Changeset - r25653:fb63ca49a7ba
[Not reviewed]
master
0 2 5
rubidium42 - 3 years ago 2021-06-12 07:34:09
rubidium@openttd.org
Add: minimal set of headers from {fmt} 7.1.3 to 3rdparty
6 files changed:
0 comments (0 inline, 0 general)
README.md
Show inline comments
 
@@ -205,6 +205,9 @@ See the comments in the source files in 
 
The implementations of Posix `getaddrinfo` and `getnameinfo` for OS/2 in `src/3rdparty/os2` are distributed partly under the GNU Lesser General Public License 2.1, and partly under the (3-clause) BSD license.
 
The exact licensing terms can be found in `src/3rdparty/os2/getaddrinfo.c` resp. `src/3rdparty/os2/getnameinfo.c`.
 

	
 
The fmt implementation in `src/3rdparty/fmt` is licensed under the MIT license.
 
See `src/3rdparty/fmt/LICENSE.rst` for the complete license text.
 

	
 

	
 
## 4.0 Credits
 

	
src/3rdparty/CMakeLists.txt
Show inline comments
 
add_subdirectory(fmt)
 
add_subdirectory(md5)
 
add_subdirectory(squirrel)
 
add_subdirectory(opengl)
src/3rdparty/fmt/CMakeLists.txt
Show inline comments
 
new file 100644
 
add_files(
 
    core.h
 
    format.h
 
    format-inl.h
 
)
src/3rdparty/fmt/LICENSE.rst
Show inline comments
 
new file 100644
 
Copyright (c) 2012 - present, Victor Zverovich
 

	
 
Permission is hereby granted, free of charge, to any person obtaining
 
a copy of this software and associated documentation files (the
 
"Software"), to deal in the Software without restriction, including
 
without limitation the rights to use, copy, modify, merge, publish,
 
distribute, sublicense, and/or sell copies of the Software, and to
 
permit persons to whom the Software is furnished to do so, subject to
 
the following conditions:
 

	
 
The above copyright notice and this permission notice shall be
 
included in all copies or substantial portions of the Software.
 

	
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 

	
 
--- Optional exception to the license ---
 

	
 
As an exception, if, as a result of your compiling your source code, portions
 
of this Software are embedded into a machine-executable object form of such
 
source code, you may redistribute such embedded portions in such object form
 
without including the above copyright and permission notices.
src/3rdparty/fmt/core.h
Show inline comments
 
new file 100644
 
// Formatting library for C++ - the core API
 
//
 
// Copyright (c) 2012 - present, Victor Zverovich
 
// All rights reserved.
 
//
 
// For the license information refer to format.h.
 

	
 
#ifndef FMT_CORE_H_
 
#define FMT_CORE_H_
 

	
 
#include <cstdio>  // std::FILE
 
#include <cstring>
 
#include <functional>
 
#include <iterator>
 
#include <memory>
 
#include <string>
 
#include <type_traits>
 
#include <vector>
 

	
 
// The fmt library version in the form major * 10000 + minor * 100 + patch.
 
#define FMT_VERSION 70103
 

	
 
#ifdef __clang__
 
#  define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
 
#else
 
#  define FMT_CLANG_VERSION 0
 
#endif
 

	
 
#if defined(__GNUC__) && !defined(__clang__)
 
#  define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
 
#else
 
#  define FMT_GCC_VERSION 0
 
#endif
 

	
 
#if defined(__INTEL_COMPILER)
 
#  define FMT_ICC_VERSION __INTEL_COMPILER
 
#else
 
#  define FMT_ICC_VERSION 0
 
#endif
 

	
 
#if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__)
 
#  define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION
 
#else
 
#  define FMT_HAS_GXX_CXX11 0
 
#endif
 

	
 
#ifdef __NVCC__
 
#  define FMT_NVCC __NVCC__
 
#else
 
#  define FMT_NVCC 0
 
#endif
 

	
 
#ifdef _MSC_VER
 
#  define FMT_MSC_VER _MSC_VER
 
#  define FMT_SUPPRESS_MSC_WARNING(n) __pragma(warning(suppress : n))
 
#else
 
#  define FMT_MSC_VER 0
 
#  define FMT_SUPPRESS_MSC_WARNING(n)
 
#endif
 

	
 
#ifdef __has_feature
 
#  define FMT_HAS_FEATURE(x) __has_feature(x)
 
#else
 
#  define FMT_HAS_FEATURE(x) 0
 
#endif
 

	
 
#if defined(__has_include) && !defined(__INTELLISENSE__) && \
 
    (!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1600)
 
#  define FMT_HAS_INCLUDE(x) __has_include(x)
 
#else
 
#  define FMT_HAS_INCLUDE(x) 0
 
#endif
 

	
 
#ifdef __has_cpp_attribute
 
#  define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
 
#else
 
#  define FMT_HAS_CPP_ATTRIBUTE(x) 0
 
#endif
 

	
 
#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
 
  (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
 

	
 
#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
 
  (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
 

	
 
// Check if relaxed C++14 constexpr is supported.
 
// GCC doesn't allow throw in constexpr until version 6 (bug 67371).
 
#ifndef FMT_USE_CONSTEXPR
 
#  define FMT_USE_CONSTEXPR                                           \
 
    (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \
 
     (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) &&           \
 
        !FMT_NVCC && !FMT_ICC_VERSION
 
#endif
 
#if FMT_USE_CONSTEXPR
 
#  define FMT_CONSTEXPR constexpr
 
#  define FMT_CONSTEXPR_DECL constexpr
 
#else
 
#  define FMT_CONSTEXPR inline
 
#  define FMT_CONSTEXPR_DECL
 
#endif
 

	
 
#ifndef FMT_OVERRIDE
 
#  if FMT_HAS_FEATURE(cxx_override_control) || \
 
      (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
 
#    define FMT_OVERRIDE override
 
#  else
 
#    define FMT_OVERRIDE
 
#  endif
 
#endif
 

	
 
// Check if exceptions are disabled.
 
#ifndef FMT_EXCEPTIONS
 
#  if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \
 
      FMT_MSC_VER && !_HAS_EXCEPTIONS
 
#    define FMT_EXCEPTIONS 0
 
#  else
 
#    define FMT_EXCEPTIONS 1
 
#  endif
 
#endif
 

	
 
// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
 
#ifndef FMT_USE_NOEXCEPT
 
#  define FMT_USE_NOEXCEPT 0
 
#endif
 

	
 
#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
 
    (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
 
#  define FMT_DETECTED_NOEXCEPT noexcept
 
#  define FMT_HAS_CXX11_NOEXCEPT 1
 
#else
 
#  define FMT_DETECTED_NOEXCEPT throw()
 
#  define FMT_HAS_CXX11_NOEXCEPT 0
 
#endif
 

	
 
#ifndef FMT_NOEXCEPT
 
#  if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT
 
#    define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
 
#  else
 
#    define FMT_NOEXCEPT
 
#  endif
 
#endif
 

	
 
// [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code
 
// warnings.
 
#if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \
 
    !FMT_NVCC
 
#  define FMT_NORETURN [[noreturn]]
 
#else
 
#  define FMT_NORETURN
 
#endif
 

	
 
#ifndef FMT_DEPRECATED
 
#  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900
 
#    define FMT_DEPRECATED [[deprecated]]
 
#  else
 
#    if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
 
#      define FMT_DEPRECATED __attribute__((deprecated))
 
#    elif FMT_MSC_VER
 
#      define FMT_DEPRECATED __declspec(deprecated)
 
#    else
 
#      define FMT_DEPRECATED /* deprecated */
 
#    endif
 
#  endif
 
#endif
 

	
 
// Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
 
#if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
 
#  define FMT_DEPRECATED_ALIAS
 
#else
 
#  define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
 
#endif
 

	
 
#ifndef FMT_INLINE
 
#  if FMT_GCC_VERSION || FMT_CLANG_VERSION
 
#    define FMT_INLINE inline __attribute__((always_inline))
 
#  else
 
#    define FMT_INLINE inline
 
#  endif
 
#endif
 

	
 
#ifndef FMT_USE_INLINE_NAMESPACES
 
#  if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \
 
      (FMT_MSC_VER >= 1900 && !_MANAGED)
 
#    define FMT_USE_INLINE_NAMESPACES 1
 
#  else
 
#    define FMT_USE_INLINE_NAMESPACES 0
 
#  endif
 
#endif
 

	
 
#ifndef FMT_BEGIN_NAMESPACE
 
#  if FMT_USE_INLINE_NAMESPACES
 
#    define FMT_INLINE_NAMESPACE inline namespace
 
#    define FMT_END_NAMESPACE \
 
      }                       \
 
      }
 
#  else
 
#    define FMT_INLINE_NAMESPACE namespace
 
#    define FMT_END_NAMESPACE \
 
      }                       \
 
      using namespace v7;     \
 
      }
 
#  endif
 
#  define FMT_BEGIN_NAMESPACE \
 
    namespace fmt {           \
 
    FMT_INLINE_NAMESPACE v7 {
 
#endif
 

	
 
#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
 
#  define FMT_CLASS_API FMT_SUPPRESS_MSC_WARNING(4275)
 
#  ifdef FMT_EXPORT
 
#    define FMT_API __declspec(dllexport)
 
#    define FMT_EXTERN_TEMPLATE_API FMT_API
 
#    define FMT_EXPORTED
 
#  elif defined(FMT_SHARED)
 
#    define FMT_API __declspec(dllimport)
 
#    define FMT_EXTERN_TEMPLATE_API FMT_API
 
#  endif
 
#else
 
#  define FMT_CLASS_API
 
#endif
 
#ifndef FMT_API
 
#  define FMT_API
 
#endif
 
#ifndef FMT_EXTERN_TEMPLATE_API
 
#  define FMT_EXTERN_TEMPLATE_API
 
#endif
 
#ifndef FMT_INSTANTIATION_DEF_API
 
#  define FMT_INSTANTIATION_DEF_API FMT_API
 
#endif
 

	
 
#ifndef FMT_HEADER_ONLY
 
#  define FMT_EXTERN extern
 
#else
 
#  define FMT_EXTERN
 
#endif
 

	
 
// libc++ supports string_view in pre-c++17.
 
#if (FMT_HAS_INCLUDE(<string_view>) &&                       \
 
     (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \
 
    (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
 
#  include <string_view>
 
#  define FMT_USE_STRING_VIEW
 
#elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L
 
#  include <experimental/string_view>
 
#  define FMT_USE_EXPERIMENTAL_STRING_VIEW
 
#endif
 

	
 
#ifndef FMT_UNICODE
 
#  define FMT_UNICODE !FMT_MSC_VER
 
#endif
 
#if FMT_UNICODE && FMT_MSC_VER
 
#  pragma execution_character_set("utf-8")
 
#endif
 

	
 
FMT_BEGIN_NAMESPACE
 

	
 
// Implementations of enable_if_t and other metafunctions for older systems.
 
template <bool B, class T = void>
 
using enable_if_t = typename std::enable_if<B, T>::type;
 
template <bool B, class T, class F>
 
using conditional_t = typename std::conditional<B, T, F>::type;
 
template <bool B> using bool_constant = std::integral_constant<bool, B>;
 
template <typename T>
 
using remove_reference_t = typename std::remove_reference<T>::type;
 
template <typename T>
 
using remove_const_t = typename std::remove_const<T>::type;
 
template <typename T>
 
using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
 
template <typename T> struct type_identity { using type = T; };
 
template <typename T> using type_identity_t = typename type_identity<T>::type;
 

	
 
struct monostate {};
 

	
 
// An enable_if helper to be used in template parameters which results in much
 
// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
 
// to workaround a bug in MSVC 2019 (see #1140 and #1186).
 
#define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0
 

	
 
namespace detail {
 

	
 
// A helper function to suppress "conditional expression is constant" warnings.
 
template <typename T> constexpr T const_check(T value) { return value; }
 

	
 
FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
 
                                      const char* message);
 

	
 
#ifndef FMT_ASSERT
 
#  ifdef NDEBUG
 
// FMT_ASSERT is not empty to avoid -Werror=empty-body.
 
#    define FMT_ASSERT(condition, message) ((void)0)
 
#  else
 
#    define FMT_ASSERT(condition, message)                                    \
 
      ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
 
           ? (void)0                                                          \
 
           : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
 
#  endif
 
#endif
 

	
 
#if defined(FMT_USE_STRING_VIEW)
 
template <typename Char> using std_string_view = std::basic_string_view<Char>;
 
#elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
 
template <typename Char>
 
using std_string_view = std::experimental::basic_string_view<Char>;
 
#else
 
template <typename T> struct std_string_view {};
 
#endif
 

	
 
#ifdef FMT_USE_INT128
 
// Do nothing.
 
#elif defined(__SIZEOF_INT128__) && !FMT_NVCC && \
 
    !(FMT_CLANG_VERSION && FMT_MSC_VER)
 
#  define FMT_USE_INT128 1
 
using int128_t = __int128_t;
 
using uint128_t = __uint128_t;
 
#else
 
#  define FMT_USE_INT128 0
 
#endif
 
#if !FMT_USE_INT128
 
struct int128_t {};
 
struct uint128_t {};
 
#endif
 

	
 
// Casts a nonnegative integer to unsigned.
 
template <typename Int>
 
FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) {
 
  FMT_ASSERT(value >= 0, "negative value");
 
  return static_cast<typename std::make_unsigned<Int>::type>(value);
 
}
 

	
 
FMT_SUPPRESS_MSC_WARNING(4566) constexpr unsigned char micro[] = "\u00B5";
 

	
 
template <typename Char> constexpr bool is_unicode() {
 
  return FMT_UNICODE || sizeof(Char) != 1 ||
 
         (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5);
 
}
 

	
 
#ifdef __cpp_char8_t
 
using char8_type = char8_t;
 
#else
 
enum char8_type : unsigned char {};
 
#endif
 
}  // namespace detail
 

	
 
#ifdef FMT_USE_INTERNAL
 
namespace internal = detail;  // DEPRECATED
 
#endif
 

	
 
/**
 
  An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
 
  subset of the API. ``fmt::basic_string_view`` is used for format strings even
 
  if ``std::string_view`` is available to prevent issues when a library is
 
  compiled with a different ``-std`` option than the client code (which is not
 
  recommended).
 
 */
 
template <typename Char> class basic_string_view {
 
 private:
 
  const Char* data_;
 
  size_t size_;
 

	
 
 public:
 
  using value_type = Char;
 
  using iterator = const Char*;
 

	
 
  constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {}
 

	
 
  /** Constructs a string reference object from a C string and a size. */
 
  constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT
 
      : data_(s),
 
        size_(count) {}
 

	
 
  /**
 
    \rst
 
    Constructs a string reference object from a C string computing
 
    the size with ``std::char_traits<Char>::length``.
 
    \endrst
 
   */
 
#if __cplusplus >= 201703L  // C++17's char_traits::length() is constexpr.
 
  FMT_CONSTEXPR
 
#endif
 
  basic_string_view(const Char* s)
 
      : data_(s), size_(std::char_traits<Char>::length(s)) {}
 

	
 
  /** Constructs a string reference from a ``std::basic_string`` object. */
 
  template <typename Traits, typename Alloc>
 
  FMT_CONSTEXPR basic_string_view(
 
      const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT
 
      : data_(s.data()),
 
        size_(s.size()) {}
 

	
 
  template <typename S, FMT_ENABLE_IF(std::is_same<
 
                                      S, detail::std_string_view<Char>>::value)>
 
  FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()),
 
                                                      size_(s.size()) {}
 

	
 
  /** Returns a pointer to the string data. */
 
  constexpr const Char* data() const { return data_; }
 

	
 
  /** Returns the string size. */
 
  constexpr size_t size() const { return size_; }
 

	
 
  constexpr iterator begin() const { return data_; }
 
  constexpr iterator end() const { return data_ + size_; }
 

	
 
  constexpr const Char& operator[](size_t pos) const { return data_[pos]; }
 

	
 
  FMT_CONSTEXPR void remove_prefix(size_t n) {
 
    data_ += n;
 
    size_ -= n;
 
  }
 

	
 
  // Lexicographically compare this string reference to other.
 
  int compare(basic_string_view other) const {
 
    size_t str_size = size_ < other.size_ ? size_ : other.size_;
 
    int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
 
    if (result == 0)
 
      result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
 
    return result;
 
  }
 

	
 
  friend bool operator==(basic_string_view lhs, basic_string_view rhs) {
 
    return lhs.compare(rhs) == 0;
 
  }
 
  friend bool operator!=(basic_string_view lhs, basic_string_view rhs) {
 
    return lhs.compare(rhs) != 0;
 
  }
 
  friend bool operator<(basic_string_view lhs, basic_string_view rhs) {
 
    return lhs.compare(rhs) < 0;
 
  }
 
  friend bool operator<=(basic_string_view lhs, basic_string_view rhs) {
 
    return lhs.compare(rhs) <= 0;
 
  }
 
  friend bool operator>(basic_string_view lhs, basic_string_view rhs) {
 
    return lhs.compare(rhs) > 0;
 
  }
 
  friend bool operator>=(basic_string_view lhs, basic_string_view rhs) {
 
    return lhs.compare(rhs) >= 0;
 
  }
 
};
 

	
 
using string_view = basic_string_view<char>;
 
using wstring_view = basic_string_view<wchar_t>;
 

	
 
/** Specifies if ``T`` is a character type. Can be specialized by users. */
 
template <typename T> struct is_char : std::false_type {};
 
template <> struct is_char<char> : std::true_type {};
 
template <> struct is_char<wchar_t> : std::true_type {};
 
template <> struct is_char<detail::char8_type> : std::true_type {};
 
template <> struct is_char<char16_t> : std::true_type {};
 
template <> struct is_char<char32_t> : std::true_type {};
 

	
 
/**
 
  \rst
 
  Returns a string view of `s`. In order to add custom string type support to
 
  {fmt} provide an overload of `to_string_view` for it in the same namespace as
 
  the type for the argument-dependent lookup to work.
 

	
 
  **Example**::
 

	
 
    namespace my_ns {
 
    inline string_view to_string_view(const my_string& s) {
 
      return {s.data(), s.length()};
 
    }
 
    }
 
    std::string message = fmt::format(my_string("The answer is {}"), 42);
 
  \endrst
 
 */
 
template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
 
inline basic_string_view<Char> to_string_view(const Char* s) {
 
  return s;
 
}
 

	
 
template <typename Char, typename Traits, typename Alloc>
 
inline basic_string_view<Char> to_string_view(
 
    const std::basic_string<Char, Traits, Alloc>& s) {
 
  return s;
 
}
 

	
 
template <typename Char>
 
inline basic_string_view<Char> to_string_view(basic_string_view<Char> s) {
 
  return s;
 
}
 

	
 
template <typename Char,
 
          FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)>
 
inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) {
 
  return s;
 
}
 

	
 
// A base class for compile-time strings. It is defined in the fmt namespace to
 
// make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42).
 
struct compile_string {};
 

	
 
template <typename S>
 
struct is_compile_string : std::is_base_of<compile_string, S> {};
 

	
 
template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
 
constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) {
 
  return s;
 
}
 

	
 
namespace detail {
 
void to_string_view(...);
 
using fmt::v7::to_string_view;
 

	
 
// Specifies whether S is a string type convertible to fmt::basic_string_view.
 
// It should be a constexpr function but MSVC 2017 fails to compile it in
 
// enable_if and MSVC 2015 fails to compile it as an alias template.
 
template <typename S>
 
struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> {
 
};
 

	
 
template <typename S, typename = void> struct char_t_impl {};
 
template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> {
 
  using result = decltype(to_string_view(std::declval<S>()));
 
  using type = typename result::value_type;
 
};
 

	
 
// Reports a compile-time error if S is not a valid format string.
 
template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
 
FMT_INLINE void check_format_string(const S&) {
 
#ifdef FMT_ENFORCE_COMPILE_STRING
 
  static_assert(is_compile_string<S>::value,
 
                "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
 
                "FMT_STRING.");
 
#endif
 
}
 
template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
 
void check_format_string(S);
 

	
 
struct error_handler {
 
  constexpr error_handler() = default;
 
  constexpr error_handler(const error_handler&) = default;
 

	
 
  // This function is intentionally not constexpr to give a compile-time error.
 
  FMT_NORETURN FMT_API void on_error(const char* message);
 
};
 
}  // namespace detail
 

	
 
/** String's character type. */
 
template <typename S> using char_t = typename detail::char_t_impl<S>::type;
 

	
 
/**
 
  \rst
 
  Parsing context consisting of a format string range being parsed and an
 
  argument counter for automatic indexing.
 

	
 
  You can use one of the following type aliases for common character types:
 

	
 
  +-----------------------+-------------------------------------+
 
  | Type                  | Definition                          |
 
  +=======================+=====================================+
 
  | format_parse_context  | basic_format_parse_context<char>    |
 
  +-----------------------+-------------------------------------+
 
  | wformat_parse_context | basic_format_parse_context<wchar_t> |
 
  +-----------------------+-------------------------------------+
 
  \endrst
 
 */
 
template <typename Char, typename ErrorHandler = detail::error_handler>
 
class basic_format_parse_context : private ErrorHandler {
 
 private:
 
  basic_string_view<Char> format_str_;
 
  int next_arg_id_;
 

	
 
 public:
 
  using char_type = Char;
 
  using iterator = typename basic_string_view<Char>::iterator;
 

	
 
  explicit constexpr basic_format_parse_context(
 
      basic_string_view<Char> format_str, ErrorHandler eh = {},
 
      int next_arg_id = 0)
 
      : ErrorHandler(eh), format_str_(format_str), next_arg_id_(next_arg_id) {}
 

	
 
  /**
 
    Returns an iterator to the beginning of the format string range being
 
    parsed.
 
   */
 
  constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); }
 

	
 
  /**
 
    Returns an iterator past the end of the format string range being parsed.
 
   */
 
  constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); }
 

	
 
  /** Advances the begin iterator to ``it``. */
 
  FMT_CONSTEXPR void advance_to(iterator it) {
 
    format_str_.remove_prefix(detail::to_unsigned(it - begin()));
 
  }
 

	
 
  /**
 
    Reports an error if using the manual argument indexing; otherwise returns
 
    the next argument index and switches to the automatic indexing.
 
   */
 
  FMT_CONSTEXPR int next_arg_id() {
 
    // Don't check if the argument id is valid to avoid overhead and because it
 
    // will be checked during formatting anyway.
 
    if (next_arg_id_ >= 0) return next_arg_id_++;
 
    on_error("cannot switch from manual to automatic argument indexing");
 
    return 0;
 
  }
 

	
 
  /**
 
    Reports an error if using the automatic argument indexing; otherwise
 
    switches to the manual indexing.
 
   */
 
  FMT_CONSTEXPR void check_arg_id(int) {
 
    if (next_arg_id_ > 0)
 
      on_error("cannot switch from automatic to manual argument indexing");
 
    else
 
      next_arg_id_ = -1;
 
  }
 

	
 
  FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}
 

	
 
  FMT_CONSTEXPR void on_error(const char* message) {
 
    ErrorHandler::on_error(message);
 
  }
 

	
 
  constexpr ErrorHandler error_handler() const { return *this; }
 
};
 

	
 
using format_parse_context = basic_format_parse_context<char>;
 
using wformat_parse_context = basic_format_parse_context<wchar_t>;
 

	
 
template <typename Context> class basic_format_arg;
 
template <typename Context> class basic_format_args;
 
template <typename Context> class dynamic_format_arg_store;
 

	
 
// A formatter for objects of type T.
 
template <typename T, typename Char = char, typename Enable = void>
 
struct formatter {
 
  // A deleted default constructor indicates a disabled formatter.
 
  formatter() = delete;
 
};
 

	
 
// Specifies if T has an enabled formatter specialization. A type can be
 
// formattable even if it doesn't have a formatter e.g. via a conversion.
 
template <typename T, typename Context>
 
using has_formatter =
 
    std::is_constructible<typename Context::template formatter_type<T>>;
 

	
 
// Checks whether T is a container with contiguous storage.
 
template <typename T> struct is_contiguous : std::false_type {};
 
template <typename Char>
 
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
 

	
 
namespace detail {
 

	
 
// Extracts a reference to the container from back_insert_iterator.
 
template <typename Container>
 
inline Container& get_container(std::back_insert_iterator<Container> it) {
 
  using bi_iterator = std::back_insert_iterator<Container>;
 
  struct accessor : bi_iterator {
 
    accessor(bi_iterator iter) : bi_iterator(iter) {}
 
    using bi_iterator::container;
 
  };
 
  return *accessor(it).container;
 
}
 

	
 
/**
 
  \rst
 
  A contiguous memory buffer with an optional growing ability. It is an internal
 
  class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
 
  \endrst
 
 */
 
template <typename T> class buffer {
 
 private:
 
  T* ptr_;
 
  size_t size_;
 
  size_t capacity_;
 

	
 
 protected:
 
  // Don't initialize ptr_ since it is not accessed to save a few cycles.
 
  FMT_SUPPRESS_MSC_WARNING(26495)
 
  buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {}
 

	
 
  buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT
 
      : ptr_(p),
 
        size_(sz),
 
        capacity_(cap) {}
 

	
 
  ~buffer() = default;
 

	
 
  /** Sets the buffer data and capacity. */
 
  void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT {
 
    ptr_ = buf_data;
 
    capacity_ = buf_capacity;
 
  }
 

	
 
  /** Increases the buffer capacity to hold at least *capacity* elements. */
 
  virtual void grow(size_t capacity) = 0;
 

	
 
 public:
 
  using value_type = T;
 
  using const_reference = const T&;
 

	
 
  buffer(const buffer&) = delete;
 
  void operator=(const buffer&) = delete;
 

	
 
  T* begin() FMT_NOEXCEPT { return ptr_; }
 
  T* end() FMT_NOEXCEPT { return ptr_ + size_; }
 

	
 
  const T* begin() const FMT_NOEXCEPT { return ptr_; }
 
  const T* end() const FMT_NOEXCEPT { return ptr_ + size_; }
 

	
 
  /** Returns the size of this buffer. */
 
  size_t size() const FMT_NOEXCEPT { return size_; }
 

	
 
  /** Returns the capacity of this buffer. */
 
  size_t capacity() const FMT_NOEXCEPT { return capacity_; }
 

	
 
  /** Returns a pointer to the buffer data. */
 
  T* data() FMT_NOEXCEPT { return ptr_; }
 

	
 
  /** Returns a pointer to the buffer data. */
 
  const T* data() const FMT_NOEXCEPT { return ptr_; }
 

	
 
  /** Clears this buffer. */
 
  void clear() { size_ = 0; }
 

	
 
  // Tries resizing the buffer to contain *count* elements. If T is a POD type
 
  // the new elements may not be initialized.
 
  void try_resize(size_t count) {
 
    try_reserve(count);
 
    size_ = count <= capacity_ ? count : capacity_;
 
  }
 

	
 
  // Tries increasing the buffer capacity to *new_capacity*. It can increase the
 
  // capacity by a smaller amount than requested but guarantees there is space
 
  // for at least one additional element either by increasing the capacity or by
 
  // flushing the buffer if it is full.
 
  void try_reserve(size_t new_capacity) {
 
    if (new_capacity > capacity_) grow(new_capacity);
 
  }
 

	
 
  void push_back(const T& value) {
 
    try_reserve(size_ + 1);
 
    ptr_[size_++] = value;
 
  }
 

	
 
  /** Appends data to the end of the buffer. */
 
  template <typename U> void append(const U* begin, const U* end);
 

	
 
  template <typename I> T& operator[](I index) { return ptr_[index]; }
 
  template <typename I> const T& operator[](I index) const {
 
    return ptr_[index];
 
  }
 
};
 

	
 
struct buffer_traits {
 
  explicit buffer_traits(size_t) {}
 
  size_t count() const { return 0; }
 
  size_t limit(size_t size) { return size; }
 
};
 

	
 
class fixed_buffer_traits {
 
 private:
 
  size_t count_ = 0;
 
  size_t limit_;
 

	
 
 public:
 
  explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
 
  size_t count() const { return count_; }
 
  size_t limit(size_t size) {
 
    size_t n = limit_ > count_ ? limit_ - count_ : 0;
 
    count_ += size;
 
    return size < n ? size : n;
 
  }
 
};
 

	
 
// A buffer that writes to an output iterator when flushed.
 
template <typename OutputIt, typename T, typename Traits = buffer_traits>
 
class iterator_buffer final : public Traits, public buffer<T> {
 
 private:
 
  OutputIt out_;
 
  enum { buffer_size = 256 };
 
  T data_[buffer_size];
 

	
 
 protected:
 
  void grow(size_t) final FMT_OVERRIDE {
 
    if (this->size() == buffer_size) flush();
 
  }
 
  void flush();
 

	
 
 public:
 
  explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
 
      : Traits(n),
 
        buffer<T>(data_, 0, buffer_size),
 
        out_(out) {}
 
  ~iterator_buffer() { flush(); }
 

	
 
  OutputIt out() {
 
    flush();
 
    return out_;
 
  }
 
  size_t count() const { return Traits::count() + this->size(); }
 
};
 

	
 
template <typename T> class iterator_buffer<T*, T> final : public buffer<T> {
 
 protected:
 
  void grow(size_t) final FMT_OVERRIDE {}
 

	
 
 public:
 
  explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {}
 

	
 
  T* out() { return &*this->end(); }
 
};
 

	
 
// A buffer that writes to a container with the contiguous storage.
 
template <typename Container>
 
class iterator_buffer<std::back_insert_iterator<Container>,
 
                      enable_if_t<is_contiguous<Container>::value,
 
                                  typename Container::value_type>>
 
    final : public buffer<typename Container::value_type> {
 
 private:
 
  Container& container_;
 

	
 
 protected:
 
  void grow(size_t capacity) final FMT_OVERRIDE {
 
    container_.resize(capacity);
 
    this->set(&container_[0], capacity);
 
  }
 

	
 
 public:
 
  explicit iterator_buffer(Container& c)
 
      : buffer<typename Container::value_type>(c.size()), container_(c) {}
 
  explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0)
 
      : iterator_buffer(get_container(out)) {}
 
  std::back_insert_iterator<Container> out() {
 
    return std::back_inserter(container_);
 
  }
 
};
 

	
 
// A buffer that counts the number of code units written discarding the output.
 
template <typename T = char> class counting_buffer final : public buffer<T> {
 
 private:
 
  enum { buffer_size = 256 };
 
  T data_[buffer_size];
 
  size_t count_ = 0;
 

	
 
 protected:
 
  void grow(size_t) final FMT_OVERRIDE {
 
    if (this->size() != buffer_size) return;
 
    count_ += this->size();
 
    this->clear();
 
  }
 

	
 
 public:
 
  counting_buffer() : buffer<T>(data_, 0, buffer_size) {}
 

	
 
  size_t count() { return count_ + this->size(); }
 
};
 

	
 
// An output iterator that appends to the buffer.
 
// It is used to reduce symbol sizes for the common case.
 
template <typename T>
 
class buffer_appender : public std::back_insert_iterator<buffer<T>> {
 
  using base = std::back_insert_iterator<buffer<T>>;
 

	
 
 public:
 
  explicit buffer_appender(buffer<T>& buf) : base(buf) {}
 
  buffer_appender(base it) : base(it) {}
 

	
 
  buffer_appender& operator++() {
 
    base::operator++();
 
    return *this;
 
  }
 

	
 
  buffer_appender operator++(int) {
 
    buffer_appender tmp = *this;
 
    ++*this;
 
    return tmp;
 
  }
 
};
 

	
 
// Maps an output iterator into a buffer.
 
template <typename T, typename OutputIt>
 
iterator_buffer<OutputIt, T> get_buffer(OutputIt);
 
template <typename T> buffer<T>& get_buffer(buffer_appender<T>);
 

	
 
template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) {
 
  return out;
 
}
 
template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) {
 
  return get_container(out);
 
}
 

	
 
template <typename Buffer>
 
auto get_iterator(Buffer& buf) -> decltype(buf.out()) {
 
  return buf.out();
 
}
 
template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) {
 
  return buffer_appender<T>(buf);
 
}
 

	
 
template <typename T, typename Char = char, typename Enable = void>
 
struct fallback_formatter {
 
  fallback_formatter() = delete;
 
};
 

	
 
// Specifies if T has an enabled fallback_formatter specialization.
 
template <typename T, typename Context>
 
using has_fallback_formatter =
 
    std::is_constructible<fallback_formatter<T, typename Context::char_type>>;
 

	
 
struct view {};
 

	
 
template <typename Char, typename T> struct named_arg : view {
 
  const Char* name;
 
  const T& value;
 
  named_arg(const Char* n, const T& v) : name(n), value(v) {}
 
};
 

	
 
template <typename Char> struct named_arg_info {
 
  const Char* name;
 
  int id;
 
};
 

	
 
template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
 
struct arg_data {
 
  // args_[0].named_args points to named_args_ to avoid bloating format_args.
 
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
 
  T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)];
 
  named_arg_info<Char> named_args_[NUM_NAMED_ARGS];
 

	
 
  template <typename... U>
 
  arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
 
  arg_data(const arg_data& other) = delete;
 
  const T* args() const { return args_ + 1; }
 
  named_arg_info<Char>* named_args() { return named_args_; }
 
};
 

	
 
template <typename T, typename Char, size_t NUM_ARGS>
 
struct arg_data<T, Char, NUM_ARGS, 0> {
 
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
 
  T args_[NUM_ARGS != 0 ? NUM_ARGS : +1];
 

	
 
  template <typename... U>
 
  FMT_INLINE arg_data(const U&... init) : args_{init...} {}
 
  FMT_INLINE const T* args() const { return args_; }
 
  FMT_INLINE std::nullptr_t named_args() { return nullptr; }
 
};
 

	
 
template <typename Char>
 
inline void init_named_args(named_arg_info<Char>*, int, int) {}
 

	
 
template <typename Char, typename T, typename... Tail>
 
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
 
                     int named_arg_count, const T&, const Tail&... args) {
 
  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
 
}
 

	
 
template <typename Char, typename T, typename... Tail>
 
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
 
                     int named_arg_count, const named_arg<Char, T>& arg,
 
                     const Tail&... args) {
 
  named_args[named_arg_count++] = {arg.name, arg_count};
 
  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
 
}
 

	
 
template <typename... Args>
 
FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {}
 

	
 
template <typename T> struct is_named_arg : std::false_type {};
 

	
 
template <typename T, typename Char>
 
struct is_named_arg<named_arg<Char, T>> : std::true_type {};
 

	
 
template <bool B = false> constexpr size_t count() { return B ? 1 : 0; }
 
template <bool B1, bool B2, bool... Tail> constexpr size_t count() {
 
  return (B1 ? 1 : 0) + count<B2, Tail...>();
 
}
 

	
 
template <typename... Args> constexpr size_t count_named_args() {
 
  return count<is_named_arg<Args>::value...>();
 
}
 

	
 
enum class type {
 
  none_type,
 
  // Integer types should go first,
 
  int_type,
 
  uint_type,
 
  long_long_type,
 
  ulong_long_type,
 
  int128_type,
 
  uint128_type,
 
  bool_type,
 
  char_type,
 
  last_integer_type = char_type,
 
  // followed by floating-point types.
 
  float_type,
 
  double_type,
 
  long_double_type,
 
  last_numeric_type = long_double_type,
 
  cstring_type,
 
  string_type,
 
  pointer_type,
 
  custom_type
 
};
 

	
 
// Maps core type T to the corresponding type enum constant.
 
template <typename T, typename Char>
 
struct type_constant : std::integral_constant<type, type::custom_type> {};
 

	
 
#define FMT_TYPE_CONSTANT(Type, constant) \
 
  template <typename Char>                \
 
  struct type_constant<Type, Char>        \
 
      : std::integral_constant<type, type::constant> {}
 

	
 
FMT_TYPE_CONSTANT(int, int_type);
 
FMT_TYPE_CONSTANT(unsigned, uint_type);
 
FMT_TYPE_CONSTANT(long long, long_long_type);
 
FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
 
FMT_TYPE_CONSTANT(int128_t, int128_type);
 
FMT_TYPE_CONSTANT(uint128_t, uint128_type);
 
FMT_TYPE_CONSTANT(bool, bool_type);
 
FMT_TYPE_CONSTANT(Char, char_type);
 
FMT_TYPE_CONSTANT(float, float_type);
 
FMT_TYPE_CONSTANT(double, double_type);
 
FMT_TYPE_CONSTANT(long double, long_double_type);
 
FMT_TYPE_CONSTANT(const Char*, cstring_type);
 
FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
 
FMT_TYPE_CONSTANT(const void*, pointer_type);
 

	
 
constexpr bool is_integral_type(type t) {
 
  return t > type::none_type && t <= type::last_integer_type;
 
}
 

	
 
constexpr bool is_arithmetic_type(type t) {
 
  return t > type::none_type && t <= type::last_numeric_type;
 
}
 

	
 
template <typename Char> struct string_value {
 
  const Char* data;
 
  size_t size;
 
};
 

	
 
template <typename Char> struct named_arg_value {
 
  const named_arg_info<Char>* data;
 
  size_t size;
 
};
 

	
 
template <typename Context> struct custom_value {
 
  using parse_context = typename Context::parse_context_type;
 
  const void* value;
 
  void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx);
 
};
 

	
 
// A formatting argument value.
 
template <typename Context> class value {
 
 public:
 
  using char_type = typename Context::char_type;
 

	
 
  union {
 
    int int_value;
 
    unsigned uint_value;
 
    long long long_long_value;
 
    unsigned long long ulong_long_value;
 
    int128_t int128_value;
 
    uint128_t uint128_value;
 
    bool bool_value;
 
    char_type char_value;
 
    float float_value;
 
    double double_value;
 
    long double long_double_value;
 
    const void* pointer;
 
    string_value<char_type> string;
 
    custom_value<Context> custom;
 
    named_arg_value<char_type> named_args;
 
  };
 

	
 
  constexpr FMT_INLINE value(int val = 0) : int_value(val) {}
 
  constexpr FMT_INLINE value(unsigned val) : uint_value(val) {}
 
  FMT_INLINE value(long long val) : long_long_value(val) {}
 
  FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
 
  FMT_INLINE value(int128_t val) : int128_value(val) {}
 
  FMT_INLINE value(uint128_t val) : uint128_value(val) {}
 
  FMT_INLINE value(float val) : float_value(val) {}
 
  FMT_INLINE value(double val) : double_value(val) {}
 
  FMT_INLINE value(long double val) : long_double_value(val) {}
 
  FMT_INLINE value(bool val) : bool_value(val) {}
 
  FMT_INLINE value(char_type val) : char_value(val) {}
 
  FMT_INLINE value(const char_type* val) { string.data = val; }
 
  FMT_INLINE value(basic_string_view<char_type> val) {
 
    string.data = val.data();
 
    string.size = val.size();
 
  }
 
  FMT_INLINE value(const void* val) : pointer(val) {}
 
  FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
 
      : named_args{args, size} {}
 

	
 
  template <typename T> FMT_INLINE value(const T& val) {
 
    custom.value = &val;
 
    // Get the formatter type through the context to allow different contexts
 
    // have different extension points, e.g. `formatter<T>` for `format` and
 
    // `printf_formatter<T>` for `printf`.
 
    custom.format = format_custom_arg<
 
        T, conditional_t<has_formatter<T, Context>::value,
 
                         typename Context::template formatter_type<T>,
 
                         fallback_formatter<T, char_type>>>;
 
  }
 

	
 
 private:
 
  // Formats an argument of a custom type, such as a user-defined class.
 
  template <typename T, typename Formatter>
 
  static void format_custom_arg(const void* arg,
 
                                typename Context::parse_context_type& parse_ctx,
 
                                Context& ctx) {
 
    Formatter f;
 
    parse_ctx.advance_to(f.parse(parse_ctx));
 
    ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx));
 
  }
 
};
 

	
 
template <typename Context, typename T>
 
FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value);
 

	
 
// To minimize the number of types we need to deal with, long is translated
 
// either to int or to long long depending on its size.
 
enum { long_short = sizeof(long) == sizeof(int) };
 
using long_type = conditional_t<long_short, int, long long>;
 
using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;
 

	
 
struct unformattable {};
 

	
 
// Maps formatting arguments to core types.
 
template <typename Context> struct arg_mapper {
 
  using char_type = typename Context::char_type;
 

	
 
  FMT_CONSTEXPR int map(signed char val) { return val; }
 
  FMT_CONSTEXPR unsigned map(unsigned char val) { return val; }
 
  FMT_CONSTEXPR int map(short val) { return val; }
 
  FMT_CONSTEXPR unsigned map(unsigned short val) { return val; }
 
  FMT_CONSTEXPR int map(int val) { return val; }
 
  FMT_CONSTEXPR unsigned map(unsigned val) { return val; }
 
  FMT_CONSTEXPR long_type map(long val) { return val; }
 
  FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; }
 
  FMT_CONSTEXPR long long map(long long val) { return val; }
 
  FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; }
 
  FMT_CONSTEXPR int128_t map(int128_t val) { return val; }
 
  FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; }
 
  FMT_CONSTEXPR bool map(bool val) { return val; }
 

	
 
  template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
 
  FMT_CONSTEXPR char_type map(T val) {
 
    static_assert(
 
        std::is_same<T, char>::value || std::is_same<T, char_type>::value,
 
        "mixing character types is disallowed");
 
    return val;
 
  }
 

	
 
  FMT_CONSTEXPR float map(float val) { return val; }
 
  FMT_CONSTEXPR double map(double val) { return val; }
 
  FMT_CONSTEXPR long double map(long double val) { return val; }
 

	
 
  FMT_CONSTEXPR const char_type* map(char_type* val) { return val; }
 
  FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; }
 
  template <typename T, FMT_ENABLE_IF(is_string<T>::value)>
 
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
 
    static_assert(std::is_same<char_type, char_t<T>>::value,
 
                  "mixing character types is disallowed");
 
    return to_string_view(val);
 
  }
 
  template <typename T,
 
            FMT_ENABLE_IF(
 
                std::is_constructible<basic_string_view<char_type>, T>::value &&
 
                !is_string<T>::value && !has_formatter<T, Context>::value &&
 
                !has_fallback_formatter<T, Context>::value)>
 
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
 
    return basic_string_view<char_type>(val);
 
  }
 
  template <
 
      typename T,
 
      FMT_ENABLE_IF(
 
          std::is_constructible<std_string_view<char_type>, T>::value &&
 
          !std::is_constructible<basic_string_view<char_type>, T>::value &&
 
          !is_string<T>::value && !has_formatter<T, Context>::value &&
 
          !has_fallback_formatter<T, Context>::value)>
 
  FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
 
    return std_string_view<char_type>(val);
 
  }
 
  FMT_CONSTEXPR const char* map(const signed char* val) {
 
    static_assert(std::is_same<char_type, char>::value, "invalid string type");
 
    return reinterpret_cast<const char*>(val);
 
  }
 
  FMT_CONSTEXPR const char* map(const unsigned char* val) {
 
    static_assert(std::is_same<char_type, char>::value, "invalid string type");
 
    return reinterpret_cast<const char*>(val);
 
  }
 
  FMT_CONSTEXPR const char* map(signed char* val) {
 
    const auto* const_val = val;
 
    return map(const_val);
 
  }
 
  FMT_CONSTEXPR const char* map(unsigned char* val) {
 
    const auto* const_val = val;
 
    return map(const_val);
 
  }
 

	
 
  FMT_CONSTEXPR const void* map(void* val) { return val; }
 
  FMT_CONSTEXPR const void* map(const void* val) { return val; }
 
  FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; }
 
  template <typename T> FMT_CONSTEXPR int map(const T*) {
 
    // Formatting of arbitrary pointers is disallowed. If you want to output
 
    // a pointer cast it to "void *" or "const void *". In particular, this
 
    // forbids formatting of "[const] volatile char *" which is printed as bool
 
    // by iostreams.
 
    static_assert(!sizeof(T), "formatting of non-void pointers is disallowed");
 
    return 0;
 
  }
 

	
 
  template <typename T,
 
            FMT_ENABLE_IF(std::is_enum<T>::value &&
 
                          !has_formatter<T, Context>::value &&
 
                          !has_fallback_formatter<T, Context>::value)>
 
  FMT_CONSTEXPR auto map(const T& val)
 
      -> decltype(std::declval<arg_mapper>().map(
 
          static_cast<typename std::underlying_type<T>::type>(val))) {
 
    return map(static_cast<typename std::underlying_type<T>::type>(val));
 
  }
 
  template <typename T,
 
            FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value &&
 
                          (has_formatter<T, Context>::value ||
 
                           has_fallback_formatter<T, Context>::value))>
 
  FMT_CONSTEXPR const T& map(const T& val) {
 
    return val;
 
  }
 

	
 
  template <typename T>
 
  FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val)
 
      -> decltype(std::declval<arg_mapper>().map(val.value)) {
 
    return map(val.value);
 
  }
 

	
 
  unformattable map(...) { return {}; }
 
};
 

	
 
// A type constant after applying arg_mapper<Context>.
 
template <typename T, typename Context>
 
using mapped_type_constant =
 
    type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
 
                  typename Context::char_type>;
 

	
 
enum { packed_arg_bits = 4 };
 
// Maximum number of arguments with packed types.
 
enum { max_packed_args = 62 / packed_arg_bits };
 
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
 
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
 
}  // namespace detail
 

	
 
// A formatting argument. It is a trivially copyable/constructible type to
 
// allow storage in basic_memory_buffer.
 
template <typename Context> class basic_format_arg {
 
 private:
 
  detail::value<Context> value_;
 
  detail::type type_;
 

	
 
  template <typename ContextType, typename T>
 
  friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg(
 
      const T& value);
 

	
 
  template <typename Visitor, typename Ctx>
 
  friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis,
 
                                             const basic_format_arg<Ctx>& arg)
 
      -> decltype(vis(0));
 

	
 
  friend class basic_format_args<Context>;
 
  friend class dynamic_format_arg_store<Context>;
 

	
 
  using char_type = typename Context::char_type;
 

	
 
  template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
 
  friend struct detail::arg_data;
 

	
 
  basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
 
      : value_(args, size) {}
 

	
 
 public:
 
  class handle {
 
   public:
 
    explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}
 

	
 
    void format(typename Context::parse_context_type& parse_ctx,
 
                Context& ctx) const {
 
      custom_.format(custom_.value, parse_ctx, ctx);
 
    }
 

	
 
   private:
 
    detail::custom_value<Context> custom_;
 
  };
 

	
 
  constexpr basic_format_arg() : type_(detail::type::none_type) {}
 

	
 
  constexpr explicit operator bool() const FMT_NOEXCEPT {
 
    return type_ != detail::type::none_type;
 
  }
 

	
 
  detail::type type() const { return type_; }
 

	
 
  bool is_integral() const { return detail::is_integral_type(type_); }
 
  bool is_arithmetic() const { return detail::is_arithmetic_type(type_); }
 
};
 

	
 
/**
 
  \rst
 
  Visits an argument dispatching to the appropriate visit method based on
 
  the argument type. For example, if the argument type is ``double`` then
 
  ``vis(value)`` will be called with the value of type ``double``.
 
  \endrst
 
 */
 
template <typename Visitor, typename Context>
 
FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg(
 
    Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
 
  using char_type = typename Context::char_type;
 
  switch (arg.type_) {
 
  case detail::type::none_type:
 
    break;
 
  case detail::type::int_type:
 
    return vis(arg.value_.int_value);
 
  case detail::type::uint_type:
 
    return vis(arg.value_.uint_value);
 
  case detail::type::long_long_type:
 
    return vis(arg.value_.long_long_value);
 
  case detail::type::ulong_long_type:
 
    return vis(arg.value_.ulong_long_value);
 
#if FMT_USE_INT128
 
  case detail::type::int128_type:
 
    return vis(arg.value_.int128_value);
 
  case detail::type::uint128_type:
 
    return vis(arg.value_.uint128_value);
 
#else
 
  case detail::type::int128_type:
 
  case detail::type::uint128_type:
 
    break;
 
#endif
 
  case detail::type::bool_type:
 
    return vis(arg.value_.bool_value);
 
  case detail::type::char_type:
 
    return vis(arg.value_.char_value);
 
  case detail::type::float_type:
 
    return vis(arg.value_.float_value);
 
  case detail::type::double_type:
 
    return vis(arg.value_.double_value);
 
  case detail::type::long_double_type:
 
    return vis(arg.value_.long_double_value);
 
  case detail::type::cstring_type:
 
    return vis(arg.value_.string.data);
 
  case detail::type::string_type:
 
    return vis(basic_string_view<char_type>(arg.value_.string.data,
 
                                            arg.value_.string.size));
 
  case detail::type::pointer_type:
 
    return vis(arg.value_.pointer);
 
  case detail::type::custom_type:
 
    return vis(typename basic_format_arg<Context>::handle(arg.value_.custom));
 
  }
 
  return vis(monostate());
 
}
 

	
 
template <typename T> struct formattable : std::false_type {};
 

	
 
namespace detail {
 

	
 
// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
 
template <typename... Ts> struct void_t_impl { using type = void; };
 
template <typename... Ts>
 
using void_t = typename detail::void_t_impl<Ts...>::type;
 

	
 
template <typename It, typename T, typename Enable = void>
 
struct is_output_iterator : std::false_type {};
 

	
 
template <typename It, typename T>
 
struct is_output_iterator<
 
    It, T,
 
    void_t<typename std::iterator_traits<It>::iterator_category,
 
           decltype(*std::declval<It>() = std::declval<T>())>>
 
    : std::true_type {};
 

	
 
template <typename OutputIt>
 
struct is_back_insert_iterator : std::false_type {};
 
template <typename Container>
 
struct is_back_insert_iterator<std::back_insert_iterator<Container>>
 
    : std::true_type {};
 

	
 
template <typename OutputIt>
 
struct is_contiguous_back_insert_iterator : std::false_type {};
 
template <typename Container>
 
struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
 
    : is_contiguous<Container> {};
 
template <typename Char>
 
struct is_contiguous_back_insert_iterator<buffer_appender<Char>>
 
    : std::true_type {};
 

	
 
// A type-erased reference to an std::locale to avoid heavy <locale> include.
 
class locale_ref {
 
 private:
 
  const void* locale_;  // A type-erased pointer to std::locale.
 

	
 
 public:
 
  locale_ref() : locale_(nullptr) {}
 
  template <typename Locale> explicit locale_ref(const Locale& loc);
 

	
 
  explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; }
 

	
 
  template <typename Locale> Locale get() const;
 
};
 

	
 
template <typename> constexpr unsigned long long encode_types() { return 0; }
 

	
 
template <typename Context, typename Arg, typename... Args>
 
constexpr unsigned long long encode_types() {
 
  return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
 
         (encode_types<Context, Args...>() << packed_arg_bits);
 
}
 

	
 
template <typename Context, typename T>
 
FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) {
 
  basic_format_arg<Context> arg;
 
  arg.type_ = mapped_type_constant<T, Context>::value;
 
  arg.value_ = arg_mapper<Context>().map(value);
 
  return arg;
 
}
 

	
 
template <typename T> int check(unformattable) {
 
  static_assert(
 
      formattable<T>(),
 
      "Cannot format an argument. To make type T formattable provide a "
 
      "formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
 
  return 0;
 
}
 
template <typename T, typename U> inline const U& check(const U& val) {
 
  return val;
 
}
 

	
 
// The type template parameter is there to avoid an ODR violation when using
 
// a fallback formatter in one translation unit and an implicit conversion in
 
// another (not recommended).
 
template <bool IS_PACKED, typename Context, type, typename T,
 
          FMT_ENABLE_IF(IS_PACKED)>
 
inline value<Context> make_arg(const T& val) {
 
  return check<T>(arg_mapper<Context>().map(val));
 
}
 

	
 
template <bool IS_PACKED, typename Context, type, typename T,
 
          FMT_ENABLE_IF(!IS_PACKED)>
 
inline basic_format_arg<Context> make_arg(const T& value) {
 
  return make_arg<Context>(value);
 
}
 

	
 
template <typename T> struct is_reference_wrapper : std::false_type {};
 
template <typename T>
 
struct is_reference_wrapper<std::reference_wrapper<T>> : std::true_type {};
 

	
 
template <typename T> const T& unwrap(const T& v) { return v; }
 
template <typename T> const T& unwrap(const std::reference_wrapper<T>& v) {
 
  return static_cast<const T&>(v);
 
}
 

	
 
class dynamic_arg_list {
 
  // Workaround for clang's -Wweak-vtables. Unlike for regular classes, for
 
  // templates it doesn't complain about inability to deduce single translation
 
  // unit for placing vtable. So storage_node_base is made a fake template.
 
  template <typename = void> struct node {
 
    virtual ~node() = default;
 
    std::unique_ptr<node<>> next;
 
  };
 

	
 
  template <typename T> struct typed_node : node<> {
 
    T value;
 

	
 
    template <typename Arg>
 
    FMT_CONSTEXPR typed_node(const Arg& arg) : value(arg) {}
 

	
 
    template <typename Char>
 
    FMT_CONSTEXPR typed_node(const basic_string_view<Char>& arg)
 
        : value(arg.data(), arg.size()) {}
 
  };
 

	
 
  std::unique_ptr<node<>> head_;
 

	
 
 public:
 
  template <typename T, typename Arg> const T& push(const Arg& arg) {
 
    auto new_node = std::unique_ptr<typed_node<T>>(new typed_node<T>(arg));
 
    auto& value = new_node->value;
 
    new_node->next = std::move(head_);
 
    head_ = std::move(new_node);
 
    return value;
 
  }
 
};
 
}  // namespace detail
 

	
 
// Formatting context.
 
template <typename OutputIt, typename Char> class basic_format_context {
 
 public:
 
  /** The character type for the output. */
 
  using char_type = Char;
 

	
 
 private:
 
  OutputIt out_;
 
  basic_format_args<basic_format_context> args_;
 
  detail::locale_ref loc_;
 

	
 
 public:
 
  using iterator = OutputIt;
 
  using format_arg = basic_format_arg<basic_format_context>;
 
  using parse_context_type = basic_format_parse_context<Char>;
 
  template <typename T> using formatter_type = formatter<T, char_type>;
 

	
 
  basic_format_context(const basic_format_context&) = delete;
 
  void operator=(const basic_format_context&) = delete;
 
  /**
 
   Constructs a ``basic_format_context`` object. References to the arguments are
 
   stored in the object so make sure they have appropriate lifetimes.
 
   */
 
  basic_format_context(OutputIt out,
 
                       basic_format_args<basic_format_context> ctx_args,
 
                       detail::locale_ref loc = detail::locale_ref())
 
      : out_(out), args_(ctx_args), loc_(loc) {}
 

	
 
  format_arg arg(int id) const { return args_.get(id); }
 
  format_arg arg(basic_string_view<char_type> name) { return args_.get(name); }
 
  int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); }
 
  const basic_format_args<basic_format_context>& args() const { return args_; }
 

	
 
  detail::error_handler error_handler() { return {}; }
 
  void on_error(const char* message) { error_handler().on_error(message); }
 

	
 
  // Returns an iterator to the beginning of the output range.
 
  iterator out() { return out_; }
 

	
 
  // Advances the begin iterator to ``it``.
 
  void advance_to(iterator it) {
 
    if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
 
  }
 

	
 
  detail::locale_ref locale() { return loc_; }
 
};
 

	
 
template <typename Char>
 
using buffer_context =
 
    basic_format_context<detail::buffer_appender<Char>, Char>;
 
using format_context = buffer_context<char>;
 
using wformat_context = buffer_context<wchar_t>;
 

	
 
// Workaround an alias issue: https://stackoverflow.com/q/62767544/471164.
 
#define FMT_BUFFER_CONTEXT(Char) \
 
  basic_format_context<detail::buffer_appender<Char>, Char>
 

	
 
/**
 
  \rst
 
  An array of references to arguments. It can be implicitly converted into
 
  `~fmt::basic_format_args` for passing into type-erased formatting functions
 
  such as `~fmt::vformat`.
 
  \endrst
 
 */
 
template <typename Context, typename... Args>
 
class format_arg_store
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
    // Workaround a GCC template argument substitution bug.
 
    : public basic_format_args<Context>
 
#endif
 
{
 
 private:
 
  static const size_t num_args = sizeof...(Args);
 
  static const size_t num_named_args = detail::count_named_args<Args...>();
 
  static const bool is_packed = num_args <= detail::max_packed_args;
 

	
 
  using value_type = conditional_t<is_packed, detail::value<Context>,
 
                                   basic_format_arg<Context>>;
 

	
 
  detail::arg_data<value_type, typename Context::char_type, num_args,
 
                   num_named_args>
 
      data_;
 

	
 
  friend class basic_format_args<Context>;
 

	
 
  static constexpr unsigned long long desc =
 
      (is_packed ? detail::encode_types<Context, Args...>()
 
                 : detail::is_unpacked_bit | num_args) |
 
      (num_named_args != 0
 
           ? static_cast<unsigned long long>(detail::has_named_args_bit)
 
           : 0);
 

	
 
 public:
 
  format_arg_store(const Args&... args)
 
      :
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
        basic_format_args<Context>(*this),
 
#endif
 
        data_{detail::make_arg<
 
            is_packed, Context,
 
            detail::mapped_type_constant<Args, Context>::value>(args)...} {
 
    detail::init_named_args(data_.named_args(), 0, 0, args...);
 
  }
 
};
 

	
 
/**
 
  \rst
 
  Constructs a `~fmt::format_arg_store` object that contains references to
 
  arguments and can be implicitly converted to `~fmt::format_args`. `Context`
 
  can be omitted in which case it defaults to `~fmt::context`.
 
  See `~fmt::arg` for lifetime considerations.
 
  \endrst
 
 */
 
template <typename Context = format_context, typename... Args>
 
inline format_arg_store<Context, Args...> make_format_args(
 
    const Args&... args) {
 
  return {args...};
 
}
 

	
 
/**
 
  \rst
 
  Constructs a `~fmt::format_arg_store` object that contains references
 
  to arguments and can be implicitly converted to `~fmt::format_args`.
 
  If ``format_str`` is a compile-time string then `make_args_checked` checks
 
  its validity at compile time.
 
  \endrst
 
 */
 
template <typename... Args, typename S, typename Char = char_t<S>>
 
inline auto make_args_checked(const S& format_str,
 
                              const remove_reference_t<Args>&... args)
 
    -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
 
  static_assert(
 
      detail::count<(
 
              std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
 
              std::is_reference<Args>::value)...>() == 0,
 
      "passing views as lvalues is disallowed");
 
  detail::check_format_string<Args...>(format_str);
 
  return {args...};
 
}
 

	
 
/**
 
  \rst
 
  Returns a named argument to be used in a formatting function. It should only
 
  be used in a call to a formatting function.
 

	
 
  **Example**::
 

	
 
    fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
 
  \endrst
 
 */
 
template <typename Char, typename T>
 
inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) {
 
  static_assert(!detail::is_named_arg<T>(), "nested named arguments");
 
  return {name, arg};
 
}
 

	
 
/**
 
  \rst
 
  A dynamic version of `fmt::format_arg_store`.
 
  It's equipped with a storage to potentially temporary objects which lifetimes
 
  could be shorter than the format arguments object.
 

	
 
  It can be implicitly converted into `~fmt::basic_format_args` for passing
 
  into type-erased formatting functions such as `~fmt::vformat`.
 
  \endrst
 
 */
 
template <typename Context>
 
class dynamic_format_arg_store
 
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
 
    // Workaround a GCC template argument substitution bug.
 
    : public basic_format_args<Context>
 
#endif
 
{
 
 private:
 
  using char_type = typename Context::char_type;
 

	
 
  template <typename T> struct need_copy {
 
    static constexpr detail::type mapped_type =
 
        detail::mapped_type_constant<T, Context>::value;
 

	
 
    enum {
 
      value = !(detail::is_reference_wrapper<T>::value ||
 
                std::is_same<T, basic_string_view<char_type>>::value ||
 
                std::is_same<T, detail::std_string_view<char_type>>::value ||
 
                (mapped_type != detail::type::cstring_type &&
 
                 mapped_type != detail::type::string_type &&
 
                 mapped_type != detail::type::custom_type))
 
    };
 
  };
 

	
 
  template <typename T>
 
  using stored_type = conditional_t<detail::is_string<T>::value,
 
                                    std::basic_string<char_type>, T>;
 

	
 
  // Storage of basic_format_arg must be contiguous.
 
  std::vector<basic_format_arg<Context>> data_;
 
  std::vector<detail::named_arg_info<char_type>> named_info_;
 

	
 
  // Storage of arguments not fitting into basic_format_arg must grow
 
  // without relocation because items in data_ refer to it.
 
  detail::dynamic_arg_list dynamic_args_;
 

	
 
  friend class basic_format_args<Context>;
 

	
 
  unsigned long long get_types() const {
 
    return detail::is_unpacked_bit | data_.size() |
 
           (named_info_.empty()
 
                ? 0ULL
 
                : static_cast<unsigned long long>(detail::has_named_args_bit));
 
  }
 

	
 
  const basic_format_arg<Context>* data() const {
 
    return named_info_.empty() ? data_.data() : data_.data() + 1;
 
  }
 

	
 
  template <typename T> void emplace_arg(const T& arg) {
 
    data_.emplace_back(detail::make_arg<Context>(arg));
 
  }
 

	
 
  template <typename T>
 
  void emplace_arg(const detail::named_arg<char_type, T>& arg) {
 
    if (named_info_.empty()) {
 
      constexpr const detail::named_arg_info<char_type>* zero_ptr{nullptr};
 
      data_.insert(data_.begin(), {zero_ptr, 0});
 
    }
 
    data_.emplace_back(detail::make_arg<Context>(detail::unwrap(arg.value)));
 
    auto pop_one = [](std::vector<basic_format_arg<Context>>* data) {
 
      data->pop_back();
 
    };
 
    std::unique_ptr<std::vector<basic_format_arg<Context>>, decltype(pop_one)>
 
        guard{&data_, pop_one};
 
    named_info_.push_back({arg.name, static_cast<int>(data_.size() - 2u)});
 
    data_[0].value_.named_args = {named_info_.data(), named_info_.size()};
 
    guard.release();
 
  }
 

	
 
 public:
 
  /**
 
    \rst
 
    Adds an argument into the dynamic store for later passing to a formatting
 
    function.
 

	
 
    Note that custom types and string types (but not string views) are copied
 
    into the store dynamically allocating memory if necessary.
 

	
 
    **Example**::
 

	
 
      fmt::dynamic_format_arg_store<fmt::format_context> store;
 
      store.push_back(42);
 
      store.push_back("abc");
 
      store.push_back(1.5f);
 
      std::string result = fmt::vformat("{} and {} and {}", store);
 
    \endrst
 
  */
 
  template <typename T> void push_back(const T& arg) {
 
    if (detail::const_check(need_copy<T>::value))
 
      emplace_arg(dynamic_args_.push<stored_type<T>>(arg));
 
    else
 
      emplace_arg(detail::unwrap(arg));
 
  }
 

	
 
  /**
 
    \rst
 
    Adds a reference to the argument into the dynamic store for later passing to
 
    a formatting function. Supports named arguments wrapped in
 
    ``std::reference_wrapper`` via ``std::ref()``/``std::cref()``.
 

	
 
    **Example**::
 

	
 
      fmt::dynamic_format_arg_store<fmt::format_context> store;
 
      char str[] = "1234567890";
 
      store.push_back(std::cref(str));
 
      int a1_val{42};
 
      auto a1 = fmt::arg("a1_", a1_val);
 
      store.push_back(std::cref(a1));
 

	
 
      // Changing str affects the output but only for string and custom types.
 
      str[0] = 'X';
 

	
 
      std::string result = fmt::vformat("{} and {a1_}");
 
      assert(result == "X234567890 and 42");
 
    \endrst
 
  */
 
  template <typename T> void push_back(std::reference_wrapper<T> arg) {
 
    static_assert(
 
        detail::is_named_arg<typename std::remove_cv<T>::type>::value ||
 
            need_copy<T>::value,
 
        "objects of built-in types and string views are always copied");
 
    emplace_arg(arg.get());
 
  }
 

	
 
  /**
 
    Adds named argument into the dynamic store for later passing to a formatting
 
    function. ``std::reference_wrapper`` is supported to avoid copying of the
 
    argument.
 
  */
 
  template <typename T>
 
  void push_back(const detail::named_arg<char_type, T>& arg) {
 
    const char_type* arg_name =
 
        dynamic_args_.push<std::basic_string<char_type>>(arg.name).c_str();
 
    if (detail::const_check(need_copy<T>::value)) {
 
      emplace_arg(
 
          fmt::arg(arg_name, dynamic_args_.push<stored_type<T>>(arg.value)));
 
    } else {
 
      emplace_arg(fmt::arg(arg_name, arg.value));
 
    }
 
  }
 

	
 
  /** Erase all elements from the store */
 
  void clear() {
 
    data_.clear();
 
    named_info_.clear();
 
    dynamic_args_ = detail::dynamic_arg_list();
 
  }
 

	
 
  /**
 
    \rst
 
    Reserves space to store at least *new_cap* arguments including
 
    *new_cap_named* named arguments.
 
    \endrst
 
  */
 
  void reserve(size_t new_cap, size_t new_cap_named) {
 
    FMT_ASSERT(new_cap >= new_cap_named,
 
               "Set of arguments includes set of named arguments");
 
    data_.reserve(new_cap);
 
    named_info_.reserve(new_cap_named);
 
  }
 
};
 

	
 
/**
 
  \rst
 
  A view of a collection of formatting arguments. To avoid lifetime issues it
 
  should only be used as a parameter type in type-erased functions such as
 
  ``vformat``::
 

	
 
    void vlog(string_view format_str, format_args args);  // OK
 
    format_args args = make_format_args(42);  // Error: dangling reference
 
  \endrst
 
 */
 
template <typename Context> class basic_format_args {
 
 public:
 
  using size_type = int;
 
  using format_arg = basic_format_arg<Context>;
 

	
 
 private:
 
  // A descriptor that contains information about formatting arguments.
 
  // If the number of arguments is less or equal to max_packed_args then
 
  // argument types are passed in the descriptor. This reduces binary code size
 
  // per formatting function call.
 
  unsigned long long desc_;
 
  union {
 
    // If is_packed() returns true then argument values are stored in values_;
 
    // otherwise they are stored in args_. This is done to improve cache
 
    // locality and reduce compiled code size since storing larger objects
 
    // may require more code (at least on x86-64) even if the same amount of
 
    // data is actually copied to stack. It saves ~10% on the bloat test.
 
    const detail::value<Context>* values_;
 
    const format_arg* args_;
 
  };
 

	
 
  bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; }
 
  bool has_named_args() const {
 
    return (desc_ & detail::has_named_args_bit) != 0;
 
  }
 

	
 
  detail::type type(int index) const {
 
    int shift = index * detail::packed_arg_bits;
 
    unsigned int mask = (1 << detail::packed_arg_bits) - 1;
 
    return static_cast<detail::type>((desc_ >> shift) & mask);
 
  }
 

	
 
  basic_format_args(unsigned long long desc,
 
                    const detail::value<Context>* values)
 
      : desc_(desc), values_(values) {}
 
  basic_format_args(unsigned long long desc, const format_arg* args)
 
      : desc_(desc), args_(args) {}
 

	
 
 public:
 
  basic_format_args() : desc_(0) {}
 

	
 
  /**
 
   \rst
 
   Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
 
   \endrst
 
   */
 
  template <typename... Args>
 
  FMT_INLINE basic_format_args(const format_arg_store<Context, Args...>& store)
 
      : basic_format_args(store.desc, store.data_.args()) {}
 

	
 
  /**
 
   \rst
 
   Constructs a `basic_format_args` object from
 
   `~fmt::dynamic_format_arg_store`.
 
   \endrst
 
   */
 
  FMT_INLINE basic_format_args(const dynamic_format_arg_store<Context>& store)
 
      : basic_format_args(store.get_types(), store.data()) {}
 

	
 
  /**
 
   \rst
 
   Constructs a `basic_format_args` object from a dynamic set of arguments.
 
   \endrst
 
   */
 
  basic_format_args(const format_arg* args, int count)
 
      : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count),
 
                          args) {}
 

	
 
  /** Returns the argument with the specified id. */
 
  format_arg get(int id) const {
 
    format_arg arg;
 
    if (!is_packed()) {
 
      if (id < max_size()) arg = args_[id];
 
      return arg;
 
    }
 
    if (id >= detail::max_packed_args) return arg;
 
    arg.type_ = type(id);
 
    if (arg.type_ == detail::type::none_type) return arg;
 
    arg.value_ = values_[id];
 
    return arg;
 
  }
 

	
 
  template <typename Char> format_arg get(basic_string_view<Char> name) const {
 
    int id = get_id(name);
 
    return id >= 0 ? get(id) : format_arg();
 
  }
 

	
 
  template <typename Char> int get_id(basic_string_view<Char> name) const {
 
    if (!has_named_args()) return -1;
 
    const auto& named_args =
 
        (is_packed() ? values_[-1] : args_[-1].value_).named_args;
 
    for (size_t i = 0; i < named_args.size; ++i) {
 
      if (named_args.data[i].name == name) return named_args.data[i].id;
 
    }
 
    return -1;
 
  }
 

	
 
  int max_size() const {
 
    unsigned long long max_packed = detail::max_packed_args;
 
    return static_cast<int>(is_packed() ? max_packed
 
                                        : desc_ & ~detail::is_unpacked_bit);
 
  }
 
};
 

	
 
#ifdef FMT_ARM_ABI_COMPATIBILITY
 
/** An alias to ``basic_format_args<format_context>``. */
 
// Separate types would result in shorter symbols but break ABI compatibility
 
// between clang and gcc on ARM (#1919).
 
using format_args = basic_format_args<format_context>;
 
using wformat_args = basic_format_args<wformat_context>;
 
#else
 
// DEPRECATED! These are kept for ABI compatibility.
 
// It is a separate type rather than an alias to make symbols readable.
 
struct format_args : basic_format_args<format_context> {
 
  template <typename... Args>
 
  FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {}
 
};
 
struct wformat_args : basic_format_args<wformat_context> {
 
  using basic_format_args::basic_format_args;
 
};
 
#endif
 

	
 
namespace detail {
 

	
 
template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
 
std::basic_string<Char> vformat(
 
    basic_string_view<Char> format_str,
 
    basic_format_args<buffer_context<type_identity_t<Char>>> args);
 

	
 
FMT_API std::string vformat(string_view format_str, format_args args);
 

	
 
template <typename Char>
 
void vformat_to(
 
    buffer<Char>& buf, basic_string_view<Char> format_str,
 
    basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args,
 
    detail::locale_ref loc = {});
 

	
 
template <typename Char, typename Args,
 
          FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
 
inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {}
 

	
 
FMT_API void vprint_mojibake(std::FILE*, string_view, format_args);
 
#ifndef _WIN32
 
inline void vprint_mojibake(std::FILE*, string_view, format_args) {}
 
#endif
 
}  // namespace detail
 

	
 
/** Formats a string and writes the output to ``out``. */
 
// GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with
 
// vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead.
 
template <typename OutputIt, typename S, typename Char = char_t<S>,
 
          bool enable = detail::is_output_iterator<OutputIt, Char>::value>
 
auto vformat_to(OutputIt out, const S& format_str,
 
                basic_format_args<buffer_context<type_identity_t<Char>>> args)
 
    -> typename std::enable_if<enable, OutputIt>::type {
 
  decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out));
 
  detail::vformat_to(buf, to_string_view(format_str), args);
 
  return detail::get_iterator(buf);
 
}
 

	
 
/**
 
 \rst
 
 Formats arguments, writes the result to the output iterator ``out`` and returns
 
 the iterator past the end of the output range.
 

	
 
 **Example**::
 

	
 
   std::vector<char> out;
 
   fmt::format_to(std::back_inserter(out), "{}", 42);
 
 \endrst
 
 */
 
// We cannot use FMT_ENABLE_IF because of a bug in gcc 8.3.
 
template <typename OutputIt, typename S, typename... Args,
 
          bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value>
 
inline auto format_to(OutputIt out, const S& format_str, Args&&... args) ->
 
    typename std::enable_if<enable, OutputIt>::type {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return vformat_to(out, to_string_view(format_str), vargs);
 
}
 

	
 
template <typename OutputIt> struct format_to_n_result {
 
  /** Iterator past the end of the output range. */
 
  OutputIt out;
 
  /** Total (not truncated) output size. */
 
  size_t size;
 
};
 

	
 
template <typename OutputIt, typename Char, typename... Args,
 
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value)>
 
inline format_to_n_result<OutputIt> vformat_to_n(
 
    OutputIt out, size_t n, basic_string_view<Char> format_str,
 
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
 
  detail::iterator_buffer<OutputIt, Char, detail::fixed_buffer_traits> buf(out,
 
                                                                           n);
 
  detail::vformat_to(buf, format_str, args);
 
  return {buf.out(), buf.count()};
 
}
 

	
 
/**
 
 \rst
 
 Formats arguments, writes up to ``n`` characters of the result to the output
 
 iterator ``out`` and returns the total output size and the iterator past the
 
 end of the output range.
 
 \endrst
 
 */
 
template <typename OutputIt, typename S, typename... Args,
 
          bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value>
 
inline auto format_to_n(OutputIt out, size_t n, const S& format_str,
 
                        const Args&... args) ->
 
    typename std::enable_if<enable, format_to_n_result<OutputIt>>::type {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return vformat_to_n(out, n, to_string_view(format_str), vargs);
 
}
 

	
 
/**
 
  Returns the number of characters in the output of
 
  ``format(format_str, args...)``.
 
 */
 
template <typename... Args>
 
inline size_t formatted_size(string_view format_str, Args&&... args) {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  detail::counting_buffer<> buf;
 
  detail::vformat_to(buf, format_str, vargs);
 
  return buf.count();
 
}
 

	
 
template <typename S, typename Char = char_t<S>>
 
FMT_INLINE std::basic_string<Char> vformat(
 
    const S& format_str,
 
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
 
  return detail::vformat(to_string_view(format_str), args);
 
}
 

	
 
/**
 
  \rst
 
  Formats arguments and returns the result as a string.
 

	
 
  **Example**::
 

	
 
    #include <fmt/core.h>
 
    std::string message = fmt::format("The answer is {}", 42);
 
  \endrst
 
*/
 
// Pass char_t as a default template parameter instead of using
 
// std::basic_string<char_t<S>> to reduce the symbol size.
 
template <typename S, typename... Args, typename Char = char_t<S>>
 
FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return detail::vformat(to_string_view(format_str), vargs);
 
}
 

	
 
FMT_API void vprint(string_view, format_args);
 
FMT_API void vprint(std::FILE*, string_view, format_args);
 

	
 
/**
 
  \rst
 
  Formats ``args`` according to specifications in ``format_str`` and writes the
 
  output to the file ``f``. Strings are assumed to be Unicode-encoded unless the
 
  ``FMT_UNICODE`` macro is set to 0.
 

	
 
  **Example**::
 

	
 
    fmt::print(stderr, "Don't {}!", "panic");
 
  \endrst
 
 */
 
template <typename S, typename... Args, typename Char = char_t<S>>
 
inline void print(std::FILE* f, const S& format_str, Args&&... args) {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return detail::is_unicode<Char>()
 
             ? vprint(f, to_string_view(format_str), vargs)
 
             : detail::vprint_mojibake(f, to_string_view(format_str), vargs);
 
}
 

	
 
/**
 
  \rst
 
  Formats ``args`` according to specifications in ``format_str`` and writes
 
  the output to ``stdout``. Strings are assumed to be Unicode-encoded unless
 
  the ``FMT_UNICODE`` macro is set to 0.
 

	
 
  **Example**::
 

	
 
    fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
 
  \endrst
 
 */
 
template <typename S, typename... Args, typename Char = char_t<S>>
 
inline void print(const S& format_str, Args&&... args) {
 
  const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
 
  return detail::is_unicode<Char>()
 
             ? vprint(to_string_view(format_str), vargs)
 
             : detail::vprint_mojibake(stdout, to_string_view(format_str),
 
                                       vargs);
 
}
 
FMT_END_NAMESPACE
 

	
 
#endif  // FMT_CORE_H_
src/3rdparty/fmt/format-inl.h
Show inline comments
 
new file 100644
 
// Formatting library for C++ - implementation
 
//
 
// Copyright (c) 2012 - 2016, Victor Zverovich
 
// All rights reserved.
 
//
 
// For the license information refer to format.h.
 

	
 
#ifndef FMT_FORMAT_INL_H_
 
#define FMT_FORMAT_INL_H_
 

	
 
#include <cassert>
 
#include <cctype>
 
#include <climits>
 
#include <cmath>
 
#include <cstdarg>
 
#include <cstring>  // std::memmove
 
#include <cwchar>
 
#include <exception>
 

	
 
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
 
#  include <locale>
 
#endif
 

	
 
#ifdef _WIN32
 
#  include <io.h>  // _isatty
 
#endif
 

	
 
#include "format.h"
 

	
 
// Dummy implementations of strerror_r and strerror_s called if corresponding
 
// system functions are not available.
 
inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; }
 
inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; }
 

	
 
FMT_BEGIN_NAMESPACE
 
namespace detail {
 

	
 
FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
 
  // Use unchecked std::fprintf to avoid triggering another assertion when
 
  // writing to stderr fails
 
  std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
 
  // Chosen instead of std::abort to satisfy Clang in CUDA mode during device
 
  // code pass.
 
  std::terminate();
 
}
 

	
 
#ifndef _MSC_VER
 
#  define FMT_SNPRINTF snprintf
 
#else  // _MSC_VER
 
inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
 
  va_list args;
 
  va_start(args, format);
 
  int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
 
  va_end(args);
 
  return result;
 
}
 
#  define FMT_SNPRINTF fmt_snprintf
 
#endif  // _MSC_VER
 

	
 
// A portable thread-safe version of strerror.
 
// Sets buffer to point to a string describing the error code.
 
// This can be either a pointer to a string stored in buffer,
 
// or a pointer to some static immutable string.
 
// Returns one of the following values:
 
//   0      - success
 
//   ERANGE - buffer is not large enough to store the error message
 
//   other  - failure
 
// Buffer should be at least of size 1.
 
inline int safe_strerror(int error_code, char*& buffer,
 
                         size_t buffer_size) FMT_NOEXCEPT {
 
  FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer");
 

	
 
  class dispatcher {
 
   private:
 
    int error_code_;
 
    char*& buffer_;
 
    size_t buffer_size_;
 

	
 
    // A noop assignment operator to avoid bogus warnings.
 
    void operator=(const dispatcher&) {}
 

	
 
    // Handle the result of XSI-compliant version of strerror_r.
 
    int handle(int result) {
 
      // glibc versions before 2.13 return result in errno.
 
      return result == -1 ? errno : result;
 
    }
 

	
 
    // Handle the result of GNU-specific version of strerror_r.
 
    FMT_MAYBE_UNUSED
 
    int handle(char* message) {
 
      // If the buffer is full then the message is probably truncated.
 
      if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
 
        return ERANGE;
 
      buffer_ = message;
 
      return 0;
 
    }
 

	
 
    // Handle the case when strerror_r is not available.
 
    FMT_MAYBE_UNUSED
 
    int handle(detail::null<>) {
 
      return fallback(strerror_s(buffer_, buffer_size_, error_code_));
 
    }
 

	
 
    // Fallback to strerror_s when strerror_r is not available.
 
    FMT_MAYBE_UNUSED
 
    int fallback(int result) {
 
      // If the buffer is full then the message is probably truncated.
 
      return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE
 
                                                                : result;
 
    }
 

	
 
#if !FMT_MSC_VER
 
    // Fallback to strerror if strerror_r and strerror_s are not available.
 
    int fallback(detail::null<>) {
 
      errno = 0;
 
      buffer_ = strerror(error_code_);
 
      return errno;
 
    }
 
#endif
 

	
 
   public:
 
    dispatcher(int err_code, char*& buf, size_t buf_size)
 
        : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
 

	
 
    int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); }
 
  };
 
  return dispatcher(error_code, buffer, buffer_size).run();
 
}
 

	
 
FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
 
                                string_view message) FMT_NOEXCEPT {
 
  // Report error code making sure that the output fits into
 
  // inline_buffer_size to avoid dynamic memory allocation and potential
 
  // bad_alloc.
 
  out.try_resize(0);
 
  static const char SEP[] = ": ";
 
  static const char ERROR_STR[] = "error ";
 
  // Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
 
  size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
 
  auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
 
  if (detail::is_negative(error_code)) {
 
    abs_value = 0 - abs_value;
 
    ++error_code_size;
 
  }
 
  error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
 
  auto it = buffer_appender<char>(out);
 
  if (message.size() <= inline_buffer_size - error_code_size)
 
    format_to(it, "{}{}", message, SEP);
 
  format_to(it, "{}{}", ERROR_STR, error_code);
 
  assert(out.size() <= inline_buffer_size);
 
}
 

	
 
FMT_FUNC void report_error(format_func func, int error_code,
 
                           string_view message) FMT_NOEXCEPT {
 
  memory_buffer full_message;
 
  func(full_message, error_code, message);
 
  // Don't use fwrite_fully because the latter may throw.
 
  (void)std::fwrite(full_message.data(), full_message.size(), 1, stderr);
 
  std::fputc('\n', stderr);
 
}
 

	
 
// A wrapper around fwrite that throws on error.
 
inline void fwrite_fully(const void* ptr, size_t size, size_t count,
 
                         FILE* stream) {
 
  size_t written = std::fwrite(ptr, size, count, stream);
 
  if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
 
}
 
}  // namespace detail
 

	
 
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
 
namespace detail {
 

	
 
template <typename Locale>
 
locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
 
  static_assert(std::is_same<Locale, std::locale>::value, "");
 
}
 

	
 
template <typename Locale> Locale locale_ref::get() const {
 
  static_assert(std::is_same<Locale, std::locale>::value, "");
 
  return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
 
}
 

	
 
template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref loc) {
 
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()).grouping();
 
}
 
template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
 
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
 
      .thousands_sep();
 
}
 
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
 
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
 
      .decimal_point();
 
}
 
}  // namespace detail
 
#else
 
template <typename Char>
 
FMT_FUNC std::string detail::grouping_impl(locale_ref) {
 
  return "\03";
 
}
 
template <typename Char> FMT_FUNC Char detail::thousands_sep_impl(locale_ref) {
 
  return FMT_STATIC_THOUSANDS_SEPARATOR;
 
}
 
template <typename Char> FMT_FUNC Char detail::decimal_point_impl(locale_ref) {
 
  return '.';
 
}
 
#endif
 

	
 
FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default;
 
FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default;
 

	
 
FMT_FUNC void system_error::init(int err_code, string_view format_str,
 
                                 format_args args) {
 
  error_code_ = err_code;
 
  memory_buffer buffer;
 
  format_system_error(buffer, err_code, vformat(format_str, args));
 
  std::runtime_error& base = *this;
 
  base = std::runtime_error(to_string(buffer));
 
}
 

	
 
namespace detail {
 

	
 
template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) {
 
  // fallback_uintptr is always stored in little endian.
 
  int i = static_cast<int>(sizeof(void*)) - 1;
 
  while (i > 0 && n.value[i] == 0) --i;
 
  auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
 
  return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
 
}
 

	
 
template <typename T>
 
const typename basic_data<T>::digit_pair basic_data<T>::digits[] = {
 
    {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
 
    {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
 
    {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
 
    {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
 
    {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
 
    {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
 
    {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
 
    {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
 
    {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
 
    {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
 
    {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
 
    {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
 
    {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
 
    {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
 
    {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
 
    {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
 
    {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
 

	
 
template <typename T>
 
const char basic_data<T>::hex_digits[] = "0123456789abcdef";
 

	
 
#define FMT_POWERS_OF_10(factor)                                             \
 
  factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
 
      (factor)*1000000, (factor)*10000000, (factor)*100000000,               \
 
      (factor)*1000000000
 

	
 
template <typename T>
 
const uint64_t basic_data<T>::powers_of_10_64[] = {
 
    1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
 
    10000000000000000000ULL};
 

	
 
template <typename T>
 
const uint32_t basic_data<T>::zero_or_powers_of_10_32[] = {0,
 
                                                           FMT_POWERS_OF_10(1)};
 
template <typename T>
 
const uint64_t basic_data<T>::zero_or_powers_of_10_64[] = {
 
    0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
 
    10000000000000000000ULL};
 

	
 
template <typename T>
 
const uint32_t basic_data<T>::zero_or_powers_of_10_32_new[] = {
 
    0, 0, FMT_POWERS_OF_10(1)};
 

	
 
template <typename T>
 
const uint64_t basic_data<T>::zero_or_powers_of_10_64_new[] = {
 
    0, 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
 
    10000000000000000000ULL};
 

	
 
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
 
// These are generated by support/compute-powers.py.
 
template <typename T>
 
const uint64_t basic_data<T>::grisu_pow10_significands[] = {
 
    0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
 
    0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
 
    0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
 
    0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
 
    0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
 
    0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
 
    0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
 
    0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
 
    0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
 
    0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
 
    0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
 
    0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
 
    0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
 
    0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
 
    0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
 
    0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
 
    0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
 
    0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
 
    0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
 
    0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
 
    0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
 
    0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
 
    0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
 
    0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
 
    0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
 
    0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
 
    0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
 
    0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
 
    0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
 
};
 

	
 
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
 
// to significands above.
 
template <typename T>
 
const int16_t basic_data<T>::grisu_pow10_exponents[] = {
 
    -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
 
    -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,  -688, -661,
 
    -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,  -422,  -396, -369,
 
    -343,  -316,  -289,  -263,  -236,  -210,  -183,  -157,  -130,  -103, -77,
 
    -50,   -24,   3,     30,    56,    83,    109,   136,   162,   189,  216,
 
    242,   269,   295,   322,   348,   375,   402,   428,   455,   481,  508,
 
    534,   561,   588,   614,   641,   667,   694,   720,   747,   774,  800,
 
    827,   853,   880,   907,   933,   960,   986,   1013,  1039,  1066};
 

	
 
template <typename T>
 
const divtest_table_entry<uint32_t> basic_data<T>::divtest_table_for_pow5_32[] =
 
    {{0x00000001, 0xffffffff}, {0xcccccccd, 0x33333333},
 
     {0xc28f5c29, 0x0a3d70a3}, {0x26e978d5, 0x020c49ba},
 
     {0x3afb7e91, 0x0068db8b}, {0x0bcbe61d, 0x0014f8b5},
 
     {0x68c26139, 0x000431bd}, {0xae8d46a5, 0x0000d6bf},
 
     {0x22e90e21, 0x00002af3}, {0x3a2e9c6d, 0x00000897},
 
     {0x3ed61f49, 0x000001b7}};
 

	
 
template <typename T>
 
const divtest_table_entry<uint64_t> basic_data<T>::divtest_table_for_pow5_64[] =
 
    {{0x0000000000000001, 0xffffffffffffffff},
 
     {0xcccccccccccccccd, 0x3333333333333333},
 
     {0x8f5c28f5c28f5c29, 0x0a3d70a3d70a3d70},
 
     {0x1cac083126e978d5, 0x020c49ba5e353f7c},
 
     {0xd288ce703afb7e91, 0x0068db8bac710cb2},
 
     {0x5d4e8fb00bcbe61d, 0x0014f8b588e368f0},
 
     {0x790fb65668c26139, 0x000431bde82d7b63},
 
     {0xe5032477ae8d46a5, 0x0000d6bf94d5e57a},
 
     {0xc767074b22e90e21, 0x00002af31dc46118},
 
     {0x8e47ce423a2e9c6d, 0x0000089705f4136b},
 
     {0x4fa7f60d3ed61f49, 0x000001b7cdfd9d7b},
 
     {0x0fee64690c913975, 0x00000057f5ff85e5},
 
     {0x3662e0e1cf503eb1, 0x000000119799812d},
 
     {0xa47a2cf9f6433fbd, 0x0000000384b84d09},
 
     {0x54186f653140a659, 0x00000000b424dc35},
 
     {0x7738164770402145, 0x0000000024075f3d},
 
     {0xe4a4d1417cd9a041, 0x000000000734aca5},
 
     {0xc75429d9e5c5200d, 0x000000000170ef54},
 
     {0xc1773b91fac10669, 0x000000000049c977},
 
     {0x26b172506559ce15, 0x00000000000ec1e4},
 
     {0xd489e3a9addec2d1, 0x000000000002f394},
 
     {0x90e860bb892c8d5d, 0x000000000000971d},
 
     {0x502e79bf1b6f4f79, 0x0000000000001e39},
 
     {0xdcd618596be30fe5, 0x000000000000060b}};
 

	
 
template <typename T>
 
const uint64_t basic_data<T>::dragonbox_pow10_significands_64[] = {
 
    0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f,
 
    0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb,
 
    0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28,
 
    0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb,
 
    0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a,
 
    0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810,
 
    0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
 
    0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd,
 
    0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424,
 
    0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b,
 
    0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
 
    0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
 
    0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
 
    0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
 
    0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
 
    0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
 
    0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
 
    0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
 
    0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
 
    0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984,
 
    0xa18f07d736b90be5, 0xc9f2c9cd04674ede, 0xfc6f7c4045812296,
 
    0x9dc5ada82b70b59d, 0xc5371912364ce305, 0xf684df56c3e01bc6,
 
    0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20,
 
    0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
 
    0x92efd1b8d0cf37be, 0xb7abc627050305ad, 0xe596b7b0c643c719,
 
    0x8f7e32ce7bea5c6f, 0xb35dbf821ae4f38b, 0xe0352f62a19e306e};
 

	
 
template <typename T>
 
const uint128_wrapper basic_data<T>::dragonbox_pow10_significands_128[] = {
 
#if FMT_USE_FULL_CACHE_DRAGONBOX
 
    {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
 
    {0x9faacf3df73609b1, 0x77b191618c54e9ad},
 
    {0xc795830d75038c1d, 0xd59df5b9ef6a2418},
 
    {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e},
 
    {0x9becce62836ac577, 0x4ee367f9430aec33},
 
    {0xc2e801fb244576d5, 0x229c41f793cda740},
 
    {0xf3a20279ed56d48a, 0x6b43527578c11110},
 
    {0x9845418c345644d6, 0x830a13896b78aaaa},
 
    {0xbe5691ef416bd60c, 0x23cc986bc656d554},
 
    {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9},
 
    {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa},
 
    {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54},
 
    {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69},
 
    {0x91376c36d99995be, 0x23100809b9c21fa2},
 
    {0xb58547448ffffb2d, 0xabd40a0c2832a78b},
 
    {0xe2e69915b3fff9f9, 0x16c90c8f323f516d},
 
    {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4},
 
    {0xb1442798f49ffb4a, 0x99cd11cfdf41779d},
 
    {0xdd95317f31c7fa1d, 0x40405643d711d584},
 
    {0x8a7d3eef7f1cfc52, 0x482835ea666b2573},
 
    {0xad1c8eab5ee43b66, 0xda3243650005eed0},
 
    {0xd863b256369d4a40, 0x90bed43e40076a83},
 
    {0x873e4f75e2224e68, 0x5a7744a6e804a292},
 
    {0xa90de3535aaae202, 0x711515d0a205cb37},
 
    {0xd3515c2831559a83, 0x0d5a5b44ca873e04},
 
    {0x8412d9991ed58091, 0xe858790afe9486c3},
 
    {0xa5178fff668ae0b6, 0x626e974dbe39a873},
 
    {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
 
    {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a},
 
    {0xa139029f6a239f72, 0x1c1fffc1ebc44e81},
 
    {0xc987434744ac874e, 0xa327ffb266b56221},
 
    {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9},
 
    {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa},
 
    {0xc4ce17b399107c22, 0xcb550fb4384d21d4},
 
    {0xf6019da07f549b2b, 0x7e2a53a146606a49},
 
    {0x99c102844f94e0fb, 0x2eda7444cbfc426e},
 
    {0xc0314325637a1939, 0xfa911155fefb5309},
 
    {0xf03d93eebc589f88, 0x793555ab7eba27cb},
 
    {0x96267c7535b763b5, 0x4bc1558b2f3458df},
 
    {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17},
 
    {0xea9c227723ee8bcb, 0x465e15a979c1cadd},
 
    {0x92a1958a7675175f, 0x0bfacd89ec191eca},
 
    {0xb749faed14125d36, 0xcef980ec671f667c},
 
    {0xe51c79a85916f484, 0x82b7e12780e7401b},
 
    {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811},
 
    {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16},
 
    {0xdfbdcece67006ac9, 0x67a791e093e1d49b},
 
    {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1},
 
    {0xaecc49914078536d, 0x58fae9f773886e19},
 
    {0xda7f5bf590966848, 0xaf39a475506a899f},
 
    {0x888f99797a5e012d, 0x6d8406c952429604},
 
    {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84},
 
    {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65},
 
    {0x855c3be0a17fcd26, 0x5cf2eea09a550680},
 
    {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
 
    {0xd0601d8efc57b08b, 0xf13b94daf124da27},
 
    {0x823c12795db6ce57, 0x76c53d08d6b70859},
 
    {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f},
 
    {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a},
 
    {0xfe5d54150b090b02, 0xd3f93b35435d7c4d},
 
    {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0},
 
    {0xc6b8e9b0709f109a, 0x359ab6419ca1091c},
 
    {0xf867241c8cc6d4c0, 0xc30163d203c94b63},
 
    {0x9b407691d7fc44f8, 0x79e0de63425dcf1e},
 
    {0xc21094364dfb5636, 0x985915fc12f542e5},
 
    {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e},
 
    {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43},
 
    {0xbd8430bd08277231, 0x50c6ff782a838354},
 
    {0xece53cec4a314ebd, 0xa4f8bf5635246429},
 
    {0x940f4613ae5ed136, 0x871b7795e136be9a},
 
    {0xb913179899f68584, 0x28e2557b59846e40},
 
    {0xe757dd7ec07426e5, 0x331aeada2fe589d0},
 
    {0x9096ea6f3848984f, 0x3ff0d2c85def7622},
 
    {0xb4bca50b065abe63, 0x0fed077a756b53aa},
 
    {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895},
 
    {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d},
 
    {0xb080392cc4349dec, 0xbd8d794d96aacfb4},
 
    {0xdca04777f541c567, 0xecf0d7a0fc5583a1},
 
    {0x89e42caaf9491b60, 0xf41686c49db57245},
 
    {0xac5d37d5b79b6239, 0x311c2875c522ced6},
 
    {0xd77485cb25823ac7, 0x7d633293366b828c},
 
    {0x86a8d39ef77164bc, 0xae5dff9c02033198},
 
    {0xa8530886b54dbdeb, 0xd9f57f830283fdfd},
 
    {0xd267caa862a12d66, 0xd072df63c324fd7c},
 
    {0x8380dea93da4bc60, 0x4247cb9e59f71e6e},
 
    {0xa46116538d0deb78, 0x52d9be85f074e609},
 
    {0xcd795be870516656, 0x67902e276c921f8c},
 
    {0x806bd9714632dff6, 0x00ba1cd8a3db53b7},
 
    {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5},
 
    {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce},
 
    {0xfad2a4b13d1b5d6c, 0x796b805720085f82},
 
    {0x9cc3a6eec6311a63, 0xcbe3303674053bb1},
 
    {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d},
 
    {0xf4f1b4d515acb93b, 0xee92fb5515482d45},
 
    {0x991711052d8bf3c5, 0x751bdd152d4d1c4b},
 
    {0xbf5cd54678eef0b6, 0xd262d45a78a0635e},
 
    {0xef340a98172aace4, 0x86fb897116c87c35},
 
    {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1},
 
    {0xbae0a846d2195712, 0x8974836059cca10a},
 
    {0xe998d258869facd7, 0x2bd1a438703fc94c},
 
    {0x91ff83775423cc06, 0x7b6306a34627ddd0},
 
    {0xb67f6455292cbf08, 0x1a3bc84c17b1d543},
 
    {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94},
 
    {0x8e938662882af53e, 0x547eb47b7282ee9d},
 
    {0xb23867fb2a35b28d, 0xe99e619a4f23aa44},
 
    {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5},
 
    {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05},
 
    {0xae0b158b4738705e, 0x9624ab50b148d446},
 
    {0xd98ddaee19068c76, 0x3badd624dd9b0958},
 
    {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7},
 
    {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d},
 
    {0xd47487cc8470652b, 0x7647c32000696720},
 
    {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074},
 
    {0xa5fb0a17c777cf09, 0xf468107100525891},
 
    {0xcf79cc9db955c2cc, 0x7182148d4066eeb5},
 
    {0x81ac1fe293d599bf, 0xc6f14cd848405531},
 
    {0xa21727db38cb002f, 0xb8ada00e5a506a7d},
 
    {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d},
 
    {0xfd442e4688bd304a, 0x908f4a166d1da664},
 
    {0x9e4a9cec15763e2e, 0x9a598e4e043287ff},
 
    {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe},
 
    {0xf7549530e188c128, 0xd12bee59e68ef47d},
 
    {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf},
 
    {0xc13a148e3032d6e7, 0xe36a52363c1faf02},
 
    {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2},
 
    {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba},
 
    {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8},
 
    {0xebdf661791d60f56, 0x111b495b3464ad22},
 
    {0x936b9fcebb25c995, 0xcab10dd900beec35},
 
    {0xb84687c269ef3bfb, 0x3d5d514f40eea743},
 
    {0xe65829b3046b0afa, 0x0cb4a5a3112a5113},
 
    {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac},
 
    {0xb3f4e093db73a093, 0x59ed216765690f57},
 
    {0xe0f218b8d25088b8, 0x306869c13ec3532d},
 
    {0x8c974f7383725573, 0x1e414218c73a13fc},
 
    {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
 
    {0xdbac6c247d62a583, 0xdf45f746b74abf3a},
 
    {0x894bc396ce5da772, 0x6b8bba8c328eb784},
 
    {0xab9eb47c81f5114f, 0x066ea92f3f326565},
 
    {0xd686619ba27255a2, 0xc80a537b0efefebe},
 
    {0x8613fd0145877585, 0xbd06742ce95f5f37},
 
    {0xa798fc4196e952e7, 0x2c48113823b73705},
 
    {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6},
 
    {0x82ef85133de648c4, 0x9a984d73dbe722fc},
 
    {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb},
 
    {0xcc963fee10b7d1b3, 0x318df905079926a9},
 
    {0xffbbcfe994e5c61f, 0xfdf17746497f7053},
 
    {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634},
 
    {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1},
 
    {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1},
 
    {0x9c1661a651213e2d, 0x06bea10ca65c084f},
 
    {0xc31bfa0fe5698db8, 0x486e494fcff30a63},
 
    {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb},
 
    {0x986ddb5c6b3a76b7, 0xf89629465a75e01d},
 
    {0xbe89523386091465, 0xf6bbb397f1135824},
 
    {0xee2ba6c0678b597f, 0x746aa07ded582e2d},
 
    {0x94db483840b717ef, 0xa8c2a44eb4571cdd},
 
    {0xba121a4650e4ddeb, 0x92f34d62616ce414},
 
    {0xe896a0d7e51e1566, 0x77b020baf9c81d18},
 
    {0x915e2486ef32cd60, 0x0ace1474dc1d122f},
 
    {0xb5b5ada8aaff80b8, 0x0d819992132456bb},
 
    {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a},
 
    {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
 
    {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3},
 
    {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf},
 
    {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c},
 
    {0xad4ab7112eb3929d, 0x86c16c98d2c953c7},
 
    {0xd89d64d57a607744, 0xe871c7bf077ba8b8},
 
    {0x87625f056c7c4a8b, 0x11471cd764ad4973},
 
    {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0},
 
    {0xd389b47879823479, 0x4aff1d108d4ec2c4},
 
    {0x843610cb4bf160cb, 0xcedf722a585139bb},
 
    {0xa54394fe1eedb8fe, 0xc2974eb4ee658829},
 
    {0xce947a3da6a9273e, 0x733d226229feea33},
 
    {0x811ccc668829b887, 0x0806357d5a3f5260},
 
    {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8},
 
    {0xc9bcff6034c13052, 0xfc89b393dd02f0b6},
 
    {0xfc2c3f3841f17c67, 0xbbac2078d443ace3},
 
    {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e},
 
    {0xc5029163f384a931, 0x0a9e795e65d4df12},
 
    {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6},
 
    {0x99ea0196163fa42e, 0x504bced1bf8e4e46},
 
    {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7},
 
    {0xf07da27a82c37088, 0x5d767327bb4e5a4d},
 
    {0x964e858c91ba2655, 0x3a6a07f8d510f870},
 
    {0xbbe226efb628afea, 0x890489f70a55368c},
 
    {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f},
 
    {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e},
 
    {0xb77ada0617e3bbcb, 0x09ce6ebb40173745},
 
    {0xe55990879ddcaabd, 0xcc420a6a101d0516},
 
    {0x8f57fa54c2a9eab6, 0x9fa946824a12232e},
 
    {0xb32df8e9f3546564, 0x47939822dc96abfa},
 
    {0xdff9772470297ebd, 0x59787e2b93bc56f8},
 
    {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b},
 
    {0xaefae51477a06b03, 0xede622920b6b23f2},
 
    {0xdab99e59958885c4, 0xe95fab368e45ecee},
 
    {0x88b402f7fd75539b, 0x11dbcb0218ebb415},
 
    {0xaae103b5fcd2a881, 0xd652bdc29f26a11a},
 
    {0xd59944a37c0752a2, 0x4be76d3346f04960},
 
    {0x857fcae62d8493a5, 0x6f70a4400c562ddc},
 
    {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953},
 
    {0xd097ad07a71f26b2, 0x7e2000a41346a7a8},
 
    {0x825ecc24c873782f, 0x8ed400668c0c28c9},
 
    {0xa2f67f2dfa90563b, 0x728900802f0f32fb},
 
    {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba},
 
    {0xfea126b7d78186bc, 0xe2f610c84987bfa9},
 
    {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca},
 
    {0xc6ede63fa05d3143, 0x91503d1c79720dbc},
 
    {0xf8a95fcf88747d94, 0x75a44c6397ce912b},
 
    {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb},
 
    {0xc24452da229b021b, 0xfbe85badce996169},
 
    {0xf2d56790ab41c2a2, 0xfae27299423fb9c4},
 
    {0x97c560ba6b0919a5, 0xdccd879fc967d41b},
 
    {0xbdb6b8e905cb600f, 0x5400e987bbc1c921},
 
    {0xed246723473e3813, 0x290123e9aab23b69},
 
    {0x9436c0760c86e30b, 0xf9a0b6720aaf6522},
 
    {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
 
    {0xe7958cb87392c2c2, 0xb60b1d1230b20e05},
 
    {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3},
 
    {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4},
 
    {0xe2280b6c20dd5232, 0x25c6da63c38de1b1},
 
    {0x8d590723948a535f, 0x579c487e5a38ad0f},
 
    {0xb0af48ec79ace837, 0x2d835a9df0c6d852},
 
    {0xdcdb1b2798182244, 0xf8e431456cf88e66},
 
    {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900},
 
    {0xac8b2d36eed2dac5, 0xe272467e3d222f40},
 
    {0xd7adf884aa879177, 0x5b0ed81dcc6abb10},
 
    {0x86ccbb52ea94baea, 0x98e947129fc2b4ea},
 
    {0xa87fea27a539e9a5, 0x3f2398d747b36225},
 
    {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae},
 
    {0x83a3eeeef9153e89, 0x1953cf68300424ad},
 
    {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8},
 
    {0xcdb02555653131b6, 0x3792f412cb06794e},
 
    {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1},
 
    {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5},
 
    {0xc8de047564d20a8b, 0xf245825a5a445276},
 
    {0xfb158592be068d2e, 0xeed6e2f0f0d56713},
 
    {0x9ced737bb6c4183d, 0x55464dd69685606c},
 
    {0xc428d05aa4751e4c, 0xaa97e14c3c26b887},
 
    {0xf53304714d9265df, 0xd53dd99f4b3066a9},
 
    {0x993fe2c6d07b7fab, 0xe546a8038efe402a},
 
    {0xbf8fdb78849a5f96, 0xde98520472bdd034},
 
    {0xef73d256a5c0f77c, 0x963e66858f6d4441},
 
    {0x95a8637627989aad, 0xdde7001379a44aa9},
 
    {0xbb127c53b17ec159, 0x5560c018580d5d53},
 
    {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7},
 
    {0x9226712162ab070d, 0xcab3961304ca70e9},
 
    {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23},
 
    {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b},
 
    {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243},
 
    {0xb267ed1940f1c61c, 0x55f038b237591ed4},
 
    {0xdf01e85f912e37a3, 0x6b6c46dec52f6689},
 
    {0x8b61313bbabce2c6, 0x2323ac4b3b3da016},
 
    {0xae397d8aa96c1b77, 0xabec975e0a0d081b},
 
    {0xd9c7dced53c72255, 0x96e7bd358c904a22},
 
    {0x881cea14545c7575, 0x7e50d64177da2e55},
 
    {0xaa242499697392d2, 0xdde50bd1d5d0b9ea},
 
    {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865},
 
    {0x84ec3c97da624ab4, 0xbd5af13bef0b113f},
 
    {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f},
 
    {0xcfb11ead453994ba, 0x67de18eda5814af3},
 
    {0x81ceb32c4b43fcf4, 0x80eacf948770ced8},
 
    {0xa2425ff75e14fc31, 0xa1258379a94d028e},
 
    {0xcad2f7f5359a3b3e, 0x096ee45813a04331},
 
    {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd},
 
    {0x9e74d1b791e07e48, 0x775ea264cf55347e},
 
    {0xc612062576589dda, 0x95364afe032a819e},
 
    {0xf79687aed3eec551, 0x3a83ddbd83f52205},
 
    {0x9abe14cd44753b52, 0xc4926a9672793543},
 
    {0xc16d9a0095928a27, 0x75b7053c0f178294},
 
    {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
 
    {0x971da05074da7bee, 0xd3f6fc16ebca5e04},
 
    {0xbce5086492111aea, 0x88f4bb1ca6bcf585},
 
    {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6},
 
    {0x9392ee8e921d5d07, 0x3aff322e62439fd0},
 
    {0xb877aa3236a4b449, 0x09befeb9fad487c3},
 
    {0xe69594bec44de15b, 0x4c2ebe687989a9b4},
 
    {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11},
 
    {0xb424dc35095cd80f, 0x538484c19ef38c95},
 
    {0xe12e13424bb40e13, 0x2865a5f206b06fba},
 
    {0x8cbccc096f5088cb, 0xf93f87b7442e45d4},
 
    {0xafebff0bcb24aafe, 0xf78f69a51539d749},
 
    {0xdbe6fecebdedd5be, 0xb573440e5a884d1c},
 
    {0x89705f4136b4a597, 0x31680a88f8953031},
 
    {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e},
 
    {0xd6bf94d5e57a42bc, 0x3d32907604691b4d},
 
    {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110},
 
    {0xa7c5ac471b478423, 0x0fcf80dc33721d54},
 
    {0xd1b71758e219652b, 0xd3c36113404ea4a9},
 
    {0x83126e978d4fdf3b, 0x645a1cac083126ea},
 
    {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4},
 
    {0xcccccccccccccccc, 0xcccccccccccccccd},
 
    {0x8000000000000000, 0x0000000000000000},
 
    {0xa000000000000000, 0x0000000000000000},
 
    {0xc800000000000000, 0x0000000000000000},
 
    {0xfa00000000000000, 0x0000000000000000},
 
    {0x9c40000000000000, 0x0000000000000000},
 
    {0xc350000000000000, 0x0000000000000000},
 
    {0xf424000000000000, 0x0000000000000000},
 
    {0x9896800000000000, 0x0000000000000000},
 
    {0xbebc200000000000, 0x0000000000000000},
 
    {0xee6b280000000000, 0x0000000000000000},
 
    {0x9502f90000000000, 0x0000000000000000},
 
    {0xba43b74000000000, 0x0000000000000000},
 
    {0xe8d4a51000000000, 0x0000000000000000},
 
    {0x9184e72a00000000, 0x0000000000000000},
 
    {0xb5e620f480000000, 0x0000000000000000},
 
    {0xe35fa931a0000000, 0x0000000000000000},
 
    {0x8e1bc9bf04000000, 0x0000000000000000},
 
    {0xb1a2bc2ec5000000, 0x0000000000000000},
 
    {0xde0b6b3a76400000, 0x0000000000000000},
 
    {0x8ac7230489e80000, 0x0000000000000000},
 
    {0xad78ebc5ac620000, 0x0000000000000000},
 
    {0xd8d726b7177a8000, 0x0000000000000000},
 
    {0x878678326eac9000, 0x0000000000000000},
 
    {0xa968163f0a57b400, 0x0000000000000000},
 
    {0xd3c21bcecceda100, 0x0000000000000000},
 
    {0x84595161401484a0, 0x0000000000000000},
 
    {0xa56fa5b99019a5c8, 0x0000000000000000},
 
    {0xcecb8f27f4200f3a, 0x0000000000000000},
 
    {0x813f3978f8940984, 0x4000000000000000},
 
    {0xa18f07d736b90be5, 0x5000000000000000},
 
    {0xc9f2c9cd04674ede, 0xa400000000000000},
 
    {0xfc6f7c4045812296, 0x4d00000000000000},
 
    {0x9dc5ada82b70b59d, 0xf020000000000000},
 
    {0xc5371912364ce305, 0x6c28000000000000},
 
    {0xf684df56c3e01bc6, 0xc732000000000000},
 
    {0x9a130b963a6c115c, 0x3c7f400000000000},
 
    {0xc097ce7bc90715b3, 0x4b9f100000000000},
 
    {0xf0bdc21abb48db20, 0x1e86d40000000000},
 
    {0x96769950b50d88f4, 0x1314448000000000},
 
    {0xbc143fa4e250eb31, 0x17d955a000000000},
 
    {0xeb194f8e1ae525fd, 0x5dcfab0800000000},
 
    {0x92efd1b8d0cf37be, 0x5aa1cae500000000},
 
    {0xb7abc627050305ad, 0xf14a3d9e40000000},
 
    {0xe596b7b0c643c719, 0x6d9ccd05d0000000},
 
    {0x8f7e32ce7bea5c6f, 0xe4820023a2000000},
 
    {0xb35dbf821ae4f38b, 0xdda2802c8a800000},
 
    {0xe0352f62a19e306e, 0xd50b2037ad200000},
 
    {0x8c213d9da502de45, 0x4526f422cc340000},
 
    {0xaf298d050e4395d6, 0x9670b12b7f410000},
 
    {0xdaf3f04651d47b4c, 0x3c0cdd765f114000},
 
    {0x88d8762bf324cd0f, 0xa5880a69fb6ac800},
 
    {0xab0e93b6efee0053, 0x8eea0d047a457a00},
 
    {0xd5d238a4abe98068, 0x72a4904598d6d880},
 
    {0x85a36366eb71f041, 0x47a6da2b7f864750},
 
    {0xa70c3c40a64e6c51, 0x999090b65f67d924},
 
    {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d},
 
    {0x82818f1281ed449f, 0xbff8f10e7a8921a4},
 
    {0xa321f2d7226895c7, 0xaff72d52192b6a0d},
 
    {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490},
 
    {0xfee50b7025c36a08, 0x02f236d04753d5b4},
 
    {0x9f4f2726179a2245, 0x01d762422c946590},
 
    {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5},
 
    {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2},
 
    {0x9b934c3b330c8577, 0x63cc55f49f88eb2f},
 
    {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb},
 
    {0xf316271c7fc3908a, 0x8bef464e3945ef7a},
 
    {0x97edd871cfda3a56, 0x97758bf0e3cbb5ac},
 
    {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317},
 
    {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd},
 
    {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a},
 
    {0xb975d6b6ee39e436, 0xb3e2fd538e122b44},
 
    {0xe7d34c64a9c85d44, 0x60dbbca87196b616},
 
    {0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd},
 
    {0xb51d13aea4a488dd, 0x6babab6398bdbe41},
 
    {0xe264589a4dcdab14, 0xc696963c7eed2dd1},
 
    {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2},
 
    {0xb0de65388cc8ada8, 0x3b25a55f43294bcb},
 
    {0xdd15fe86affad912, 0x49ef0eb713f39ebe},
 
    {0x8a2dbf142dfcc7ab, 0x6e3569326c784337},
 
    {0xacb92ed9397bf996, 0x49c2c37f07965404},
 
    {0xd7e77a8f87daf7fb, 0xdc33745ec97be906},
 
    {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3},
 
    {0xa8acd7c0222311bc, 0xc40832ea0d68ce0c},
 
    {0xd2d80db02aabd62b, 0xf50a3fa490c30190},
 
    {0x83c7088e1aab65db, 0x792667c6da79e0fa},
 
    {0xa4b8cab1a1563f52, 0x577001b891185938},
 
    {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
 
    {0x80b05e5ac60b6178, 0x544f8158315b05b4},
 
    {0xa0dc75f1778e39d6, 0x696361ae3db1c721},
 
    {0xc913936dd571c84c, 0x03bc3a19cd1e38e9},
 
    {0xfb5878494ace3a5f, 0x04ab48a04065c723},
 
    {0x9d174b2dcec0e47b, 0x62eb0d64283f9c76},
 
    {0xc45d1df942711d9a, 0x3ba5d0bd324f8394},
 
    {0xf5746577930d6500, 0xca8f44ec7ee36479},
 
    {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb},
 
    {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e},
 
    {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e},
 
    {0x95d04aee3b80ece5, 0xbba1f1d158724a12},
 
    {0xbb445da9ca61281f, 0x2a8a6e45ae8edc97},
 
    {0xea1575143cf97226, 0xf52d09d71a3293bd},
 
    {0x924d692ca61be758, 0x593c2626705f9c56},
 
    {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c},
 
    {0xe498f455c38b997a, 0x0b6dfb9c0f956447},
 
    {0x8edf98b59a373fec, 0x4724bd4189bd5eac},
 
    {0xb2977ee300c50fe7, 0x58edec91ec2cb657},
 
    {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed},
 
    {0x8b865b215899f46c, 0xbd79e0d20082ee74},
 
    {0xae67f1e9aec07187, 0xecd8590680a3aa11},
 
    {0xda01ee641a708de9, 0xe80e6f4820cc9495},
 
    {0x884134fe908658b2, 0x3109058d147fdcdd},
 
    {0xaa51823e34a7eede, 0xbd4b46f0599fd415},
 
    {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a},
 
    {0x850fadc09923329e, 0x03e2cf6bc604ddb0},
 
    {0xa6539930bf6bff45, 0x84db8346b786151c},
 
    {0xcfe87f7cef46ff16, 0xe612641865679a63},
 
    {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e},
 
    {0xa26da3999aef7749, 0xe3be5e330f38f09d},
 
    {0xcb090c8001ab551c, 0x5cadf5bfd3072cc5},
 
    {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6},
 
    {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa},
 
    {0xc646d63501a1511d, 0xb281e1fd541501b8},
 
    {0xf7d88bc24209a565, 0x1f225a7ca91a4226},
 
    {0x9ae757596946075f, 0x3375788de9b06958},
 
    {0xc1a12d2fc3978937, 0x0052d6b1641c83ae},
 
    {0xf209787bb47d6b84, 0xc0678c5dbd23a49a},
 
    {0x9745eb4d50ce6332, 0xf840b7ba963646e0},
 
    {0xbd176620a501fbff, 0xb650e5a93bc3d898},
 
    {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe},
 
    {0x93ba47c980e98cdf, 0xc66f336c36b10137},
 
    {0xb8a8d9bbe123f017, 0xb80b0047445d4184},
 
    {0xe6d3102ad96cec1d, 0xa60dc059157491e5},
 
    {0x9043ea1ac7e41392, 0x87c89837ad68db2f},
 
    {0xb454e4a179dd1877, 0x29babe4598c311fb},
 
    {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a},
 
    {0x8ce2529e2734bb1d, 0x1899e4a65f58660c},
 
    {0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f},
 
    {0xdc21a1171d42645d, 0x76707543f4fa1f73},
 
    {0x899504ae72497eba, 0x6a06494a791c53a8},
 
    {0xabfa45da0edbde69, 0x0487db9d17636892},
 
    {0xd6f8d7509292d603, 0x45a9d2845d3c42b6},
 
    {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
 
    {0xa7f26836f282b732, 0x8e6cac7768d7141e},
 
    {0xd1ef0244af2364ff, 0x3207d795430cd926},
 
    {0x8335616aed761f1f, 0x7f44e6bd49e807b8},
 
    {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6},
 
    {0xcd036837130890a1, 0x36dba887c37a8c0f},
 
    {0x802221226be55a64, 0xc2494954da2c9789},
 
    {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c},
 
    {0xc83553c5c8965d3d, 0x6f92829494e5acc7},
 
    {0xfa42a8b73abbf48c, 0xcb772339ba1f17f9},
 
    {0x9c69a97284b578d7, 0xff2a760414536efb},
 
    {0xc38413cf25e2d70d, 0xfef5138519684aba},
 
    {0xf46518c2ef5b8cd1, 0x7eb258665fc25d69},
 
    {0x98bf2f79d5993802, 0xef2f773ffbd97a61},
 
    {0xbeeefb584aff8603, 0xaafb550ffacfd8fa},
 
    {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38},
 
    {0x952ab45cfa97a0b2, 0xdd945a747bf26183},
 
    {0xba756174393d88df, 0x94f971119aeef9e4},
 
    {0xe912b9d1478ceb17, 0x7a37cd5601aab85d},
 
    {0x91abb422ccb812ee, 0xac62e055c10ab33a},
 
    {0xb616a12b7fe617aa, 0x577b986b314d6009},
 
    {0xe39c49765fdf9d94, 0xed5a7e85fda0b80b},
 
    {0x8e41ade9fbebc27d, 0x14588f13be847307},
 
    {0xb1d219647ae6b31c, 0x596eb2d8ae258fc8},
 
    {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb},
 
    {0x8aec23d680043bee, 0x25de7bb9480d5854},
 
    {0xada72ccc20054ae9, 0xaf561aa79a10ae6a},
 
    {0xd910f7ff28069da4, 0x1b2ba1518094da04},
 
    {0x87aa9aff79042286, 0x90fb44d2f05d0842},
 
    {0xa99541bf57452b28, 0x353a1607ac744a53},
 
    {0xd3fa922f2d1675f2, 0x42889b8997915ce8},
 
    {0x847c9b5d7c2e09b7, 0x69956135febada11},
 
    {0xa59bc234db398c25, 0x43fab9837e699095},
 
    {0xcf02b2c21207ef2e, 0x94f967e45e03f4bb},
 
    {0x8161afb94b44f57d, 0x1d1be0eebac278f5},
 
    {0xa1ba1ba79e1632dc, 0x6462d92a69731732},
 
    {0xca28a291859bbf93, 0x7d7b8f7503cfdcfe},
 
    {0xfcb2cb35e702af78, 0x5cda735244c3d43e},
 
    {0x9defbf01b061adab, 0x3a0888136afa64a7},
 
    {0xc56baec21c7a1916, 0x088aaa1845b8fdd0},
 
    {0xf6c69a72a3989f5b, 0x8aad549e57273d45},
 
    {0x9a3c2087a63f6399, 0x36ac54e2f678864b},
 
    {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd},
 
    {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5},
 
    {0x969eb7c47859e743, 0x9f644ae5a4b1b325},
 
    {0xbc4665b596706114, 0x873d5d9f0dde1fee},
 
    {0xeb57ff22fc0c7959, 0xa90cb506d155a7ea},
 
    {0x9316ff75dd87cbd8, 0x09a7f12442d588f2},
 
    {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb2f},
 
    {0xe5d3ef282a242e81, 0x8f1668c8a86da5fa},
 
    {0x8fa475791a569d10, 0xf96e017d694487bc},
 
    {0xb38d92d760ec4455, 0x37c981dcc395a9ac},
 
    {0xe070f78d3927556a, 0x85bbe253f47b1417},
 
    {0x8c469ab843b89562, 0x93956d7478ccec8e},
 
    {0xaf58416654a6babb, 0x387ac8d1970027b2},
 
    {0xdb2e51bfe9d0696a, 0x06997b05fcc0319e},
 
    {0x88fcf317f22241e2, 0x441fece3bdf81f03},
 
    {0xab3c2fddeeaad25a, 0xd527e81cad7626c3},
 
    {0xd60b3bd56a5586f1, 0x8a71e223d8d3b074},
 
    {0x85c7056562757456, 0xf6872d5667844e49},
 
    {0xa738c6bebb12d16c, 0xb428f8ac016561db},
 
    {0xd106f86e69d785c7, 0xe13336d701beba52},
 
    {0x82a45b450226b39c, 0xecc0024661173473},
 
    {0xa34d721642b06084, 0x27f002d7f95d0190},
 
    {0xcc20ce9bd35c78a5, 0x31ec038df7b441f4},
 
    {0xff290242c83396ce, 0x7e67047175a15271},
 
    {0x9f79a169bd203e41, 0x0f0062c6e984d386},
 
    {0xc75809c42c684dd1, 0x52c07b78a3e60868},
 
    {0xf92e0c3537826145, 0xa7709a56ccdf8a82},
 
    {0x9bbcc7a142b17ccb, 0x88a66076400bb691},
 
    {0xc2abf989935ddbfe, 0x6acff893d00ea435},
 
    {0xf356f7ebf83552fe, 0x0583f6b8c4124d43},
 
    {0x98165af37b2153de, 0xc3727a337a8b704a},
 
    {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c},
 
    {0xeda2ee1c7064130c, 0x1162def06f79df73},
 
    {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8},
 
    {0xb9a74a0637ce2ee1, 0x6d953e2bd7173692},
 
    {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437},
 
    {0x910ab1d4db9914a0, 0x1d9c9892400a22a2},
 
    {0xb54d5e4a127f59c8, 0x2503beb6d00cab4b},
 
    {0xe2a0b5dc971f303a, 0x2e44ae64840fd61d},
 
    {0x8da471a9de737e24, 0x5ceaecfed289e5d2},
 
    {0xb10d8e1456105dad, 0x7425a83e872c5f47},
 
    {0xdd50f1996b947518, 0xd12f124e28f77719},
 
    {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f},
 
    {0xace73cbfdc0bfb7b, 0x636cc64d1001550b},
 
    {0xd8210befd30efa5a, 0x3c47f7e05401aa4e},
 
    {0x8714a775e3e95c78, 0x65acfaec34810a71},
 
    {0xa8d9d1535ce3b396, 0x7f1839a741a14d0d},
 
    {0xd31045a8341ca07c, 0x1ede48111209a050},
 
    {0x83ea2b892091e44d, 0x934aed0aab460432},
 
    {0xa4e4b66b68b65d60, 0xf81da84d5617853f},
 
    {0xce1de40642e3f4b9, 0x36251260ab9d668e},
 
    {0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019},
 
    {0xa1075a24e4421730, 0xb24cf65b8612f81f},
 
    {0xc94930ae1d529cfc, 0xdee033f26797b627},
 
    {0xfb9b7cd9a4a7443c, 0x169840ef017da3b1},
 
    {0x9d412e0806e88aa5, 0x8e1f289560ee864e},
 
    {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2},
 
    {0xf5b5d7ec8acb58a2, 0xae10af696774b1db},
 
    {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29},
 
    {0xbff610b0cc6edd3f, 0x17fd090a58d32af3},
 
    {0xeff394dcff8a948e, 0xddfc4b4cef07f5b0},
 
    {0x95f83d0a1fb69cd9, 0x4abdaf101564f98e},
 
    {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1},
 
    {0xea53df5fd18d5513, 0x84c86189216dc5ed},
 
    {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4},
 
    {0xb7118682dbb66a77, 0x3fbc8c33221dc2a1},
 
    {0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
 
    {0x8f05b1163ba6832d, 0x29cb4d87f2a7400e},
 
    {0xb2c71d5bca9023f8, 0x743e20e9ef511012},
 
    {0xdf78e4b2bd342cf6, 0x914da9246b255416},
 
    {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e},
 
    {0xae9672aba3d0c320, 0xa184ac2473b529b1},
 
    {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e},
 
    {0x8865899617fb1871, 0x7e2fa67c7a658892},
 
    {0xaa7eebfb9df9de8d, 0xddbb901b98feeab7},
 
    {0xd51ea6fa85785631, 0x552a74227f3ea565},
 
    {0x8533285c936b35de, 0xd53a88958f87275f},
 
    {0xa67ff273b8460356, 0x8a892abaf368f137},
 
    {0xd01fef10a657842c, 0x2d2b7569b0432d85},
 
    {0x8213f56a67f6b29b, 0x9c3b29620e29fc73},
 
    {0xa298f2c501f45f42, 0x8349f3ba91b47b8f},
 
    {0xcb3f2f7642717713, 0x241c70a936219a73},
 
    {0xfe0efb53d30dd4d7, 0xed238cd383aa0110},
 
    {0x9ec95d1463e8a506, 0xf4363804324a40aa},
 
    {0xc67bb4597ce2ce48, 0xb143c6053edcd0d5},
 
    {0xf81aa16fdc1b81da, 0xdd94b7868e94050a},
 
    {0x9b10a4e5e9913128, 0xca7cf2b4191c8326},
 
    {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0},
 
    {0xf24a01a73cf2dccf, 0xbc633b39673c8cec},
 
    {0x976e41088617ca01, 0xd5be0503e085d813},
 
    {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18},
 
    {0xec9c459d51852ba2, 0xddf8e7d60ed1219e},
 
    {0x93e1ab8252f33b45, 0xcabb90e5c942b503},
 
    {0xb8da1662e7b00a17, 0x3d6a751f3b936243},
 
    {0xe7109bfba19c0c9d, 0x0cc512670a783ad4},
 
    {0x906a617d450187e2, 0x27fb2b80668b24c5},
 
    {0xb484f9dc9641e9da, 0xb1f9f660802dedf6},
 
    {0xe1a63853bbd26451, 0x5e7873f8a0396973},
 
    {0x8d07e33455637eb2, 0xdb0b487b6423e1e8},
 
    {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62},
 
    {0xdc5c5301c56b75f7, 0x7641a140cc7810fb},
 
    {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d},
 
    {0xac2820d9623bf429, 0x546345fa9fbdcd44},
 
    {0xd732290fbacaf133, 0xa97c177947ad4095},
 
    {0x867f59a9d4bed6c0, 0x49ed8eabcccc485d},
 
    {0xa81f301449ee8c70, 0x5c68f256bfff5a74},
 
    {0xd226fc195c6a2f8c, 0x73832eec6fff3111},
 
    {0x83585d8fd9c25db7, 0xc831fd53c5ff7eab},
 
    {0xa42e74f3d032f525, 0xba3e7ca8b77f5e55},
 
    {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb},
 
    {0x80444b5e7aa7cf85, 0x7980d163cf5b81b3},
 
    {0xa0555e361951c366, 0xd7e105bcc332621f},
 
    {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7},
 
    {0xfa856334878fc150, 0xb14f98f6f0feb951},
 
    {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3},
 
    {0xc3b8358109e84f07, 0x0a862f80ec4700c8},
 
    {0xf4a642e14c6262c8, 0xcd27bb612758c0fa},
 
    {0x98e7e9cccfbd7dbd, 0x8038d51cb897789c},
 
    {0xbf21e44003acdd2c, 0xe0470a63e6bd56c3},
 
    {0xeeea5d5004981478, 0x1858ccfce06cac74},
 
    {0x95527a5202df0ccb, 0x0f37801e0c43ebc8},
 
    {0xbaa718e68396cffd, 0xd30560258f54e6ba},
 
    {0xe950df20247c83fd, 0x47c6b82ef32a2069},
 
    {0x91d28b7416cdd27e, 0x4cdc331d57fa5441},
 
    {0xb6472e511c81471d, 0xe0133fe4adf8e952},
 
    {0xe3d8f9e563a198e5, 0x58180fddd97723a6},
 
    {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648},
 
    {0xb201833b35d63f73, 0x2cd2cc6551e513da},
 
    {0xde81e40a034bcf4f, 0xf8077f7ea65e58d1},
 
    {0x8b112e86420f6191, 0xfb04afaf27faf782},
 
    {0xadd57a27d29339f6, 0x79c5db9af1f9b563},
 
    {0xd94ad8b1c7380874, 0x18375281ae7822bc},
 
    {0x87cec76f1c830548, 0x8f2293910d0b15b5},
 
    {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb22},
 
    {0xd433179d9c8cb841, 0x5fa60692a46151eb},
 
    {0x849feec281d7f328, 0xdbc7c41ba6bcd333},
 
    {0xa5c7ea73224deff3, 0x12b9b522906c0800},
 
    {0xcf39e50feae16bef, 0xd768226b34870a00},
 
    {0x81842f29f2cce375, 0xe6a1158300d46640},
 
    {0xa1e53af46f801c53, 0x60495ae3c1097fd0},
 
    {0xca5e89b18b602368, 0x385bb19cb14bdfc4},
 
    {0xfcf62c1dee382c42, 0x46729e03dd9ed7b5},
 
    {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d1},
 
    {0xc5a05277621be293, 0xc7098b7305241885},
 
    {0xf70867153aa2db38, 0xb8cbee4fc66d1ea7}
 
#else
 
    {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
 
    {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
 
    {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
 
    {0x86a8d39ef77164bc, 0xae5dff9c02033198},
 
    {0xd98ddaee19068c76, 0x3badd624dd9b0958},
 
    {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
 
    {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
 
    {0xe55990879ddcaabd, 0xcc420a6a101d0516},
 
    {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
 
    {0x95a8637627989aad, 0xdde7001379a44aa9},
 
    {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
 
    {0xc350000000000000, 0x0000000000000000},
 
    {0x9dc5ada82b70b59d, 0xf020000000000000},
 
    {0xfee50b7025c36a08, 0x02f236d04753d5b4},
 
    {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
 
    {0xa6539930bf6bff45, 0x84db8346b786151c},
 
    {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
 
    {0xd910f7ff28069da4, 0x1b2ba1518094da04},
 
    {0xaf58416654a6babb, 0x387ac8d1970027b2},
 
    {0x8da471a9de737e24, 0x5ceaecfed289e5d2},
 
    {0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
 
    {0xb8da1662e7b00a17, 0x3d6a751f3b936243},
 
    {0x95527a5202df0ccb, 0x0f37801e0c43ebc8}
 
#endif
 
};
 

	
 
#if !FMT_USE_FULL_CACHE_DRAGONBOX
 
template <typename T>
 
const uint64_t basic_data<T>::powers_of_5_64[] = {
 
    0x0000000000000001, 0x0000000000000005, 0x0000000000000019,
 
    0x000000000000007d, 0x0000000000000271, 0x0000000000000c35,
 
    0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1,
 
    0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd,
 
    0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9,
 
    0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5,
 
    0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631,
 
    0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed,
 
    0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9};
 

	
 
template <typename T>
 
const uint32_t basic_data<T>::dragonbox_pow10_recovery_errors[] = {
 
    0x50001400, 0x54044100, 0x54014555, 0x55954415, 0x54115555, 0x00000001,
 
    0x50000000, 0x00104000, 0x54010004, 0x05004001, 0x55555544, 0x41545555,
 
    0x54040551, 0x15445545, 0x51555514, 0x10000015, 0x00101100, 0x01100015,
 
    0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x04450514, 0x45414110,
 
    0x55555145, 0x50544050, 0x15040155, 0x11054140, 0x50111514, 0x11451454,
 
    0x00400541, 0x00000000, 0x55555450, 0x10056551, 0x10054011, 0x55551014,
 
    0x69514555, 0x05151109, 0x00155555};
 
#endif
 

	
 
template <typename T>
 
const char basic_data<T>::foreground_color[] = "\x1b[38;2;";
 
template <typename T>
 
const char basic_data<T>::background_color[] = "\x1b[48;2;";
 
template <typename T> const char basic_data<T>::reset_color[] = "\x1b[0m";
 
template <typename T> const wchar_t basic_data<T>::wreset_color[] = L"\x1b[0m";
 
template <typename T> const char basic_data<T>::signs[] = {0, '-', '+', ' '};
 
template <typename T>
 
const char basic_data<T>::left_padding_shifts[] = {31, 31, 0, 1, 0};
 
template <typename T>
 
const char basic_data<T>::right_padding_shifts[] = {0, 31, 0, 1, 0};
 

	
 
template <typename T> struct bits {
 
  static FMT_CONSTEXPR_DECL const int value =
 
      static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
 
};
 

	
 
class fp;
 
template <int SHIFT = 0> fp normalize(fp value);
 

	
 
// Lower (upper) boundary is a value half way between a floating-point value
 
// and its predecessor (successor). Boundaries have the same exponent as the
 
// value so only significands are stored.
 
struct boundaries {
 
  uint64_t lower;
 
  uint64_t upper;
 
};
 

	
 
// A handmade floating-point number f * pow(2, e).
 
class fp {
 
 private:
 
  using significand_type = uint64_t;
 

	
 
  template <typename Float>
 
  using is_supported_float = bool_constant<sizeof(Float) == sizeof(uint64_t) ||
 
                                           sizeof(Float) == sizeof(uint32_t)>;
 

	
 
 public:
 
  significand_type f;
 
  int e;
 

	
 
  // All sizes are in bits.
 
  // Subtract 1 to account for an implicit most significant bit in the
 
  // normalized form.
 
  static FMT_CONSTEXPR_DECL const int double_significand_size =
 
      std::numeric_limits<double>::digits - 1;
 
  static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
 
      1ULL << double_significand_size;
 
  static FMT_CONSTEXPR_DECL const int significand_size =
 
      bits<significand_type>::value;
 

	
 
  fp() : f(0), e(0) {}
 
  fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
 

	
 
  // Constructs fp from an IEEE754 double. It is a template to prevent compile
 
  // errors on platforms where double is not IEEE754.
 
  template <typename Double> explicit fp(Double d) { assign(d); }
 

	
 
  // Assigns d to this and return true iff predecessor is closer than successor.
 
  template <typename Float, FMT_ENABLE_IF(is_supported_float<Float>::value)>
 
  bool assign(Float d) {
 
    // Assume float is in the format [sign][exponent][significand].
 
    using limits = std::numeric_limits<Float>;
 
    const int float_significand_size = limits::digits - 1;
 
    const int exponent_size =
 
        bits<Float>::value - float_significand_size - 1;  // -1 for sign
 
    const uint64_t float_implicit_bit = 1ULL << float_significand_size;
 
    const uint64_t significand_mask = float_implicit_bit - 1;
 
    const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask;
 
    const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
 
    constexpr bool is_double = sizeof(Float) == sizeof(uint64_t);
 
    auto u = bit_cast<conditional_t<is_double, uint64_t, uint32_t>>(d);
 
    f = u & significand_mask;
 
    int biased_e =
 
        static_cast<int>((u & exponent_mask) >> float_significand_size);
 
    // Predecessor is closer if d is a normalized power of 2 (f == 0) other than
 
    // the smallest normalized number (biased_e > 1).
 
    bool is_predecessor_closer = f == 0 && biased_e > 1;
 
    if (biased_e != 0)
 
      f += float_implicit_bit;
 
    else
 
      biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
 
    e = biased_e - exponent_bias - float_significand_size;
 
    return is_predecessor_closer;
 
  }
 

	
 
  template <typename Float, FMT_ENABLE_IF(!is_supported_float<Float>::value)>
 
  bool assign(Float) {
 
    *this = fp();
 
    return false;
 
  }
 
};
 

	
 
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
 
template <int SHIFT> fp normalize(fp value) {
 
  // Handle subnormals.
 
  const auto shifted_implicit_bit = fp::implicit_bit << SHIFT;
 
  while ((value.f & shifted_implicit_bit) == 0) {
 
    value.f <<= 1;
 
    --value.e;
 
  }
 
  // Subtract 1 to account for hidden bit.
 
  const auto offset =
 
      fp::significand_size - fp::double_significand_size - SHIFT - 1;
 
  value.f <<= offset;
 
  value.e -= offset;
 
  return value;
 
}
 

	
 
inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; }
 

	
 
// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
 
inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
 
#if FMT_USE_INT128
 
  auto product = static_cast<__uint128_t>(lhs) * rhs;
 
  auto f = static_cast<uint64_t>(product >> 64);
 
  return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
 
#else
 
  // Multiply 32-bit parts of significands.
 
  uint64_t mask = (1ULL << 32) - 1;
 
  uint64_t a = lhs >> 32, b = lhs & mask;
 
  uint64_t c = rhs >> 32, d = rhs & mask;
 
  uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
 
  // Compute mid 64-bit of result and round.
 
  uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
 
  return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
 
#endif
 
}
 

	
 
inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; }
 

	
 
// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
 
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
 
inline fp get_cached_power(int min_exponent, int& pow10_exponent) {
 
  const int shift = 32;
 
  const auto significand = static_cast<int64_t>(data::log10_2_significand);
 
  int index = static_cast<int>(
 
      ((min_exponent + fp::significand_size - 1) * (significand >> shift) +
 
       ((int64_t(1) << shift) - 1))  // ceil
 
      >> 32                          // arithmetic shift
 
  );
 
  // Decimal exponent of the first (smallest) cached power of 10.
 
  const int first_dec_exp = -348;
 
  // Difference between 2 consecutive decimal exponents in cached powers of 10.
 
  const int dec_exp_step = 8;
 
  index = (index - first_dec_exp - 1) / dec_exp_step + 1;
 
  pow10_exponent = first_dec_exp + index * dec_exp_step;
 
  return {data::grisu_pow10_significands[index],
 
          data::grisu_pow10_exponents[index]};
 
}
 

	
 
// A simple accumulator to hold the sums of terms in bigint::square if uint128_t
 
// is not available.
 
struct accumulator {
 
  uint64_t lower;
 
  uint64_t upper;
 

	
 
  accumulator() : lower(0), upper(0) {}
 
  explicit operator uint32_t() const { return static_cast<uint32_t>(lower); }
 

	
 
  void operator+=(uint64_t n) {
 
    lower += n;
 
    if (lower < n) ++upper;
 
  }
 
  void operator>>=(int shift) {
 
    assert(shift == 32);
 
    (void)shift;
 
    lower = (upper << 32) | (lower >> 32);
 
    upper >>= 32;
 
  }
 
};
 

	
 
class bigint {
 
 private:
 
  // A bigint is stored as an array of bigits (big digits), with bigit at index
 
  // 0 being the least significant one.
 
  using bigit = uint32_t;
 
  using double_bigit = uint64_t;
 
  enum { bigits_capacity = 32 };
 
  basic_memory_buffer<bigit, bigits_capacity> bigits_;
 
  int exp_;
 

	
 
  bigit operator[](int index) const { return bigits_[to_unsigned(index)]; }
 
  bigit& operator[](int index) { return bigits_[to_unsigned(index)]; }
 

	
 
  static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;
 

	
 
  friend struct formatter<bigint>;
 

	
 
  void subtract_bigits(int index, bigit other, bigit& borrow) {
 
    auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
 
    (*this)[index] = static_cast<bigit>(result);
 
    borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
 
  }
 

	
 
  void remove_leading_zeros() {
 
    int num_bigits = static_cast<int>(bigits_.size()) - 1;
 
    while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
 
    bigits_.resize(to_unsigned(num_bigits + 1));
 
  }
 

	
 
  // Computes *this -= other assuming aligned bigints and *this >= other.
 
  void subtract_aligned(const bigint& other) {
 
    FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
 
    FMT_ASSERT(compare(*this, other) >= 0, "");
 
    bigit borrow = 0;
 
    int i = other.exp_ - exp_;
 
    for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
 
      subtract_bigits(i, other.bigits_[j], borrow);
 
    while (borrow > 0) subtract_bigits(i, 0, borrow);
 
    remove_leading_zeros();
 
  }
 

	
 
  void multiply(uint32_t value) {
 
    const double_bigit wide_value = value;
 
    bigit carry = 0;
 
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
 
      double_bigit result = bigits_[i] * wide_value + carry;
 
      bigits_[i] = static_cast<bigit>(result);
 
      carry = static_cast<bigit>(result >> bigit_bits);
 
    }
 
    if (carry != 0) bigits_.push_back(carry);
 
  }
 

	
 
  void multiply(uint64_t value) {
 
    const bigit mask = ~bigit(0);
 
    const double_bigit lower = value & mask;
 
    const double_bigit upper = value >> bigit_bits;
 
    double_bigit carry = 0;
 
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
 
      double_bigit result = bigits_[i] * lower + (carry & mask);
 
      carry =
 
          bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits);
 
      bigits_[i] = static_cast<bigit>(result);
 
    }
 
    while (carry != 0) {
 
      bigits_.push_back(carry & mask);
 
      carry >>= bigit_bits;
 
    }
 
  }
 

	
 
 public:
 
  bigint() : exp_(0) {}
 
  explicit bigint(uint64_t n) { assign(n); }
 
  ~bigint() { assert(bigits_.capacity() <= bigits_capacity); }
 

	
 
  bigint(const bigint&) = delete;
 
  void operator=(const bigint&) = delete;
 

	
 
  void assign(const bigint& other) {
 
    auto size = other.bigits_.size();
 
    bigits_.resize(size);
 
    auto data = other.bigits_.data();
 
    std::copy(data, data + size, make_checked(bigits_.data(), size));
 
    exp_ = other.exp_;
 
  }
 

	
 
  void assign(uint64_t n) {
 
    size_t num_bigits = 0;
 
    do {
 
      bigits_[num_bigits++] = n & ~bigit(0);
 
      n >>= bigit_bits;
 
    } while (n != 0);
 
    bigits_.resize(num_bigits);
 
    exp_ = 0;
 
  }
 

	
 
  int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }
 

	
 
  FMT_NOINLINE bigint& operator<<=(int shift) {
 
    assert(shift >= 0);
 
    exp_ += shift / bigit_bits;
 
    shift %= bigit_bits;
 
    if (shift == 0) return *this;
 
    bigit carry = 0;
 
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
 
      bigit c = bigits_[i] >> (bigit_bits - shift);
 
      bigits_[i] = (bigits_[i] << shift) + carry;
 
      carry = c;
 
    }
 
    if (carry != 0) bigits_.push_back(carry);
 
    return *this;
 
  }
 

	
 
  template <typename Int> bigint& operator*=(Int value) {
 
    FMT_ASSERT(value > 0, "");
 
    multiply(uint32_or_64_or_128_t<Int>(value));
 
    return *this;
 
  }
 

	
 
  friend int compare(const bigint& lhs, const bigint& rhs) {
 
    int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
 
    if (num_lhs_bigits != num_rhs_bigits)
 
      return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
 
    int i = static_cast<int>(lhs.bigits_.size()) - 1;
 
    int j = static_cast<int>(rhs.bigits_.size()) - 1;
 
    int end = i - j;
 
    if (end < 0) end = 0;
 
    for (; i >= end; --i, --j) {
 
      bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
 
      if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
 
    }
 
    if (i != j) return i > j ? 1 : -1;
 
    return 0;
 
  }
 

	
 
  // Returns compare(lhs1 + lhs2, rhs).
 
  friend int add_compare(const bigint& lhs1, const bigint& lhs2,
 
                         const bigint& rhs) {
 
    int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
 
    int num_rhs_bigits = rhs.num_bigits();
 
    if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
 
    if (max_lhs_bigits > num_rhs_bigits) return 1;
 
    auto get_bigit = [](const bigint& n, int i) -> bigit {
 
      return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
 
    };
 
    double_bigit borrow = 0;
 
    int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
 
    for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
 
      double_bigit sum =
 
          static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
 
      bigit rhs_bigit = get_bigit(rhs, i);
 
      if (sum > rhs_bigit + borrow) return 1;
 
      borrow = rhs_bigit + borrow - sum;
 
      if (borrow > 1) return -1;
 
      borrow <<= bigit_bits;
 
    }
 
    return borrow != 0 ? -1 : 0;
 
  }
 

	
 
  // Assigns pow(10, exp) to this bigint.
 
  void assign_pow10(int exp) {
 
    assert(exp >= 0);
 
    if (exp == 0) return assign(1);
 
    // Find the top bit.
 
    int bitmask = 1;
 
    while (exp >= bitmask) bitmask <<= 1;
 
    bitmask >>= 1;
 
    // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
 
    // repeated squaring and multiplication.
 
    assign(5);
 
    bitmask >>= 1;
 
    while (bitmask != 0) {
 
      square();
 
      if ((exp & bitmask) != 0) *this *= 5;
 
      bitmask >>= 1;
 
    }
 
    *this <<= exp;  // Multiply by pow(2, exp) by shifting.
 
  }
 

	
 
  void square() {
 
    basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
 
    int num_bigits = static_cast<int>(bigits_.size());
 
    int num_result_bigits = 2 * num_bigits;
 
    bigits_.resize(to_unsigned(num_result_bigits));
 
    using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>;
 
    auto sum = accumulator_t();
 
    for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
 
      // Compute bigit at position bigit_index of the result by adding
 
      // cross-product terms n[i] * n[j] such that i + j == bigit_index.
 
      for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
 
        // Most terms are multiplied twice which can be optimized in the future.
 
        sum += static_cast<double_bigit>(n[i]) * n[j];
 
      }
 
      (*this)[bigit_index] = static_cast<bigit>(sum);
 
      sum >>= bits<bigit>::value;  // Compute the carry.
 
    }
 
    // Do the same for the top half.
 
    for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
 
         ++bigit_index) {
 
      for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
 
        sum += static_cast<double_bigit>(n[i++]) * n[j--];
 
      (*this)[bigit_index] = static_cast<bigit>(sum);
 
      sum >>= bits<bigit>::value;
 
    }
 
    --num_result_bigits;
 
    remove_leading_zeros();
 
    exp_ *= 2;
 
  }
 

	
 
  // If this bigint has a bigger exponent than other, adds trailing zero to make
 
  // exponents equal. This simplifies some operations such as subtraction.
 
  void align(const bigint& other) {
 
    int exp_difference = exp_ - other.exp_;
 
    if (exp_difference <= 0) return;
 
    int num_bigits = static_cast<int>(bigits_.size());
 
    bigits_.resize(to_unsigned(num_bigits + exp_difference));
 
    for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
 
      bigits_[j] = bigits_[i];
 
    std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
 
    exp_ -= exp_difference;
 
  }
 

	
 
  // Divides this bignum by divisor, assigning the remainder to this and
 
  // returning the quotient.
 
  int divmod_assign(const bigint& divisor) {
 
    FMT_ASSERT(this != &divisor, "");
 
    if (compare(*this, divisor) < 0) return 0;
 
    FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
 
    align(divisor);
 
    int quotient = 0;
 
    do {
 
      subtract_aligned(divisor);
 
      ++quotient;
 
    } while (compare(*this, divisor) >= 0);
 
    return quotient;
 
  }
 
};
 

	
 
enum class round_direction { unknown, up, down };
 

	
 
// Given the divisor (normally a power of 10), the remainder = v % divisor for
 
// some number v and the error, returns whether v should be rounded up, down, or
 
// whether the rounding direction can't be determined due to error.
 
// error should be less than divisor / 2.
 
inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
 
                                           uint64_t error) {
 
  FMT_ASSERT(remainder < divisor, "");  // divisor - remainder won't overflow.
 
  FMT_ASSERT(error < divisor, "");      // divisor - error won't overflow.
 
  FMT_ASSERT(error < divisor - error, "");  // error * 2 won't overflow.
 
  // Round down if (remainder + error) * 2 <= divisor.
 
  if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
 
    return round_direction::down;
 
  // Round up if (remainder - error) * 2 >= divisor.
 
  if (remainder >= error &&
 
      remainder - error >= divisor - (remainder - error)) {
 
    return round_direction::up;
 
  }
 
  return round_direction::unknown;
 
}
 

	
 
namespace digits {
 
enum result {
 
  more,  // Generate more digits.
 
  done,  // Done generating digits.
 
  error  // Digit generation cancelled due to an error.
 
};
 
}
 

	
 
// Generates output using the Grisu digit-gen algorithm.
 
// error: the size of the region (lower, upper) outside of which numbers
 
// definitely do not round to value (Delta in Grisu3).
 
template <typename Handler>
 
FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error,
 
                                                  int& exp, Handler& handler) {
 
  const fp one(1ULL << -value.e, value.e);
 
  // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
 
  // zero because it contains a product of two 64-bit numbers with MSB set (due
 
  // to normalization) - 1, shifted right by at most 60 bits.
 
  auto integral = static_cast<uint32_t>(value.f >> -one.e);
 
  FMT_ASSERT(integral != 0, "");
 
  FMT_ASSERT(integral == value.f >> -one.e, "");
 
  // The fractional part of scaled value (p2 in Grisu) c = value % one.
 
  uint64_t fractional = value.f & (one.f - 1);
 
  exp = count_digits(integral);  // kappa in Grisu.
 
  // Divide by 10 to prevent overflow.
 
  auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e,
 
                                 value.f / 10, error * 10, exp);
 
  if (result != digits::more) return result;
 
  // Generate digits for the integral part. This can produce up to 10 digits.
 
  do {
 
    uint32_t digit = 0;
 
    auto divmod_integral = [&](uint32_t divisor) {
 
      digit = integral / divisor;
 
      integral %= divisor;
 
    };
 
    // This optimization by Milo Yip reduces the number of integer divisions by
 
    // one per iteration.
 
    switch (exp) {
 
    case 10:
 
      divmod_integral(1000000000);
 
      break;
 
    case 9:
 
      divmod_integral(100000000);
 
      break;
 
    case 8:
 
      divmod_integral(10000000);
 
      break;
 
    case 7:
 
      divmod_integral(1000000);
 
      break;
 
    case 6:
 
      divmod_integral(100000);
 
      break;
 
    case 5:
 
      divmod_integral(10000);
 
      break;
 
    case 4:
 
      divmod_integral(1000);
 
      break;
 
    case 3:
 
      divmod_integral(100);
 
      break;
 
    case 2:
 
      divmod_integral(10);
 
      break;
 
    case 1:
 
      digit = integral;
 
      integral = 0;
 
      break;
 
    default:
 
      FMT_ASSERT(false, "invalid number of digits");
 
    }
 
    --exp;
 
    auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
 
    result = handler.on_digit(static_cast<char>('0' + digit),
 
                              data::powers_of_10_64[exp] << -one.e, remainder,
 
                              error, exp, true);
 
    if (result != digits::more) return result;
 
  } while (exp > 0);
 
  // Generate digits for the fractional part.
 
  for (;;) {
 
    fractional *= 10;
 
    error *= 10;
 
    char digit = static_cast<char>('0' + (fractional >> -one.e));
 
    fractional &= one.f - 1;
 
    --exp;
 
    result = handler.on_digit(digit, one.f, fractional, error, exp, false);
 
    if (result != digits::more) return result;
 
  }
 
}
 

	
 
// The fixed precision digit handler.
 
struct fixed_handler {
 
  char* buf;
 
  int size;
 
  int precision;
 
  int exp10;
 
  bool fixed;
 

	
 
  digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
 
                          int& exp) {
 
    // Non-fixed formats require at least one digit and no precision adjustment.
 
    if (!fixed) return digits::more;
 
    // Adjust fixed precision by exponent because it is relative to decimal
 
    // point.
 
    precision += exp + exp10;
 
    // Check if precision is satisfied just by leading zeros, e.g.
 
    // format("{:.2f}", 0.001) gives "0.00" without generating any digits.
 
    if (precision > 0) return digits::more;
 
    if (precision < 0) return digits::done;
 
    auto dir = get_round_direction(divisor, remainder, error);
 
    if (dir == round_direction::unknown) return digits::error;
 
    buf[size++] = dir == round_direction::up ? '1' : '0';
 
    return digits::done;
 
  }
 

	
 
  digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
 
                          uint64_t error, int, bool integral) {
 
    FMT_ASSERT(remainder < divisor, "");
 
    buf[size++] = digit;
 
    if (!integral && error >= remainder) return digits::error;
 
    if (size < precision) return digits::more;
 
    if (!integral) {
 
      // Check if error * 2 < divisor with overflow prevention.
 
      // The check is not needed for the integral part because error = 1
 
      // and divisor > (1 << 32) there.
 
      if (error >= divisor || error >= divisor - error) return digits::error;
 
    } else {
 
      FMT_ASSERT(error == 1 && divisor > 2, "");
 
    }
 
    auto dir = get_round_direction(divisor, remainder, error);
 
    if (dir != round_direction::up)
 
      return dir == round_direction::down ? digits::done : digits::error;
 
    ++buf[size - 1];
 
    for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
 
      buf[i] = '0';
 
      ++buf[i - 1];
 
    }
 
    if (buf[0] > '9') {
 
      buf[0] = '1';
 
      if (fixed)
 
        buf[size++] = '0';
 
      else
 
        ++exp10;
 
    }
 
    return digits::done;
 
  }
 
};
 

	
 
// Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox.
 
namespace dragonbox {
 
// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
 
FMT_SAFEBUFFERS inline uint128_wrapper umul128(uint64_t x,
 
                                               uint64_t y) FMT_NOEXCEPT {
 
#if FMT_USE_INT128
 
  return static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
 
#elif defined(_MSC_VER) && defined(_M_X64)
 
  uint128_wrapper result;
 
  result.low_ = _umul128(x, y, &result.high_);
 
  return result;
 
#else
 
  const uint64_t mask = (uint64_t(1) << 32) - uint64_t(1);
 

	
 
  uint64_t a = x >> 32;
 
  uint64_t b = x & mask;
 
  uint64_t c = y >> 32;
 
  uint64_t d = y & mask;
 

	
 
  uint64_t ac = a * c;
 
  uint64_t bc = b * c;
 
  uint64_t ad = a * d;
 
  uint64_t bd = b * d;
 

	
 
  uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
 

	
 
  return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
 
          (intermediate << 32) + (bd & mask)};
 
#endif
 
}
 

	
 
// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
 
FMT_SAFEBUFFERS inline uint64_t umul128_upper64(uint64_t x,
 
                                                uint64_t y) FMT_NOEXCEPT {
 
#if FMT_USE_INT128
 
  auto p = static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
 
  return static_cast<uint64_t>(p >> 64);
 
#elif defined(_MSC_VER) && defined(_M_X64)
 
  return __umulh(x, y);
 
#else
 
  return umul128(x, y).high();
 
#endif
 
}
 

	
 
// Computes upper 64 bits of multiplication of a 64-bit unsigned integer and a
 
// 128-bit unsigned integer.
 
FMT_SAFEBUFFERS inline uint64_t umul192_upper64(uint64_t x, uint128_wrapper y)
 
    FMT_NOEXCEPT {
 
  uint128_wrapper g0 = umul128(x, y.high());
 
  g0 += umul128_upper64(x, y.low());
 
  return g0.high();
 
}
 

	
 
// Computes upper 32 bits of multiplication of a 32-bit unsigned integer and a
 
// 64-bit unsigned integer.
 
inline uint32_t umul96_upper32(uint32_t x, uint64_t y) FMT_NOEXCEPT {
 
  return static_cast<uint32_t>(umul128_upper64(x, y));
 
}
 

	
 
// Computes middle 64 bits of multiplication of a 64-bit unsigned integer and a
 
// 128-bit unsigned integer.
 
FMT_SAFEBUFFERS inline uint64_t umul192_middle64(uint64_t x, uint128_wrapper y)
 
    FMT_NOEXCEPT {
 
  uint64_t g01 = x * y.high();
 
  uint64_t g10 = umul128_upper64(x, y.low());
 
  return g01 + g10;
 
}
 

	
 
// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
 
// 64-bit unsigned integer.
 
inline uint64_t umul96_lower64(uint32_t x, uint64_t y) FMT_NOEXCEPT {
 
  return x * y;
 
}
 

	
 
// Computes floor(log10(pow(2, e))) for e in [-1700, 1700] using the method from
 
// https://fmt.dev/papers/Grisu-Exact.pdf#page=5, section 3.4.
 
inline int floor_log10_pow2(int e) FMT_NOEXCEPT {
 
  FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
 
  const int shift = 22;
 
  return (e * static_cast<int>(data::log10_2_significand >> (64 - shift))) >>
 
         shift;
 
}
 

	
 
// Various fast log computations.
 
inline int floor_log2_pow10(int e) FMT_NOEXCEPT {
 
  FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
 
  const uint64_t log2_10_integer_part = 3;
 
  const uint64_t log2_10_fractional_digits = 0x5269e12f346e2bf9;
 
  const int shift_amount = 19;
 
  return (e * static_cast<int>(
 
                  (log2_10_integer_part << shift_amount) |
 
                  (log2_10_fractional_digits >> (64 - shift_amount)))) >>
 
         shift_amount;
 
}
 
inline int floor_log10_pow2_minus_log10_4_over_3(int e) FMT_NOEXCEPT {
 
  FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
 
  const uint64_t log10_4_over_3_fractional_digits = 0x1ffbfc2bbc780375;
 
  const int shift_amount = 22;
 
  return (e * static_cast<int>(data::log10_2_significand >>
 
                               (64 - shift_amount)) -
 
          static_cast<int>(log10_4_over_3_fractional_digits >>
 
                           (64 - shift_amount))) >>
 
         shift_amount;
 
}
 

	
 
// Returns true iff x is divisible by pow(2, exp).
 
inline bool divisible_by_power_of_2(uint32_t x, int exp) FMT_NOEXCEPT {
 
  FMT_ASSERT(exp >= 1, "");
 
  FMT_ASSERT(x != 0, "");
 
#ifdef FMT_BUILTIN_CTZ
 
  return FMT_BUILTIN_CTZ(x) >= exp;
 
#else
 
  return exp < num_bits<uint32_t>() && x == ((x >> exp) << exp);
 
#endif
 
}
 
inline bool divisible_by_power_of_2(uint64_t x, int exp) FMT_NOEXCEPT {
 
  FMT_ASSERT(exp >= 1, "");
 
  FMT_ASSERT(x != 0, "");
 
#ifdef FMT_BUILTIN_CTZLL
 
  return FMT_BUILTIN_CTZLL(x) >= exp;
 
#else
 
  return exp < num_bits<uint64_t>() && x == ((x >> exp) << exp);
 
#endif
 
}
 

	
 
// Returns true iff x is divisible by pow(5, exp).
 
inline bool divisible_by_power_of_5(uint32_t x, int exp) FMT_NOEXCEPT {
 
  FMT_ASSERT(exp <= 10, "too large exponent");
 
  return x * data::divtest_table_for_pow5_32[exp].mod_inv <=
 
         data::divtest_table_for_pow5_32[exp].max_quotient;
 
}
 
inline bool divisible_by_power_of_5(uint64_t x, int exp) FMT_NOEXCEPT {
 
  FMT_ASSERT(exp <= 23, "too large exponent");
 
  return x * data::divtest_table_for_pow5_64[exp].mod_inv <=
 
         data::divtest_table_for_pow5_64[exp].max_quotient;
 
}
 

	
 
// Replaces n by floor(n / pow(5, N)) returning true if and only if n is
 
// divisible by pow(5, N).
 
// Precondition: n <= 2 * pow(5, N + 1).
 
template <int N>
 
bool check_divisibility_and_divide_by_pow5(uint32_t& n) FMT_NOEXCEPT {
 
  static constexpr struct {
 
    uint32_t magic_number;
 
    int bits_for_comparison;
 
    uint32_t threshold;
 
    int shift_amount;
 
  } infos[] = {{0xcccd, 16, 0x3333, 18}, {0xa429, 8, 0x0a, 20}};
 
  constexpr auto info = infos[N - 1];
 
  n *= info.magic_number;
 
  const uint32_t comparison_mask = (1u << info.bits_for_comparison) - 1;
 
  bool result = (n & comparison_mask) <= info.threshold;
 
  n >>= info.shift_amount;
 
  return result;
 
}
 

	
 
// Computes floor(n / pow(10, N)) for small n and N.
 
// Precondition: n <= pow(10, N + 1).
 
template <int N> uint32_t small_division_by_pow10(uint32_t n) FMT_NOEXCEPT {
 
  static constexpr struct {
 
    uint32_t magic_number;
 
    int shift_amount;
 
    uint32_t divisor_times_10;
 
  } infos[] = {{0xcccd, 19, 100}, {0xa3d8, 22, 1000}};
 
  constexpr auto info = infos[N - 1];
 
  FMT_ASSERT(n <= info.divisor_times_10, "n is too large");
 
  return n * info.magic_number >> info.shift_amount;
 
}
 

	
 
// Computes floor(n / 10^(kappa + 1)) (float)
 
inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) FMT_NOEXCEPT {
 
  return n / float_info<float>::big_divisor;
 
}
 
// Computes floor(n / 10^(kappa + 1)) (double)
 
inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) FMT_NOEXCEPT {
 
  return umul128_upper64(n, 0x83126e978d4fdf3c) >> 9;
 
}
 

	
 
// Various subroutines using pow10 cache
 
template <class T> struct cache_accessor;
 

	
 
template <> struct cache_accessor<float> {
 
  using carrier_uint = float_info<float>::carrier_uint;
 
  using cache_entry_type = uint64_t;
 

	
 
  static uint64_t get_cached_power(int k) FMT_NOEXCEPT {
 
    FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k,
 
               "k is out of range");
 
    return data::dragonbox_pow10_significands_64[k - float_info<float>::min_k];
 
  }
 

	
 
  static carrier_uint compute_mul(carrier_uint u,
 
                                  const cache_entry_type& cache) FMT_NOEXCEPT {
 
    return umul96_upper32(u, cache);
 
  }
 

	
 
  static uint32_t compute_delta(const cache_entry_type& cache,
 
                                int beta_minus_1) FMT_NOEXCEPT {
 
    return static_cast<uint32_t>(cache >> (64 - 1 - beta_minus_1));
 
  }
 

	
 
  static bool compute_mul_parity(carrier_uint two_f,
 
                                 const cache_entry_type& cache,
 
                                 int beta_minus_1) FMT_NOEXCEPT {
 
    FMT_ASSERT(beta_minus_1 >= 1, "");
 
    FMT_ASSERT(beta_minus_1 < 64, "");
 

	
 
    return ((umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
 
  }
 

	
 
  static carrier_uint compute_left_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
 
    return static_cast<carrier_uint>(
 
        (cache - (cache >> (float_info<float>::significand_bits + 2))) >>
 
        (64 - float_info<float>::significand_bits - 1 - beta_minus_1));
 
  }
 

	
 
  static carrier_uint compute_right_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
 
    return static_cast<carrier_uint>(
 
        (cache + (cache >> (float_info<float>::significand_bits + 1))) >>
 
        (64 - float_info<float>::significand_bits - 1 - beta_minus_1));
 
  }
 

	
 
  static carrier_uint compute_round_up_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
 
    return (static_cast<carrier_uint>(
 
                cache >>
 
                (64 - float_info<float>::significand_bits - 2 - beta_minus_1)) +
 
            1) /
 
           2;
 
  }
 
};
 

	
 
template <> struct cache_accessor<double> {
 
  using carrier_uint = float_info<double>::carrier_uint;
 
  using cache_entry_type = uint128_wrapper;
 

	
 
  static uint128_wrapper get_cached_power(int k) FMT_NOEXCEPT {
 
    FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k,
 
               "k is out of range");
 

	
 
#if FMT_USE_FULL_CACHE_DRAGONBOX
 
    return data::dragonbox_pow10_significands_128[k -
 
                                                  float_info<double>::min_k];
 
#else
 
    static const int compression_ratio = 27;
 

	
 
    // Compute base index.
 
    int cache_index = (k - float_info<double>::min_k) / compression_ratio;
 
    int kb = cache_index * compression_ratio + float_info<double>::min_k;
 
    int offset = k - kb;
 

	
 
    // Get base cache.
 
    uint128_wrapper base_cache =
 
        data::dragonbox_pow10_significands_128[cache_index];
 
    if (offset == 0) return base_cache;
 

	
 
    // Compute the required amount of bit-shift.
 
    int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset;
 
    FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected");
 

	
 
    // Try to recover the real cache.
 
    uint64_t pow5 = data::powers_of_5_64[offset];
 
    uint128_wrapper recovered_cache = umul128(base_cache.high(), pow5);
 
    uint128_wrapper middle_low =
 
        umul128(base_cache.low() - (kb < 0 ? 1u : 0u), pow5);
 

	
 
    recovered_cache += middle_low.high();
 

	
 
    uint64_t high_to_middle = recovered_cache.high() << (64 - alpha);
 
    uint64_t middle_to_low = recovered_cache.low() << (64 - alpha);
 

	
 
    recovered_cache =
 
        uint128_wrapper{(recovered_cache.low() >> alpha) | high_to_middle,
 
                        ((middle_low.low() >> alpha) | middle_to_low)};
 

	
 
    if (kb < 0) recovered_cache += 1;
 

	
 
    // Get error.
 
    int error_idx = (k - float_info<double>::min_k) / 16;
 
    uint32_t error = (data::dragonbox_pow10_recovery_errors[error_idx] >>
 
                      ((k - float_info<double>::min_k) % 16) * 2) &
 
                     0x3;
 

	
 
    // Add the error back.
 
    FMT_ASSERT(recovered_cache.low() + error >= recovered_cache.low(), "");
 
    return {recovered_cache.high(), recovered_cache.low() + error};
 
#endif
 
  }
 

	
 
  static carrier_uint compute_mul(carrier_uint u,
 
                                  const cache_entry_type& cache) FMT_NOEXCEPT {
 
    return umul192_upper64(u, cache);
 
  }
 

	
 
  static uint32_t compute_delta(cache_entry_type const& cache,
 
                                int beta_minus_1) FMT_NOEXCEPT {
 
    return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta_minus_1));
 
  }
 

	
 
  static bool compute_mul_parity(carrier_uint two_f,
 
                                 const cache_entry_type& cache,
 
                                 int beta_minus_1) FMT_NOEXCEPT {
 
    FMT_ASSERT(beta_minus_1 >= 1, "");
 
    FMT_ASSERT(beta_minus_1 < 64, "");
 

	
 
    return ((umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
 
  }
 

	
 
  static carrier_uint compute_left_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
 
    return (cache.high() -
 
            (cache.high() >> (float_info<double>::significand_bits + 2))) >>
 
           (64 - float_info<double>::significand_bits - 1 - beta_minus_1);
 
  }
 

	
 
  static carrier_uint compute_right_endpoint_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
 
    return (cache.high() +
 
            (cache.high() >> (float_info<double>::significand_bits + 1))) >>
 
           (64 - float_info<double>::significand_bits - 1 - beta_minus_1);
 
  }
 

	
 
  static carrier_uint compute_round_up_for_shorter_interval_case(
 
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
 
    return ((cache.high() >>
 
             (64 - float_info<double>::significand_bits - 2 - beta_minus_1)) +
 
            1) /
 
           2;
 
  }
 
};
 

	
 
// Various integer checks
 
template <class T>
 
bool is_left_endpoint_integer_shorter_interval(int exponent) FMT_NOEXCEPT {
 
  return exponent >=
 
             float_info<
 
                 T>::case_shorter_interval_left_endpoint_lower_threshold &&
 
         exponent <=
 
             float_info<T>::case_shorter_interval_left_endpoint_upper_threshold;
 
}
 
template <class T>
 
bool is_endpoint_integer(typename float_info<T>::carrier_uint two_f,
 
                         int exponent, int minus_k) FMT_NOEXCEPT {
 
  if (exponent < float_info<T>::case_fc_pm_half_lower_threshold) return false;
 
  // For k >= 0.
 
  if (exponent <= float_info<T>::case_fc_pm_half_upper_threshold) return true;
 
  // For k < 0.
 
  if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
 
  return divisible_by_power_of_5(two_f, minus_k);
 
}
 

	
 
template <class T>
 
bool is_center_integer(typename float_info<T>::carrier_uint two_f, int exponent,
 
                       int minus_k) FMT_NOEXCEPT {
 
  // Exponent for 5 is negative.
 
  if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
 
  if (exponent > float_info<T>::case_fc_upper_threshold)
 
    return divisible_by_power_of_5(two_f, minus_k);
 
  // Both exponents are nonnegative.
 
  if (exponent >= float_info<T>::case_fc_lower_threshold) return true;
 
  // Exponent for 2 is negative.
 
  return divisible_by_power_of_2(two_f, minus_k - exponent + 1);
 
}
 

	
 
// Remove trailing zeros from n and return the number of zeros removed (float)
 
FMT_ALWAYS_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT {
 
#ifdef FMT_BUILTIN_CTZ
 
  int t = FMT_BUILTIN_CTZ(n);
 
#else
 
  int t = ctz(n);
 
#endif
 
  if (t > float_info<float>::max_trailing_zeros)
 
    t = float_info<float>::max_trailing_zeros;
 

	
 
  const uint32_t mod_inv1 = 0xcccccccd;
 
  const uint32_t max_quotient1 = 0x33333333;
 
  const uint32_t mod_inv2 = 0xc28f5c29;
 
  const uint32_t max_quotient2 = 0x0a3d70a3;
 

	
 
  int s = 0;
 
  for (; s < t - 1; s += 2) {
 
    if (n * mod_inv2 > max_quotient2) break;
 
    n *= mod_inv2;
 
  }
 
  if (s < t && n * mod_inv1 <= max_quotient1) {
 
    n *= mod_inv1;
 
    ++s;
 
  }
 
  n >>= s;
 
  return s;
 
}
 

	
 
// Removes trailing zeros and returns the number of zeros removed (double)
 
FMT_ALWAYS_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT {
 
#ifdef FMT_BUILTIN_CTZLL
 
  int t = FMT_BUILTIN_CTZLL(n);
 
#else
 
  int t = ctzll(n);
 
#endif
 
  if (t > float_info<double>::max_trailing_zeros)
 
    t = float_info<double>::max_trailing_zeros;
 
  // Divide by 10^8 and reduce to 32-bits
 
  // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17,
 
  // both of the quotient and the r should fit in 32-bits
 

	
 
  const uint32_t mod_inv1 = 0xcccccccd;
 
  const uint32_t max_quotient1 = 0x33333333;
 
  const uint64_t mod_inv8 = 0xc767074b22e90e21;
 
  const uint64_t max_quotient8 = 0x00002af31dc46118;
 

	
 
  // If the number is divisible by 1'0000'0000, work with the quotient
 
  if (t >= 8) {
 
    auto quotient_candidate = n * mod_inv8;
 

	
 
    if (quotient_candidate <= max_quotient8) {
 
      auto quotient = static_cast<uint32_t>(quotient_candidate >> 8);
 

	
 
      int s = 8;
 
      for (; s < t; ++s) {
 
        if (quotient * mod_inv1 > max_quotient1) break;
 
        quotient *= mod_inv1;
 
      }
 
      quotient >>= (s - 8);
 
      n = quotient;
 
      return s;
 
    }
 
  }
 

	
 
  // Otherwise, work with the remainder
 
  auto quotient = static_cast<uint32_t>(n / 100000000);
 
  auto remainder = static_cast<uint32_t>(n - 100000000 * quotient);
 

	
 
  if (t == 0 || remainder * mod_inv1 > max_quotient1) {
 
    return 0;
 
  }
 
  remainder *= mod_inv1;
 

	
 
  if (t == 1 || remainder * mod_inv1 > max_quotient1) {
 
    n = (remainder >> 1) + quotient * 10000000ull;
 
    return 1;
 
  }
 
  remainder *= mod_inv1;
 

	
 
  if (t == 2 || remainder * mod_inv1 > max_quotient1) {
 
    n = (remainder >> 2) + quotient * 1000000ull;
 
    return 2;
 
  }
 
  remainder *= mod_inv1;
 

	
 
  if (t == 3 || remainder * mod_inv1 > max_quotient1) {
 
    n = (remainder >> 3) + quotient * 100000ull;
 
    return 3;
 
  }
 
  remainder *= mod_inv1;
 

	
 
  if (t == 4 || remainder * mod_inv1 > max_quotient1) {
 
    n = (remainder >> 4) + quotient * 10000ull;
 
    return 4;
 
  }
 
  remainder *= mod_inv1;
 

	
 
  if (t == 5 || remainder * mod_inv1 > max_quotient1) {
 
    n = (remainder >> 5) + quotient * 1000ull;
 
    return 5;
 
  }
 
  remainder *= mod_inv1;
 

	
 
  if (t == 6 || remainder * mod_inv1 > max_quotient1) {
 
    n = (remainder >> 6) + quotient * 100ull;
 
    return 6;
 
  }
 
  remainder *= mod_inv1;
 

	
 
  n = (remainder >> 7) + quotient * 10ull;
 
  return 7;
 
}
 

	
 
// The main algorithm for shorter interval case
 
template <class T>
 
FMT_ALWAYS_INLINE FMT_SAFEBUFFERS decimal_fp<T> shorter_interval_case(
 
    int exponent) FMT_NOEXCEPT {
 
  decimal_fp<T> ret_value;
 
  // Compute k and beta
 
  const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
 
  const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
 

	
 
  // Compute xi and zi
 
  using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
 
  const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
 

	
 
  auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case(
 
      cache, beta_minus_1);
 
  auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case(
 
      cache, beta_minus_1);
 

	
 
  // If the left endpoint is not an integer, increase it
 
  if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi;
 

	
 
  // Try bigger divisor
 
  ret_value.significand = zi / 10;
 

	
 
  // If succeed, remove trailing zeros if necessary and return
 
  if (ret_value.significand * 10 >= xi) {
 
    ret_value.exponent = minus_k + 1;
 
    ret_value.exponent += remove_trailing_zeros(ret_value.significand);
 
    return ret_value;
 
  }
 

	
 
  // Otherwise, compute the round-up of y
 
  ret_value.significand =
 
      cache_accessor<T>::compute_round_up_for_shorter_interval_case(
 
          cache, beta_minus_1);
 
  ret_value.exponent = minus_k;
 

	
 
  // When tie occurs, choose one of them according to the rule
 
  if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold &&
 
      exponent <= float_info<T>::shorter_interval_tie_upper_threshold) {
 
    ret_value.significand = ret_value.significand % 2 == 0
 
                                ? ret_value.significand
 
                                : ret_value.significand - 1;
 
  } else if (ret_value.significand < xi) {
 
    ++ret_value.significand;
 
  }
 
  return ret_value;
 
}
 

	
 
template <typename T>
 
FMT_SAFEBUFFERS decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
 
  // Step 1: integer promotion & Schubfach multiplier calculation.
 

	
 
  using carrier_uint = typename float_info<T>::carrier_uint;
 
  using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
 
  auto br = bit_cast<carrier_uint>(x);
 

	
 
  // Extract significand bits and exponent bits.
 
  const carrier_uint significand_mask =
 
      (static_cast<carrier_uint>(1) << float_info<T>::significand_bits) - 1;
 
  carrier_uint significand = (br & significand_mask);
 
  int exponent = static_cast<int>((br & exponent_mask<T>()) >>
 
                                  float_info<T>::significand_bits);
 

	
 
  if (exponent != 0) {  // Check if normal.
 
    exponent += float_info<T>::exponent_bias - float_info<T>::significand_bits;
 

	
 
    // Shorter interval case; proceed like Schubfach.
 
    if (significand == 0) return shorter_interval_case<T>(exponent);
 

	
 
    significand |=
 
        (static_cast<carrier_uint>(1) << float_info<T>::significand_bits);
 
  } else {
 
    // Subnormal case; the interval is always regular.
 
    if (significand == 0) return {0, 0};
 
    exponent = float_info<T>::min_exponent - float_info<T>::significand_bits;
 
  }
 

	
 
  const bool include_left_endpoint = (significand % 2 == 0);
 
  const bool include_right_endpoint = include_left_endpoint;
 

	
 
  // Compute k and beta.
 
  const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa;
 
  const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
 
  const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
 

	
 
  // Compute zi and deltai
 
  // 10^kappa <= deltai < 10^(kappa + 1)
 
  const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta_minus_1);
 
  const carrier_uint two_fc = significand << 1;
 
  const carrier_uint two_fr = two_fc | 1;
 
  const carrier_uint zi =
 
      cache_accessor<T>::compute_mul(two_fr << beta_minus_1, cache);
 

	
 
  // Step 2: Try larger divisor; remove trailing zeros if necessary
 

	
 
  // Using an upper bound on zi, we might be able to optimize the division
 
  // better than the compiler; we are computing zi / big_divisor here
 
  decimal_fp<T> ret_value;
 
  ret_value.significand = divide_by_10_to_kappa_plus_1(zi);
 
  uint32_t r = static_cast<uint32_t>(zi - float_info<T>::big_divisor *
 
                                              ret_value.significand);
 

	
 
  if (r > deltai) {
 
    goto small_divisor_case_label;
 
  } else if (r < deltai) {
 
    // Exclude the right endpoint if necessary
 
    if (r == 0 && !include_right_endpoint &&
 
        is_endpoint_integer<T>(two_fr, exponent, minus_k)) {
 
      --ret_value.significand;
 
      r = float_info<T>::big_divisor;
 
      goto small_divisor_case_label;
 
    }
 
  } else {
 
    // r == deltai; compare fractional parts
 
    // Check conditions in the order different from the paper
 
    // to take advantage of short-circuiting
 
    const carrier_uint two_fl = two_fc - 1;
 
    if ((!include_left_endpoint ||
 
         !is_endpoint_integer<T>(two_fl, exponent, minus_k)) &&
 
        !cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)) {
 
      goto small_divisor_case_label;
 
    }
 
  }
 
  ret_value.exponent = minus_k + float_info<T>::kappa + 1;
 

	
 
  // We may need to remove trailing zeros
 
  ret_value.exponent += remove_trailing_zeros(ret_value.significand);
 
  return ret_value;
 

	
 
  // Step 3: Find the significand with the smaller divisor
 

	
 
small_divisor_case_label:
 
  ret_value.significand *= 10;
 
  ret_value.exponent = minus_k + float_info<T>::kappa;
 

	
 
  const uint32_t mask = (1u << float_info<T>::kappa) - 1;
 
  auto dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);
 

	
 
  // Is dist divisible by 2^kappa?
 
  if ((dist & mask) == 0) {
 
    const bool approx_y_parity =
 
        ((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
 
    dist >>= float_info<T>::kappa;
 

	
 
    // Is dist divisible by 5^kappa?
 
    if (check_divisibility_and_divide_by_pow5<float_info<T>::kappa>(dist)) {
 
      ret_value.significand += dist;
 

	
 
      // Check z^(f) >= epsilon^(f)
 
      // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
 
      // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
 
      // Since there are only 2 possibilities, we only need to care about the
 
      // parity. Also, zi and r should have the same parity since the divisor
 
      // is an even number
 
      if (cache_accessor<T>::compute_mul_parity(two_fc, cache, beta_minus_1) !=
 
          approx_y_parity) {
 
        --ret_value.significand;
 
      } else {
 
        // If z^(f) >= epsilon^(f), we might have a tie
 
        // when z^(f) == epsilon^(f), or equivalently, when y is an integer
 
        if (is_center_integer<T>(two_fc, exponent, minus_k)) {
 
          ret_value.significand = ret_value.significand % 2 == 0
 
                                      ? ret_value.significand
 
                                      : ret_value.significand - 1;
 
        }
 
      }
 
    }
 
    // Is dist not divisible by 5^kappa?
 
    else {
 
      ret_value.significand += dist;
 
    }
 
  }
 
  // Is dist not divisible by 2^kappa?
 
  else {
 
    // Since we know dist is small, we might be able to optimize the division
 
    // better than the compiler; we are computing dist / small_divisor here
 
    ret_value.significand +=
 
        small_division_by_pow10<float_info<T>::kappa>(dist);
 
  }
 
  return ret_value;
 
}
 
}  // namespace dragonbox
 

	
 
// Formats value using a variation of the Fixed-Precision Positive
 
// Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
 
// https://fmt.dev/p372-steele.pdf.
 
template <typename Double>
 
void fallback_format(Double d, int num_digits, bool binary32, buffer<char>& buf,
 
                     int& exp10) {
 
  bigint numerator;    // 2 * R in (FPP)^2.
 
  bigint denominator;  // 2 * S in (FPP)^2.
 
  // lower and upper are differences between value and corresponding boundaries.
 
  bigint lower;             // (M^- in (FPP)^2).
 
  bigint upper_store;       // upper's value if different from lower.
 
  bigint* upper = nullptr;  // (M^+ in (FPP)^2).
 
  fp value;
 
  // Shift numerator and denominator by an extra bit or two (if lower boundary
 
  // is closer) to make lower and upper integers. This eliminates multiplication
 
  // by 2 during later computations.
 
  const bool is_predecessor_closer =
 
      binary32 ? value.assign(static_cast<float>(d)) : value.assign(d);
 
  int shift = is_predecessor_closer ? 2 : 1;
 
  uint64_t significand = value.f << shift;
 
  if (value.e >= 0) {
 
    numerator.assign(significand);
 
    numerator <<= value.e;
 
    lower.assign(1);
 
    lower <<= value.e;
 
    if (shift != 1) {
 
      upper_store.assign(1);
 
      upper_store <<= value.e + 1;
 
      upper = &upper_store;
 
    }
 
    denominator.assign_pow10(exp10);
 
    denominator <<= shift;
 
  } else if (exp10 < 0) {
 
    numerator.assign_pow10(-exp10);
 
    lower.assign(numerator);
 
    if (shift != 1) {
 
      upper_store.assign(numerator);
 
      upper_store <<= 1;
 
      upper = &upper_store;
 
    }
 
    numerator *= significand;
 
    denominator.assign(1);
 
    denominator <<= shift - value.e;
 
  } else {
 
    numerator.assign(significand);
 
    denominator.assign_pow10(exp10);
 
    denominator <<= shift - value.e;
 
    lower.assign(1);
 
    if (shift != 1) {
 
      upper_store.assign(1ULL << 1);
 
      upper = &upper_store;
 
    }
 
  }
 
  // Invariant: value == (numerator / denominator) * pow(10, exp10).
 
  if (num_digits < 0) {
 
    // Generate the shortest representation.
 
    if (!upper) upper = &lower;
 
    bool even = (value.f & 1) == 0;
 
    num_digits = 0;
 
    char* data = buf.data();
 
    for (;;) {
 
      int digit = numerator.divmod_assign(denominator);
 
      bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower.
 
      // numerator + upper >[=] pow10:
 
      bool high = add_compare(numerator, *upper, denominator) + even > 0;
 
      data[num_digits++] = static_cast<char>('0' + digit);
 
      if (low || high) {
 
        if (!low) {
 
          ++data[num_digits - 1];
 
        } else if (high) {
 
          int result = add_compare(numerator, numerator, denominator);
 
          // Round half to even.
 
          if (result > 0 || (result == 0 && (digit % 2) != 0))
 
            ++data[num_digits - 1];
 
        }
 
        buf.try_resize(to_unsigned(num_digits));
 
        exp10 -= num_digits - 1;
 
        return;
 
      }
 
      numerator *= 10;
 
      lower *= 10;
 
      if (upper != &lower) *upper *= 10;
 
    }
 
  }
 
  // Generate the given number of digits.
 
  exp10 -= num_digits - 1;
 
  if (num_digits == 0) {
 
    buf.try_resize(1);
 
    denominator *= 10;
 
    buf[0] = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
 
    return;
 
  }
 
  buf.try_resize(to_unsigned(num_digits));
 
  for (int i = 0; i < num_digits - 1; ++i) {
 
    int digit = numerator.divmod_assign(denominator);
 
    buf[i] = static_cast<char>('0' + digit);
 
    numerator *= 10;
 
  }
 
  int digit = numerator.divmod_assign(denominator);
 
  auto result = add_compare(numerator, numerator, denominator);
 
  if (result > 0 || (result == 0 && (digit % 2) != 0)) {
 
    if (digit == 9) {
 
      const auto overflow = '0' + 10;
 
      buf[num_digits - 1] = overflow;
 
      // Propagate the carry.
 
      for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
 
        buf[i] = '0';
 
        ++buf[i - 1];
 
      }
 
      if (buf[0] == overflow) {
 
        buf[0] = '1';
 
        ++exp10;
 
      }
 
      return;
 
    }
 
    ++digit;
 
  }
 
  buf[num_digits - 1] = static_cast<char>('0' + digit);
 
}
 

	
 
template <typename T>
 
int format_float(T value, int precision, float_specs specs, buffer<char>& buf) {
 
  static_assert(!std::is_same<T, float>::value, "");
 
  FMT_ASSERT(value >= 0, "value is negative");
 

	
 
  const bool fixed = specs.format == float_format::fixed;
 
  if (value <= 0) {  // <= instead of == to silence a warning.
 
    if (precision <= 0 || !fixed) {
 
      buf.push_back('0');
 
      return 0;
 
    }
 
    buf.try_resize(to_unsigned(precision));
 
    std::uninitialized_fill_n(buf.data(), precision, '0');
 
    return -precision;
 
  }
 

	
 
  if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf);
 

	
 
  if (precision < 0) {
 
    // Use Dragonbox for the shortest format.
 
    if (specs.binary32) {
 
      auto dec = dragonbox::to_decimal(static_cast<float>(value));
 
      write<char>(buffer_appender<char>(buf), dec.significand);
 
      return dec.exponent;
 
    }
 
    auto dec = dragonbox::to_decimal(static_cast<double>(value));
 
    write<char>(buffer_appender<char>(buf), dec.significand);
 
    return dec.exponent;
 
  }
 

	
 
  // Use Grisu + Dragon4 for the given precision:
 
  // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
 
  int exp = 0;
 
  const int min_exp = -60;  // alpha in Grisu.
 
  int cached_exp10 = 0;     // K in Grisu.
 
  fp normalized = normalize(fp(value));
 
  const auto cached_pow = get_cached_power(
 
      min_exp - (normalized.e + fp::significand_size), cached_exp10);
 
  normalized = normalized * cached_pow;
 
  // Limit precision to the maximum possible number of significant digits in an
 
  // IEEE754 double because we don't need to generate zeros.
 
  const int max_double_digits = 767;
 
  if (precision > max_double_digits) precision = max_double_digits;
 
  fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
 
  if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error) {
 
    exp += handler.size - cached_exp10 - 1;
 
    fallback_format(value, handler.precision, specs.binary32, buf, exp);
 
  } else {
 
    exp += handler.exp10;
 
    buf.try_resize(to_unsigned(handler.size));
 
  }
 
  if (!fixed && !specs.showpoint) {
 
    // Remove trailing zeros.
 
    auto num_digits = buf.size();
 
    while (num_digits > 0 && buf[num_digits - 1] == '0') {
 
      --num_digits;
 
      ++exp;
 
    }
 
    buf.try_resize(num_digits);
 
  }
 
  return exp;
 
}  // namespace detail
 

	
 
template <typename T>
 
int snprintf_float(T value, int precision, float_specs specs,
 
                   buffer<char>& buf) {
 
  // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
 
  FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
 
  static_assert(!std::is_same<T, float>::value, "");
 

	
 
  // Subtract 1 to account for the difference in precision since we use %e for
 
  // both general and exponent format.
 
  if (specs.format == float_format::general ||
 
      specs.format == float_format::exp)
 
    precision = (precision >= 0 ? precision : 6) - 1;
 

	
 
  // Build the format string.
 
  enum { max_format_size = 7 };  // The longest format is "%#.*Le".
 
  char format[max_format_size];
 
  char* format_ptr = format;
 
  *format_ptr++ = '%';
 
  if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#';
 
  if (precision >= 0) {
 
    *format_ptr++ = '.';
 
    *format_ptr++ = '*';
 
  }
 
  if (std::is_same<T, long double>()) *format_ptr++ = 'L';
 
  *format_ptr++ = specs.format != float_format::hex
 
                      ? (specs.format == float_format::fixed ? 'f' : 'e')
 
                      : (specs.upper ? 'A' : 'a');
 
  *format_ptr = '\0';
 

	
 
  // Format using snprintf.
 
  auto offset = buf.size();
 
  for (;;) {
 
    auto begin = buf.data() + offset;
 
    auto capacity = buf.capacity() - offset;
 
#ifdef FMT_FUZZ
 
    if (precision > 100000)
 
      throw std::runtime_error(
 
          "fuzz mode - avoid large allocation inside snprintf");
 
#endif
 
    // Suppress the warning about a nonliteral format string.
 
    // Cannot use auto because of a bug in MinGW (#1532).
 
    int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
 
    int result = precision >= 0
 
                     ? snprintf_ptr(begin, capacity, format, precision, value)
 
                     : snprintf_ptr(begin, capacity, format, value);
 
    if (result < 0) {
 
      // The buffer will grow exponentially.
 
      buf.try_reserve(buf.capacity() + 1);
 
      continue;
 
    }
 
    auto size = to_unsigned(result);
 
    // Size equal to capacity means that the last character was truncated.
 
    if (size >= capacity) {
 
      buf.try_reserve(size + offset + 1);  // Add 1 for the terminating '\0'.
 
      continue;
 
    }
 
    auto is_digit = [](char c) { return c >= '0' && c <= '9'; };
 
    if (specs.format == float_format::fixed) {
 
      if (precision == 0) {
 
        buf.try_resize(size);
 
        return 0;
 
      }
 
      // Find and remove the decimal point.
 
      auto end = begin + size, p = end;
 
      do {
 
        --p;
 
      } while (is_digit(*p));
 
      int fraction_size = static_cast<int>(end - p - 1);
 
      std::memmove(p, p + 1, to_unsigned(fraction_size));
 
      buf.try_resize(size - 1);
 
      return -fraction_size;
 
    }
 
    if (specs.format == float_format::hex) {
 
      buf.try_resize(size + offset);
 
      return 0;
 
    }
 
    // Find and parse the exponent.
 
    auto end = begin + size, exp_pos = end;
 
    do {
 
      --exp_pos;
 
    } while (*exp_pos != 'e');
 
    char sign = exp_pos[1];
 
    assert(sign == '+' || sign == '-');
 
    int exp = 0;
 
    auto p = exp_pos + 2;  // Skip 'e' and sign.
 
    do {
 
      assert(is_digit(*p));
 
      exp = exp * 10 + (*p++ - '0');
 
    } while (p != end);
 
    if (sign == '-') exp = -exp;
 
    int fraction_size = 0;
 
    if (exp_pos != begin + 1) {
 
      // Remove trailing zeros.
 
      auto fraction_end = exp_pos - 1;
 
      while (*fraction_end == '0') --fraction_end;
 
      // Move the fractional part left to get rid of the decimal point.
 
      fraction_size = static_cast<int>(fraction_end - begin - 1);
 
      std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size));
 
    }
 
    buf.try_resize(to_unsigned(fraction_size) + offset + 1);
 
    return exp - fraction_size;
 
  }
 
}
 

	
 
// A public domain branchless UTF-8 decoder by Christopher Wellons:
 
// https://github.com/skeeto/branchless-utf8
 
/* Decode the next character, c, from buf, reporting errors in e.
 
 *
 
 * Since this is a branchless decoder, four bytes will be read from the
 
 * buffer regardless of the actual length of the next character. This
 
 * means the buffer _must_ have at least three bytes of zero padding
 
 * following the end of the data stream.
 
 *
 
 * Errors are reported in e, which will be non-zero if the parsed
 
 * character was somehow invalid: invalid byte sequence, non-canonical
 
 * encoding, or a surrogate half.
 
 *
 
 * The function returns a pointer to the next character. When an error
 
 * occurs, this pointer will be a guess that depends on the particular
 
 * error, but it will always advance at least one byte.
 
 */
 
inline const char* utf8_decode(const char* buf, uint32_t* c, int* e) {
 
  static const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
 
  static const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
 
  static const int shiftc[] = {0, 18, 12, 6, 0};
 
  static const int shifte[] = {0, 6, 4, 2, 0};
 

	
 
  int len = code_point_length(buf);
 
  const char* next = buf + len;
 

	
 
  // Assume a four-byte character and load four bytes. Unused bits are
 
  // shifted out.
 
  auto s = reinterpret_cast<const unsigned char*>(buf);
 
  *c = uint32_t(s[0] & masks[len]) << 18;
 
  *c |= uint32_t(s[1] & 0x3f) << 12;
 
  *c |= uint32_t(s[2] & 0x3f) << 6;
 
  *c |= uint32_t(s[3] & 0x3f) << 0;
 
  *c >>= shiftc[len];
 

	
 
  // Accumulate the various error conditions.
 
  *e = (*c < mins[len]) << 6;       // non-canonical encoding
 
  *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
 
  *e |= (*c > 0x10FFFF) << 8;       // out of range?
 
  *e |= (s[1] & 0xc0) >> 2;
 
  *e |= (s[2] & 0xc0) >> 4;
 
  *e |= (s[3]) >> 6;
 
  *e ^= 0x2a;  // top two bits of each tail byte correct?
 
  *e >>= shifte[len];
 

	
 
  return next;
 
}
 

	
 
struct stringifier {
 
  template <typename T> FMT_INLINE std::string operator()(T value) const {
 
    return to_string(value);
 
  }
 
  std::string operator()(basic_format_arg<format_context>::handle h) const {
 
    memory_buffer buf;
 
    format_parse_context parse_ctx({});
 
    format_context format_ctx(buffer_appender<char>(buf), {}, {});
 
    h.format(parse_ctx, format_ctx);
 
    return to_string(buf);
 
  }
 
};
 
}  // namespace detail
 

	
 
template <> struct formatter<detail::bigint> {
 
  format_parse_context::iterator parse(format_parse_context& ctx) {
 
    return ctx.begin();
 
  }
 

	
 
  format_context::iterator format(const detail::bigint& n,
 
                                  format_context& ctx) {
 
    auto out = ctx.out();
 
    bool first = true;
 
    for (auto i = n.bigits_.size(); i > 0; --i) {
 
      auto value = n.bigits_[i - 1u];
 
      if (first) {
 
        out = format_to(out, "{:x}", value);
 
        first = false;
 
        continue;
 
      }
 
      out = format_to(out, "{:08x}", value);
 
    }
 
    if (n.exp_ > 0)
 
      out = format_to(out, "p{}", n.exp_ * detail::bigint::bigit_bits);
 
    return out;
 
  }
 
};
 

	
 
FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
 
  auto transcode = [this](const char* p) {
 
    auto cp = uint32_t();
 
    auto error = 0;
 
    p = utf8_decode(p, &cp, &error);
 
    if (error != 0) FMT_THROW(std::runtime_error("invalid utf8"));
 
    if (cp <= 0xFFFF) {
 
      buffer_.push_back(static_cast<wchar_t>(cp));
 
    } else {
 
      cp -= 0x10000;
 
      buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
 
      buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
 
    }
 
    return p;
 
  };
 
  auto p = s.data();
 
  const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
 
  if (s.size() >= block_size) {
 
    for (auto end = p + s.size() - block_size + 1; p < end;) p = transcode(p);
 
  }
 
  if (auto num_chars_left = s.data() + s.size() - p) {
 
    char buf[2 * block_size - 1] = {};
 
    memcpy(buf, p, to_unsigned(num_chars_left));
 
    p = buf;
 
    do {
 
      p = transcode(p);
 
    } while (p - buf < num_chars_left);
 
  }
 
  buffer_.push_back(0);
 
}
 

	
 
FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
 
                                  string_view message) FMT_NOEXCEPT {
 
  FMT_TRY {
 
    memory_buffer buf;
 
    buf.resize(inline_buffer_size);
 
    for (;;) {
 
      char* system_message = &buf[0];
 
      int result =
 
          detail::safe_strerror(error_code, system_message, buf.size());
 
      if (result == 0) {
 
        format_to(detail::buffer_appender<char>(out), "{}: {}", message,
 
                  system_message);
 
        return;
 
      }
 
      if (result != ERANGE)
 
        break;  // Can't get error message, report error code instead.
 
      buf.resize(buf.size() * 2);
 
    }
 
  }
 
  FMT_CATCH(...) {}
 
  format_error_code(out, error_code, message);
 
}
 

	
 
FMT_FUNC void detail::error_handler::on_error(const char* message) {
 
  FMT_THROW(format_error(message));
 
}
 

	
 
FMT_FUNC void report_system_error(int error_code,
 
                                  fmt::string_view message) FMT_NOEXCEPT {
 
  report_error(format_system_error, error_code, message);
 
}
 

	
 
FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) {
 
  if (format_str.size() == 2 && equal2(format_str.data(), "{}")) {
 
    auto arg = args.get(0);
 
    if (!arg) error_handler().on_error("argument not found");
 
    return visit_format_arg(stringifier(), arg);
 
  }
 
  memory_buffer buffer;
 
  detail::vformat_to(buffer, format_str, args);
 
  return to_string(buffer);
 
}
 

	
 
#ifdef _WIN32
 
namespace detail {
 
using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>;
 
extern "C" __declspec(dllimport) int __stdcall WriteConsoleW(  //
 
    void*, const void*, dword, dword*, void*);
 
}  // namespace detail
 
#endif
 

	
 
FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
 
  memory_buffer buffer;
 
  detail::vformat_to(buffer, format_str,
 
                     basic_format_args<buffer_context<char>>(args));
 
#ifdef _WIN32
 
  auto fd = _fileno(f);
 
  if (_isatty(fd)) {
 
    detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size()));
 
    auto written = detail::dword();
 
    if (!detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)),
 
                               u16.c_str(), static_cast<uint32_t>(u16.size()),
 
                               &written, nullptr)) {
 
      FMT_THROW(format_error("failed to write to console"));
 
    }
 
    return;
 
  }
 
#endif
 
  detail::fwrite_fully(buffer.data(), 1, buffer.size(), f);
 
}
 

	
 
#ifdef _WIN32
 
// Print assuming legacy (non-Unicode) encoding.
 
FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
 
                                      format_args args) {
 
  memory_buffer buffer;
 
  detail::vformat_to(buffer, format_str,
 
                     basic_format_args<buffer_context<char>>(args));
 
  fwrite_fully(buffer.data(), 1, buffer.size(), f);
 
}
 
#endif
 

	
 
FMT_FUNC void vprint(string_view format_str, format_args args) {
 
  vprint(stdout, format_str, args);
 
}
 

	
 
FMT_END_NAMESPACE
 

	
 
#endif  // FMT_FORMAT_INL_H_

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)