diff --git a/bin/ai/library/pathfinder/road/main.nut b/bin/ai/library/pathfinder/road/main.nut new file mode 100644 --- /dev/null +++ b/bin/ai/library/pathfinder/road/main.nut @@ -0,0 +1,363 @@ +/* $Id$ */ + +/** + * A Road Pathfinder. + * This road pathfinder tries to find a buildable / existing route for + * road vehicles. You can changes the costs below using for example + * roadpf.cost.turn = 30. Note that it's not allowed to change the cost + * between consecutive calls to FindPath. You can change the cost before + * the first call to FindPath and after FindPath has returned an actual + * route. To use only existing roads, set cost.no_existing_road to + * cost.max_cost. + */ +class Road +{ + _aystar_class = import("graph.aystar", "", 4); + _max_cost = null; ///< The maximum cost for a route. + _cost_tile = null; ///< The cost for a single tile. + _cost_no_existing_road = null; ///< The cost that is added to _cost_tile if no road exists yet. + _cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes. + _cost_slope = null; ///< The extra cost if a road tile is sloped. + _cost_bridge_per_tile = null; ///< The cost per tile of a new bridge, this is added to _cost_tile. + _cost_tunnel_per_tile = null; ///< The cost per tile of a new tunnel, this is added to _cost_tile. + _cost_coast = null; ///< The extra cost for a coast tile. + _pathfinder = null; ///< A reference to the used AyStar object. + _max_bridge_length = null; ///< The maximum length of a bridge that will be build. + _max_tunnel_length = null; ///< The maximum length of a tunnel that will be build. + + cost = null; ///< Used to change the costs. + _running = null; + + constructor() + { + this._max_cost = 10000000; + this._cost_tile = 100; + this._cost_no_existing_road = 40; + this._cost_turn = 100; + this._cost_slope = 200; + this._cost_bridge_per_tile = 150; + this._cost_tunnel_per_tile = 120; + this._cost_coast = 20; + this._max_bridge_length = 10; + this._max_tunnel_length = 20; + this._pathfinder = this._aystar_class(this._Cost, this._Estimate, this._Neighbours, this._CheckDirection, this, this, this, this); + + this.cost = this.Cost(this); + this._running = false; + } + + /** + * Initialize a path search between sources and goals. + * @param sources The source tiles. + * @param goals The target tiles. + * @see AyStar::InitializePath() + */ + function InitializePath(sources, goals) { + local nsources = []; + + foreach (node in sources) { + nsources.push([node, 0xFF]); + } + this._pathfinder.InitializePath(nsources, goals); + } + + /** + * Try to find the path as indicated with InitializePath with the lowest cost. + * @param iterations After how many iterations it should abort for a moment. + * This value should either be -1 for infinite, or > 0. Any other value + * aborts immediatly and will never find a path. + * @return A route if one was found, or false if the amount of iterations was + * reached, or null if no path was found. + * You can call this function over and over as long as it returns false, + * which is an indication it is not yet done looking for a route. + * @see AyStar::FindPath() + */ + function FindPath(iterations); +}; + +class Road.Cost +{ + _main = null; + + function _set(idx, val) + { + if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder."); + + switch (idx) { + case "max_cost": this._main._max_cost = val; break; + case "tile": this._main._cost_tile = val; break; + case "no_existing_road": this._main._cost_no_existing_road = val; break; + case "turn": this._main._cost_turn = val; break; + case "slope": this._main._cost_slope = val; break; + case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break; + case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break; + case "coast": this._main._cost_coast = val; break; + case "max_bridge_length": this._main._max_bridge_length = val; break; + case "max_tunnel_length": this._main._max_tunnel_length = val; break; + default: throw("the index '" + idx + "' does not exist"); + } + + return val; + } + + function _get(idx) + { + switch (idx) { + case "max_cost": return this._main._max_cost; + case "tile": return this._main._cost_tile; + case "no_existing_road": return this._main._cost_no_existing_road; + case "turn": return this._main._cost_turn; + case "slope": return this._main._cost_slope; + case "bridge_per_tile": return this._main._cost_bridge_per_tile; + case "tunnel_per_tile": return this._main._cost_tunnel_per_tile; + case "coast": return this._main._cost_coast; + case "max_bridge_length": return this._main._max_bridge_length; + case "max_tunnel_length": return this._main._max_tunnel_length; + default: throw("the index '" + idx + "' does not exist"); + } + } + + constructor(main) + { + this._main = main; + } +}; + +function Road::FindPath(iterations) +{ + local test_mode = AITestMode(); + local ret = this._pathfinder.FindPath(iterations); + this._running = (ret == false) ? true : false; + return ret; +} + +function Road::_GetBridgeNumSlopes(end_a, end_b) +{ + local slopes = 0; + local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b); + local slope = AITile.GetSlope(end_a); + if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || + (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || + slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { + slopes++; + } + + local slope = AITile.GetSlope(end_b); + direction = -direction; + if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || + (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || + slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { + slopes++; + } + return slopes; +} + +function Road::_Cost(path, new_tile, new_direction, self) +{ + /* path == null means this is the first node of a path, so the cost is 0. */ + if (path == null) return 0; + + local prev_tile = path.GetTile(); + + /* If the new tile is a bridge / tunnel tile, check whether we came from the other + * end of the bridge / tunnel or if we just entered the bridge / tunnel. */ + if (AIBridge.IsBridgeTile(new_tile)) { + if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) return path.GetCost() + self._cost_tile; + return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope; + } + if (AITunnel.IsTunnelTile(new_tile)) { + if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) return path.GetCost() + self._cost_tile; + return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile; + } + + /* If the two tiles are more then 1 tile apart, the pathfinder wants a bridge or tunnel + * to be build. It isn't an existing bridge / tunnel, as that case is already handled. */ + if (AIMap.DistanceManhattan(new_tile, prev_tile) > 1) { + /* Check if we should build a bridge or a tunnel. */ + if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) { + return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_tunnel_per_tile); + } else { + return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_bridge_per_tile) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope; + } + } + + /* Check for a turn. We do this by substracting the TileID of the current node from + * the TileID of the previous node and comparing that to the difference between the + * previous node and the node before that. */ + local cost = self._cost_tile; + if (path.GetParent() != null && (prev_tile - path.GetParent().GetTile()) != (new_tile - prev_tile) && + AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile) == 1) { + cost += self._cost_turn; + } + + /* Check if the new tile is a coast tile. */ + if (AITile.IsCoastTile(new_tile)) { + cost += self._cost_coast; + } + + /* Check if the last tile was sloped. */ + if (path.GetParent() != null && !AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) && + self._IsSlopedRoad(path.GetParent().GetTile(), prev_tile, new_tile)) { + cost += self._cost_slope; + } + + if (!AIRoad.AreRoadTilesConnected(prev_tile, new_tile)) { + cost += self._cost_no_existing_road; + } + + return path.GetCost() + cost; +} + +function Road::_Estimate(cur_tile, cur_direction, goal_tiles, self) +{ + local min_cost = self._max_cost; + /* As estimate we multiply the lowest possible cost for a single tile with + * with the minimum number of tiles we need to traverse. */ + foreach (tile in goal_tiles) { + min_cost = min(AIMap.DistanceManhattan(cur_tile, tile) * self._cost_tile, min_cost); + } + return min_cost; +} + +function Road::_Neighbours(path, cur_node, self) +{ + /* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */ + if (path.GetCost() >= self._max_cost) return []; + local tiles = []; + + /* Check if the current tile is part of a bridge or tunnel. */ + if ((AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) && + AITile.HasTransportType(cur_node, AITile.TRANSPORT_ROAD)) { + local other_end = AIBridge.IsBridgeTile(cur_node) ? AIBridge.GetOtherBridgeEnd(cur_node) : AITunnel.GetOtherTunnelEnd(cur_node); + local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); + if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) || AITile.IsBuildable(next_tile) || AIRoad.IsRoadTile(next_tile)) { + tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); + } + /* The other end of the bridge / tunnel is a neighbour. */ + tiles.push([other_end, self._GetDirection(next_tile, cur_node, true) << 4]); + } else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) { + local other_end = path.GetParent().GetTile(); + local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); + if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) || AIRoad.BuildRoad(cur_node, next_tile)) { + tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); + } + } else { + local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1), + AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)]; + /* Check all tiles adjacent to the current tile. */ + foreach (offset in offsets) { + local next_tile = cur_node + offset; + /* We add them to the to the neighbours-list if one of the following applies: + * 1) There already is a connections between the current tile and the next tile. + * 2) We can build a road to the next tile. + * 3) The next tile is the entrance of a tunnel / bridge in the correct direction. */ + if (AIRoad.AreRoadTilesConnected(cur_node, next_tile)) { + tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); + } else if ((AITile.IsBuildable(next_tile) || AIRoad.IsRoadTile(next_tile)) && + (path.GetParent() == null || AIRoad.CanBuildConnectedRoadPartsHere(cur_node, path.GetParent().GetTile(), next_tile)) && + AIRoad.BuildRoad(cur_node, next_tile)) { + tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); + } else if (self._CheckTunnelBridge(cur_node, next_tile)) { + tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); + } + } + if (path.GetParent() != null) { + local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetTile(), cur_node, true) << 4); + foreach (tile in bridges) { + tiles.push(tile); + } + } + } + return tiles; +} + +function Road::_CheckDirection(tile, existing_direction, new_direction, self) +{ + return false; +} + +function Road::_GetDirection(from, to, is_bridge) +{ + if (!is_bridge && AITile.GetSlope(to) == AITile.SLOPE_FLAT) return 0xFF; + if (from - to == 1) return 1; + if (from - to == -1) return 2; + if (from - to == AIMap.GetMapSizeX()) return 4; + if (from - to == -AIMap.GetMapSizeX()) return 8; +} + +/** + * Get a list of all bridges and tunnels that can be build from the + * current tile. Bridges will only be build starting on non-flat tiles + * for performance reasons. Tunnels will only be build if no terraforming + * is needed on both ends. + */ +function Road::_GetTunnelsBridges(last_node, cur_node, bridge_dir) +{ + local slope = AITile.GetSlope(cur_node); + if (slope == AITile.SLOPE_FLAT) return []; + local tiles = []; + + for (local i = 2; i < this._max_bridge_length; i++) { + local bridge_list = AIBridgeList_Length(i + 1); + local target = cur_node + i * (cur_node - last_node); + if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VEHICLE_ROAD, bridge_list.Begin(), cur_node, target)) { + tiles.push([target, bridge_dir]); + } + } + + if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles; + local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node); + if (!AIMap.IsValidTile(other_tunnel_end)) return tiles; + + local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end); + local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length; + if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && + prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VEHICLE_ROAD, cur_node)) { + tiles.push([other_tunnel_end, bridge_dir]); + } + return tiles; +} + +function Road::_IsSlopedRoad(start, middle, end) +{ + local NW = 0; //Set to true if we want to build a road to / from the north-west + local NE = 0; //Set to true if we want to build a road to / from the north-east + local SW = 0; //Set to true if we want to build a road to / from the south-west + local SE = 0; //Set to true if we want to build a road to / from the south-east + + if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1; + if (middle - 1 == start || middle - 1 == end) NE = 1; + if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1; + if (middle + 1 == start || middle + 1 == end) SW = 1; + + /* If there is a turn in the current tile, it can't be sloped. */ + if ((NW || SE) && (NE || SW)) return false; + + local slope = AITile.GetSlope(middle); + /* A road on a steep slope is always sloped. */ + if (AITile.IsSteepSlope(slope)) return true; + + /* If only one corner is raised, the road is sloped. */ + if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true; + if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true; + + if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true; + if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true; + + return false; +} + +function Road::_CheckTunnelBridge(current_tile, new_tile) +{ + if (!AIBridge.IsBridgeTile(new_tile) && !AITunnel.IsTunnelTile(new_tile)) return false; + local dir = new_tile - current_tile; + local other_end = AIBridge.IsBridgeTile(new_tile) ? AIBridge.GetOtherBridgeEnd(new_tile) : AITunnel.GetOtherTunnelEnd(new_tile); + local dir2 = other_end - new_tile; + if ((dir < 0 && dir2 > 0) || (dir > 0 && dir2 < 0)) return false; + dir = abs(dir); + dir2 = abs(dir2); + if ((dir >= AIMap.GetMapSizeX() && dir2 < AIMap.GetMapSizeX()) || + (dir < AIMap.GetMapSizeX() && dir2 >= AIMap.GetMapSizeX())) return false; + + return true; +}