_view { const T& value; };
 
template <typename T> struct streamed_view {
 
  const T& value;
 
};
 

	
 
}  // namespace detail
 

	
 
@@ -111,7 +147,7 @@ struct basic_ostream_formatter : formatt
 
  auto format(const T& value, basic_format_context<OutputIt, Char>& ctx) const
 
      -> OutputIt {
 
    auto buffer = basic_memory_buffer<Char>();
 
    detail::format_value(buffer, value, ctx.locale());
 
    detail::format_value(buffer, value);
 
    return formatter<basic_string_view<Char>, Char>::format(
 
        {buffer.data(), buffer.size()}, ctx);
 
  }
 
@@ -140,7 +176,7 @@ struct formatter<detail::streamed_view<T
 
  \endrst
 
 */
 
template <typename T>
 
auto streamed(const T& value) -> detail::streamed_view<T> {
 
constexpr auto streamed(const T& value) -> detail::streamed_view<T> {
 
  return {value};
 
}
 

	
 
@@ -155,7 +191,7 @@ inline void vprint_directly(std::ostream
 

	
 
}  // namespace detail
 

	
 
FMT_MODULE_EXPORT template <typename Char>
 
FMT_EXPORT template <typename Char>
 
void vprint(std::basic_ostream<Char>& os,
 
            basic_string_view<type_identity_t<Char>> format_str,
 
            basic_format_args<buffer_context<type_identity_t<Char>>> args) {
 
@@ -174,7 +210,7 @@ void vprint(std::basic_ostream<Char>& os
 
    fmt::print(cerr, "Don't {}!", "panic");
 
  \endrst
 
 */
 
FMT_MODULE_EXPORT template <typename... T>
 
FMT_EXPORT template <typename... T>
 
void print(std::ostream& os, format_string<T...> fmt, T&&... args) {
 
  const auto& vargs = fmt::make_format_args(args...);
 
  if (detail::is_utf8())
 
@@ -183,7 +219,7 @@ void print(std::ostream& os, format_stri
 
    detail::vprint_directly(os, fmt, vargs);
 
}
 

	
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename... Args>
 
void print(std::wostream& os,
 
           basic_format_string<wchar_t, type_identity_t<Args>...> fmt,
 
@@ -191,12 +227,12 @@ void print(std::wostream& os,
 
  vprint(os, fmt, fmt::make_format_args<buffer_context<wchar_t>>(args...));
 
}
 

	
 
FMT_MODULE_EXPORT template <typename... T>
 
FMT_EXPORT template <typename... T>
 
void println(std::ostream& os, format_string<T...> fmt, T&&... args) {
 
  fmt::print(os, "{}\n", fmt::format(fmt, std::forward<T>(args)...));
 
}
 

	
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename... Args>
 
void println(std::wostream& os,
 
             basic_format_string<wchar_t, type_identity_t<Args>...> fmt,
src/3rdparty/fmt/ranges.h
Show inline comments
 
// Formatting library for C++ - experimental range support
 
// Formatting library for C++ - range and tuple support
 
//
 
// Copyright (c) 2012 - present, Victor Zverovich
 
// Copyright (c) 2012 - present, Victor Zverovich and {fmt} contributors
 
// All rights reserved.
 
//
 
// For the license information refer to format.h.
 
//
 
// Copyright (c) 2018 - present, Remotion (Igor Schulz)
 
// All Rights Reserved
 
// {fmt} support for ranges, containers and types tuple interface.
 

	
 
#ifndef FMT_RANGES_H_
 
#define FMT_RANGES_H_
 
@@ -187,7 +183,7 @@ template <size_t N> using make_index_seq
 
template <typename T, T... N> struct integer_sequence {
 
  using value_type = T;
 

	
 
  static FMT_CONSTEXPR size_t size() { return sizeof...(N); }
 
  static FMT_CONSTEXPR auto size() -> size_t { return sizeof...(N); }
 
};
 

	
 
template <size_t... N> using index_sequence = integer_sequence<size_t, N...>;
 
@@ -211,15 +207,15 @@ class is_tuple_formattable_ {
 
};
 
template <typename T, typename C> class is_tuple_formattable_<T, C, true> {
 
  template <std::size_t... Is>
 
  static std::true_type check2(index_sequence<Is...>,
 
                               integer_sequence<bool, (Is == Is)...>);
 
  static std::false_type check2(...);
 
  static auto check2(index_sequence<Is...>,
 
                     integer_sequence<bool, (Is == Is)...>) -> std::true_type;
 
  static auto check2(...) -> std::false_type;
 
  template <std::size_t... Is>
 
  static decltype(check2(
 
  static auto check(index_sequence<Is...>) -> decltype(check2(
 
      index_sequence<Is...>{},
 
      integer_sequence<
 
          bool, (is_formattable<typename std::tuple_element<Is, T>::type,
 
                                C>::value)...>{})) check(index_sequence<Is...>);
 
      integer_sequence<bool,
 
                       (is_formattable<typename std::tuple_element<Is, T>::type,
 
                                       C>::value)...>{}));
 

	
 
 public:
 
  static constexpr const bool value =
 
@@ -421,6 +417,12 @@ struct is_formattable_delayed
 
#endif
 
}  // namespace detail
 

	
 
template <typename...> struct conjunction : std::true_type {};
 
template <typename P> struct conjunction<P> : P {};
 
template <typename P1, typename... Pn>
 
struct conjunction<P1, Pn...>
 
    : conditional_t<bool(P1::value), conjunction<Pn...>, P1> {};
 

	
 
template <typename T, typename Char, typename Enable = void>
 
struct range_formatter;
 

	
 
@@ -486,7 +488,8 @@ struct range_formatter<
 
    for (; it != end; ++it) {
 
      if (i > 0) out = detail::copy_str<Char>(separator_, out);
 
      ctx.advance_to(out);
 
      out = underlying_.format(mapper.map(*it), ctx);
 
      auto&& item = *it;
 
      out = underlying_.format(mapper.map(item), ctx);
 
      ++i;
 
    }
 
    out = detail::copy_str<Char>(closing_bracket_, out);
 
@@ -668,8 +671,11 @@ template <typename Container> struct all
 
}  // namespace detail
 

	
 
template <typename T, typename Char>
 
struct formatter<T, Char,
 
                 enable_if_t<detail::is_container_adaptor_like<T>::value>>
 
struct formatter<
 
    T, Char,
 
    enable_if_t<conjunction<detail::is_container_adaptor_like<T>,
 
                            bool_constant<range_format_kind<T, Char>::value ==
 
                                          range_format::disabled>>::value>>
 
    : formatter<detail::all<typename T::container_type>, Char> {
 
  using all = detail::all<typename T::container_type>;
 
  template <typename FormatContext>
src/3rdparty/fmt/std.h
Show inline comments
 
@@ -8,6 +8,8 @@
 
#ifndef FMT_STD_H_
 
#define FMT_STD_H_
 

	
 
#include <atomic>
 
#include <bitset>
 
#include <cstdlib>
 
#include <exception>
 
#include <memory>
 
@@ -15,7 +17,9 @@
 
#include <type_traits>
 
#include <typeinfo>
 
#include <utility>
 
#include <vector>
 

	
 
#include "format.h"
 
#include "ostream.h"
 

	
 
#if FMT_HAS_INCLUDE(<version>)
 
@@ -34,6 +38,10 @@
 
#  endif
 
#endif
 

	
 
#if FMT_CPLUSPLUS > 201703L && FMT_HAS_INCLUDE(<source_location>)
 
#  include <source_location>
 
#endif
 

	
 
// GCC 4 does not support FMT_HAS_INCLUDE.
 
#if FMT_HAS_INCLUDE(<cxxabi.h>) || defined(__GLIBCXX__)
 
#  include <cxxabi.h>
 
@@ -44,67 +52,155 @@
 
#  endif
 
#endif
 

	
 
#ifdef __cpp_lib_filesystem
 
// Check if typeid is available.
 
#ifndef FMT_USE_TYPEID
 
// __RTTI is for EDG compilers. In MSVC typeid is available without RTTI.
 
#  if defined(__GXX_RTTI) || FMT_HAS_FEATURE(cxx_rtti) || FMT_MSC_VERSION || \
 
      defined(__INTEL_RTTI__) || defined(__RTTI)
 
#    define FMT_USE_TYPEID 1
 
#  else
 
#    define FMT_USE_TYPEID 0
 
#  endif
 
#endif
 

	
 
// For older Xcode versions, __cpp_lib_xxx flags are inaccurately defined.
 
#ifndef FMT_CPP_LIB_FILESYSTEM
 
#  ifdef __cpp_lib_filesystem
 
#    define FMT_CPP_LIB_FILESYSTEM __cpp_lib_filesystem
 
#  else
 
#    define FMT_CPP_LIB_FILESYSTEM 0
 
#  endif
 
#endif
 

	
 
#ifndef FMT_CPP_LIB_VARIANT
 
#  ifdef __cpp_lib_variant
 
#    define FMT_CPP_LIB_VARIANT __cpp_lib_variant
 
#  else
 
#    define FMT_CPP_LIB_VARIANT 0
 
#  endif
 
#endif
 

	
 
#if FMT_CPP_LIB_FILESYSTEM
 
FMT_BEGIN_NAMESPACE
 

	
 
namespace detail {
 

	
 
template <typename Char>
 
void write_escaped_path(basic_memory_buffer<Char>& quoted,
 
                        const std::filesystem::path& p) {
 
  write_escaped_string<Char>(std::back_inserter(quoted), p.string<Char>());
 
template <typename Char, typename PathChar>
 
auto get_path_string(const std::filesystem::path& p,
 
                     const std::basic_string<PathChar>& native) {
 
  if constexpr (std::is_same_v<Char, char> && std::is_same_v<PathChar, wchar_t>)
 
    return to_utf8<wchar_t>(native, to_utf8_error_policy::replace);
 
  else
 
    return p.string<Char>();
 
}
 
#  ifdef _WIN32
 
template <>
 
inline void write_escaped_path<char>(memory_buffer& quoted,
 
                                     const std::filesystem::path& p) {
 
  auto buf = basic_memory_buffer<wchar_t>();
 
  write_escaped_string<wchar_t>(std::back_inserter(buf), p.native());
 
  // Convert UTF-16 to UTF-8.
 
  if (!unicode_to_utf8<wchar_t>::convert(quoted, {buf.data(), buf.size()}))
 
    FMT_THROW(std::runtime_error("invalid utf16"));
 
}
 
#  endif
 
template <>
 
inline void write_escaped_path<std::filesystem::path::value_type>(
 
    basic_memory_buffer<std::filesystem::path::value_type>& quoted,
 
    const std::filesystem::path& p) {
 
  write_escaped_string<std::filesystem::path::value_type>(
 
      std::back_inserter(quoted), p.native());
 

	
 
template <typename Char, typename PathChar>
 
void write_escaped_path(basic_memory_buffer<Char>& quoted,
 
                        const std::filesystem::path& p,
 
                        const std::basic_string<PathChar>& native) {
 
  if constexpr (std::is_same_v<Char, char> &&
 
                std::is_same_v<PathChar, wchar_t>) {
 
    auto buf = basic_memory_buffer<wchar_t>();
 
    write_escaped_string<wchar_t>(std::back_inserter(buf), native);
 
    bool valid = to_utf8<wchar_t>::convert(quoted, {buf.data(), buf.size()});
 
    FMT_ASSERT(valid, "invalid utf16");
 
  } else if constexpr (std::is_same_v<Char, PathChar>) {
 
    write_escaped_string<std::filesystem::path::value_type>(
 
        std::back_inserter(quoted), native);
 
  } else {
 
    write_escaped_string<Char>(std::back_inserter(quoted), p.string<Char>());
 
  }
 
}
 

	
 
}  // namespace detail
 

	
 
FMT_MODULE_EXPORT
 
template <typename Char>
 
struct formatter<std::filesystem::path, Char>
 
    : formatter<basic_string_view<Char>> {
 
FMT_EXPORT
 
template <typename Char> struct formatter<std::filesystem::path, Char> {
 
 private:
 
  format_specs<Char> specs_;
 
  detail::arg_ref<Char> width_ref_;
 
  bool debug_ = false;
 
  char path_type_ = 0;
 

	
 
 public:
 
  FMT_CONSTEXPR void set_debug_format(bool set = true) { debug_ = set; }
 

	
 
  template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) {
 
    auto out = formatter<basic_string_view<Char>>::parse(ctx);
 
    this->set_debug_format(false);
 
    return out;
 
    auto it = ctx.begin(), end = ctx.end();
 
    if (it == end) return it;
 

	
 
    it = detail::parse_align(it, end, specs_);
 
    if (it == end) return it;
 

	
 
    it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx);
 
    if (it != end && *it == '?') {
 
      debug_ = true;
 
      ++it;
 
    }
 
    if (it != end && (*it == 'g')) path_type_ = *it++;
 
    return it;
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(const std::filesystem::path& p, FormatContext& ctx) const ->
 
      typename FormatContext::iterator {
 
  auto format(const std::filesystem::path& p, FormatContext& ctx) const {
 
    auto specs = specs_;
 
#  ifdef _WIN32
 
    auto path_string = !path_type_ ? p.native() : p.generic_wstring();
 
#  else
 
    auto path_string = !path_type_ ? p.native() : p.generic_string();
 
#  endif
 

	
 
    detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_,
 
                                                       ctx);
 
    if (!debug_) {
 
      auto s = detail::get_path_string<Char>(p, path_string);
 
      return detail::write(ctx.out(), basic_string_view<Char>(s), specs);
 
    }
 
    auto quoted = basic_memory_buffer<Char>();
 
    detail::write_escaped_path(quoted, p);
 
    return formatter<basic_string_view<Char>>::format(
 
        basic_string_view<Char>(quoted.data(), quoted.size()), ctx);
 
    detail::write_escaped_path(quoted, p, path_string);
 
    return detail::write(ctx.out(),
 
                         basic_string_view<Char>(quoted.data(), quoted.size()),
 
                         specs);
 
  }
 
};
 
FMT_END_NAMESPACE
 
#endif
 
#endif  // FMT_CPP_LIB_FILESYSTEM
 

	
 
FMT_BEGIN_NAMESPACE
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <std::size_t N, typename Char>
 
struct formatter<std::bitset<N>, Char> : nested_formatter<string_view> {
 
 private:
 
  // Functor because C++11 doesn't support generic lambdas.
 
  struct writer {
 
    const std::bitset<N>& bs;
 

	
 
    template <typename OutputIt>
 
    FMT_CONSTEXPR auto operator()(OutputIt out) -> OutputIt {
 
      for (auto pos = N; pos > 0; --pos) {
 
        out = detail::write<Char>(out, bs[pos - 1] ? Char('1') : Char('0'));
 
      }
 

	
 
      return out;
 
    }
 
  };
 

	
 
 public:
 
  template <typename FormatContext>
 
  auto format(const std::bitset<N>& bs, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    return write_padded(ctx, writer{bs});
 
  }
 
};
 

	
 
FMT_EXPORT
 
template <typename Char>
 
struct formatter<std::thread::id, Char> : basic_ostream_formatter<Char> {};
 
FMT_END_NAMESPACE
 

	
 
#ifdef __cpp_lib_optional
 
FMT_BEGIN_NAMESPACE
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename T, typename Char>
 
struct formatter<std::optional<T>, Char,
 
                 std::enable_if_t<is_formattable<T, Char>::value>> {
 
@@ -132,7 +228,7 @@ struct formatter<std::optional<T>, Char,
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(std::optional<T> const& opt, FormatContext& ctx) const
 
  auto format(const std::optional<T>& opt, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    if (!opt) return detail::write<Char>(ctx.out(), none);
 

	
 
@@ -146,24 +242,33 @@ struct formatter<std::optional<T>, Char,
 
FMT_END_NAMESPACE
 
#endif  // __cpp_lib_optional
 

	
 
#ifdef __cpp_lib_variant
 
#ifdef __cpp_lib_source_location
 
FMT_BEGIN_NAMESPACE
 
FMT_MODULE_EXPORT
 
template <typename Char> struct formatter<std::monostate, Char> {
 
  template <typename ParseContext>
 
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
 
FMT_EXPORT
 
template <> struct formatter<std::source_location> {
 
  template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) {
 
    return ctx.begin();
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(const std::monostate&, FormatContext& ctx) const
 
  auto format(const std::source_location& loc, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    auto out = ctx.out();
 
    out = detail::write<Char>(out, "monostate");
 
    out = detail::write(out, loc.file_name());
 
    out = detail::write(out, ':');
 
    out = detail::write<char>(out, loc.line());
 
    out = detail::write(out, ':');
 
    out = detail::write<char>(out, loc.column());
 
    out = detail::write(out, ": ");
 
    out = detail::write(out, loc.function_name());
 
    return out;
 
  }
 
};
 
FMT_END_NAMESPACE
 
#endif
 

	
 
#if FMT_CPP_LIB_VARIANT
 
FMT_BEGIN_NAMESPACE
 
namespace detail {
 

	
 
template <typename T>
 
@@ -197,6 +302,7 @@ auto write_variant_alternative(OutputIt 
 
}
 

	
 
}  // namespace detail
 

	
 
template <typename T> struct is_variant_like {
 
  static constexpr const bool value = detail::is_variant_like_<T>::value;
 
};
 
@@ -206,7 +312,21 @@ template <typename T, typename C> struct
 
      detail::is_variant_formattable_<T, C>::value;
 
};
 

	
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename Char> struct formatter<std::monostate, Char> {
 
  template <typename ParseContext>
 
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
 
    return ctx.begin();
 
  }
 

	
 
  template <typename FormatContext>
 
  auto format(const std::monostate&, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    return detail::write<Char>(ctx.out(), "monostate");
 
  }
 
};
 

	
 
FMT_EXPORT
 
template <typename Variant, typename Char>
 
struct formatter<
 
    Variant, Char,
 
@@ -223,13 +343,14 @@ struct formatter<
 
    auto out = ctx.out();
 

	
 
    out = detail::write<Char>(out, "variant(");
 
    try {
 
    FMT_TRY {
 
      std::visit(
 
          [&](const auto& v) {
 
            out = detail::write_variant_alternative<Char>(out, v);
 
          },
 
          value);
 
    } catch (const std::bad_variant_access&) {
 
    }
 
    FMT_CATCH(const std::bad_variant_access&) {
 
      detail::write<Char>(out, "valueless by exception");
 
    }
 
    *out++ = ')';
 
@@ -237,10 +358,10 @@ struct formatter<
 
  }
 
};
 
FMT_END_NAMESPACE
 
#endif  // __cpp_lib_variant
 
#endif  // FMT_CPP_LIB_VARIANT
 

	
 
FMT_BEGIN_NAMESPACE
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename Char> struct formatter<std::error_code, Char> {
 
  template <typename ParseContext>
 
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
 
@@ -258,10 +379,10 @@ template <typename Char> struct formatte
 
  }
 
};
 

	
 
FMT_MODULE_EXPORT
 
FMT_EXPORT
 
template <typename T, typename Char>
 
struct formatter<
 
    T, Char,
 
    T, Char,  // DEPRECATED! Mixing code unit types.
 
    typename std::enable_if<std::is_base_of<std::exception, T>::value>::type> {
 
 private:
 
  bool with_typename_ = false;
 
@@ -274,7 +395,7 @@ struct formatter<
 
    if (it == end || *it == '}') return it;
 
    if (*it == 't') {
 
      ++it;
 
      with_typename_ = true;
 
      with_typename_ = FMT_USE_TYPEID != 0;
 
    }
 
    return it;
 
  }
 
@@ -287,11 +408,12 @@ struct formatter<
 
    if (!with_typename_)
 
      return detail::write_bytes(out, string_view(ex.what()), spec);
 

	
 
#if FMT_USE_TYPEID
 
    const std::type_info& ti = typeid(ex);
 
#ifdef FMT_HAS_ABI_CXA_DEMANGLE
 
#  ifdef FMT_HAS_ABI_CXA_DEMANGLE
 
    int status = 0;
 
    std::size_t size = 0;
 
    std::unique_ptr<char, decltype(&std::free)> demangled_name_ptr(
 
    std::unique_ptr<char, void (*)(void*)> demangled_name_ptr(
 
        abi::__cxa_demangle(ti.name(), nullptr, &size, &status), &std::free);
 

	
 
    string_view demangled_name_view;
 
@@ -327,23 +449,89 @@ struct formatter<
 
      demangled_name_view = string_view(ti.name());
 
    }
 
    out = detail::write_bytes(out, demangled_name_view, spec);
 
#elif FMT_MSC_VERSION
 
#  elif FMT_MSC_VERSION
 
    string_view demangled_name_view(ti.name());
 
    if (demangled_name_view.starts_with("class "))
 
      demangled_name_view.remove_prefix(6);
 
    else if (demangled_name_view.starts_with("struct "))
 
      demangled_name_view.remove_prefix(7);
 
    out = detail::write_bytes(out, demangled_name_view, spec);
 
#else
 
#  else
 
    out = detail::write_bytes(out, string_view(ti.name()), spec);
 
#  endif
 
    *out++ = ':';
 
    *out++ = ' ';
 
    return detail::write_bytes(out, string_view(ex.what()), spec);
 
#endif
 
    out = detail::write<Char>(out, Char(':'));
 
    out = detail::write<Char>(out, Char(' '));
 
    out = detail::write_bytes(out, string_view(ex.what()), spec);
 

	
 
    return out;
 
  }
 
};
 
FMT_END_NAMESPACE
 

	
 
namespace detail {
 

	
 
template <typename T, typename Enable = void>
 
struct has_flip : std::false_type {};
 

	
 
template <typename T>
 
struct has_flip<T, void_t<decltype(std::declval<T>().flip())>>
 
    : std::true_type {};
 

	
 
template <typename T> struct is_bit_reference_like {
 
  static constexpr const bool value =
 
      std::is_convertible<T, bool>::value &&
 
      std::is_nothrow_assignable<T, bool>::value && has_flip<T>::value;
 
};
 

	
 
#ifdef _LIBCPP_VERSION
 

	
 
// Workaround for libc++ incompatibility with C++ standard.
 
// According to the Standard, `bitset::operator[] const` returns bool.
 
template <typename C>
 
struct is_bit_reference_like<std::__bit_const_reference<C>> {
 
  static constexpr const bool value = true;
 
};
 

	
 
#endif
 

	
 
}  // namespace detail
 

	
 
// We can't use std::vector<bool, Allocator>::reference and
 
// std::bitset<N>::reference because the compiler can't deduce Allocator and N
 
// in partial specialization.
 
FMT_EXPORT
 
template <typename BitRef, typename Char>
 
struct formatter<BitRef, Char,
 
                 enable_if_t<detail::is_bit_reference_like<BitRef>::value>>
 
    : formatter<bool, Char> {
 
  template <typename FormatContext>
 
  FMT_CONSTEXPR auto format(const BitRef& v, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    return formatter<bool, Char>::format(v, ctx);
 
  }
 
};
 

	
 
FMT_EXPORT
 
template <typename T, typename Char>
 
struct formatter<std::atomic<T>, Char,
 
                 enable_if_t<is_formattable<T, Char>::value>>
 
    : formatter<T, Char> {
 
  template <typename FormatContext>
 
  auto format(const std::atomic<T>& v, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    return formatter<T, Char>::format(v.load(), ctx);
 
  }
 
};
 

	
 
#ifdef __cpp_lib_atomic_flag_test
 
FMT_EXPORT
 
template <typename Char>
 
struct formatter<std::atomic_flag, Char> : formatter<bool, Char> {
 
  template <typename FormatContext>
 
  auto format(const std::atomic_flag& v, FormatContext& ctx) const
 
      -> decltype(ctx.out()) {
 
    return formatter<bool, Char>::format(v.test(), ctx);
 
  }
 
};
 
#endif  // __cpp_lib_atomic_flag_test
 

	
 
FMT_END_NAMESPACE
 
#endif  // FMT_STD_H_
0 comments (0 inline, 0 general)