File diff r5583:398b6d85e7a3 → r5584:545d748cc681
src/pathfind.cpp
Show inline comments
 
new file 100644
 
/* $Id$ */
 

	
 
#include "stdafx.h"
 
#include "openttd.h"
 
#include "bridge_map.h"
 
#include "station_map.h"
 
#include "depot.h"
 
#include "functions.h"
 
#include "map.h"
 
#include "tile.h"
 
#include "pathfind.h"
 
#include "rail.h"
 
#include "debug.h"
 
#include "tunnel_map.h"
 
#include "variables.h"
 
#include "depot.h"
 

	
 
// remember which tiles we have already visited so we don't visit them again.
 
static bool TPFSetTileBit(TrackPathFinder *tpf, TileIndex tile, int dir)
 
{
 
	uint hash, val, offs;
 
	TrackPathFinderLink *link, *new_link;
 
	uint bits = 1 << dir;
 

	
 
	if (tpf->disable_tile_hash)
 
		return true;
 

	
 
	hash = PATHFIND_HASH_TILE(tile);
 

	
 
	val = tpf->hash_head[hash];
 

	
 
	if (val == 0) {
 
		/* unused hash entry, set the appropriate bit in it and return true
 
		 * to indicate that a bit was set. */
 
		tpf->hash_head[hash] = bits;
 
		tpf->hash_tile[hash] = tile;
 
		return true;
 
	} else if (!(val & 0x8000)) {
 
		/* single tile */
 

	
 
		if (tile == tpf->hash_tile[hash]) {
 
			/* found another bit for the same tile,
 
			 * check if this bit is already set, if so, return false */
 
			if (val & bits)
 
				return false;
 

	
 
			/* otherwise set the bit and return true to indicate that the bit
 
			 * was set */
 
			tpf->hash_head[hash] = val | bits;
 
			return true;
 
		} else {
 
			/* two tiles with the same hash, need to make a link */
 

	
 
			/* allocate a link. if out of links, handle this by returning
 
			 * that a tile was already visisted. */
 
			if (tpf->num_links_left == 0) {
 
				return false;
 
			}
 
			tpf->num_links_left--;
 
			link = tpf->new_link++;
 

	
 
			/* move the data that was previously in the hash_??? variables
 
			 * to the link struct, and let the hash variables point to the link */
 
			link->tile = tpf->hash_tile[hash];
 
			tpf->hash_tile[hash] = PATHFIND_GET_LINK_OFFS(tpf, link);
 

	
 
			link->flags = tpf->hash_head[hash];
 
			tpf->hash_head[hash] = 0xFFFF; /* multi link */
 

	
 
			link->next = 0xFFFF;
 
		}
 
	} else {
 
		/* a linked list of many tiles,
 
		 * find the one corresponding to the tile, if it exists.
 
		 * otherwise make a new link */
 

	
 
		offs = tpf->hash_tile[hash];
 
		do {
 
			link = PATHFIND_GET_LINK_PTR(tpf, offs);
 
			if (tile == link->tile) {
 
				/* found the tile in the link list,
 
				 * check if the bit was alrady set, if so return false to indicate that the
 
				 * bit was already set */
 
				if (link->flags & bits)
 
					return false;
 
				link->flags |= bits;
 
				return true;
 
			}
 
		} while ((offs=link->next) != 0xFFFF);
 
	}
 

	
 
	/* get here if we need to add a new link to link,
 
	 * first, allocate a new link, in the same way as before */
 
	if (tpf->num_links_left == 0) {
 
			return false;
 
	}
 
	tpf->num_links_left--;
 
	new_link = tpf->new_link++;
 

	
 
	/* then fill the link with the new info, and establish a ptr from the old
 
	 * link to the new one */
 
	new_link->tile = tile;
 
	new_link->flags = bits;
 
	new_link->next = 0xFFFF;
 

	
 
	link->next = PATHFIND_GET_LINK_OFFS(tpf, new_link);
 
	return true;
 
}
 

	
 
static const byte _bits_mask[4] = {
 
	0x19,
 
	0x16,
 
	0x25,
 
	0x2A,
 
};
 

	
 
static const byte _tpf_new_direction[14] = {
 
	0, 1, 0, 1, 2, 1,
 
	0, 0,
 
	2, 3, 3, 2, 3, 0,
 
};
 

	
 
static const byte _tpf_prev_direction[14] = {
 
	0, 1, 1, 0, 1, 2,
 
	0, 0,
 
	2, 3, 2, 3, 0, 3,
 
};
 

	
 

	
 
static const byte _otherdir_mask[4] = {
 
	0x10,
 
	0,
 
	0x5,
 
	0x2A,
 
};
 

	
 
static void TPFMode2(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
 
{
 
	uint bits;
 
	int i;
 
	RememberData rd;
 

	
 
	assert(tpf->tracktype == TRANSPORT_WATER);
 

	
 
	// This addition will sometimes overflow by a single tile.
 
	// The use of TILE_MASK here makes sure that we still point at a valid
 
	// tile, and then this tile will be in the sentinel row/col, so GetTileTrackStatus will fail.
 
	tile = TILE_MASK(tile + TileOffsByDiagDir(direction));
 

	
 
	if (++tpf->rd.cur_length > 50)
 
		return;
 

	
 
	bits = GetTileTrackStatus(tile, tpf->tracktype);
 
	bits = (byte)((bits | (bits >> 8)) & _bits_mask[direction]);
 
	if (bits == 0)
 
		return;
 

	
 
	assert(TileX(tile) != MapMaxX() && TileY(tile) != MapMaxY());
 

	
 
	if ( (bits & (bits - 1)) == 0 ) {
 
		/* only one direction */
 
		i = 0;
 
		while (!(bits&1))
 
			i++, bits>>=1;
 

	
 
		rd = tpf->rd;
 
		goto continue_here;
 
	}
 
	/* several directions */
 
	i=0;
 
	do {
 
		if (!(bits & 1)) continue;
 
		rd = tpf->rd;
 

	
 
		// Change direction 4 times only
 
		if ((byte)i != tpf->rd.pft_var6) {
 
			if (++tpf->rd.depth > 4) {
 
				tpf->rd = rd;
 
				return;
 
			}
 
			tpf->rd.pft_var6 = (byte)i;
 
		}
 

	
 
continue_here:;
 
		tpf->the_dir = i + (HASBIT(_otherdir_mask[direction], i) ? 8 : 0);
 

	
 
		if (!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, NULL)) {
 
			TPFMode2(tpf, tile, _tpf_new_direction[tpf->the_dir]);
 
		}
 

	
 
		tpf->rd = rd;
 
	} while (++i, bits>>=1);
 

	
 
}
 

	
 

	
 
/* Returns the end tile and the length of a tunnel. The length does not
 
 * include the starting tile (entry), it does include the end tile (exit).
 
 */
 
FindLengthOfTunnelResult FindLengthOfTunnel(TileIndex tile, DiagDirection dir)
 
{
 
	TileIndexDiff delta = TileOffsByDiagDir(dir);
 
	uint z = GetTileZ(tile);
 
	FindLengthOfTunnelResult flotr;
 

	
 
	flotr.length = 0;
 

	
 
	dir = ReverseDiagDir(dir);
 
	do {
 
		flotr.length++;
 
		tile += delta;
 
	} while(
 
		!IsTunnelTile(tile) ||
 
		GetTunnelDirection(tile) != dir ||
 
		GetTileZ(tile) != z
 
	);
 

	
 
	flotr.tile = tile;
 
	return flotr;
 
}
 

	
 
static const uint16 _tpfmode1_and[4] = { 0x1009, 0x16, 0x520, 0x2A00 };
 

	
 
static uint SkipToEndOfTunnel(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
 
{
 
	FindLengthOfTunnelResult flotr;
 
	TPFSetTileBit(tpf, tile, 14);
 
	flotr = FindLengthOfTunnel(tile, direction);
 
	tpf->rd.cur_length += flotr.length;
 
	TPFSetTileBit(tpf, flotr.tile, 14);
 
	return flotr.tile;
 
}
 

	
 
const byte _ffb_64[128] = {
 
 0,  0,  1,  0,  2,  0,  1,  0,
 
 3,  0,  1,  0,  2,  0,  1,  0,
 
 4,  0,  1,  0,  2,  0,  1,  0,
 
 3,  0,  1,  0,  2,  0,  1,  0,
 
 5,  0,  1,  0,  2,  0,  1,  0,
 
 3,  0,  1,  0,  2,  0,  1,  0,
 
 4,  0,  1,  0,  2,  0,  1,  0,
 
 3,  0,  1,  0,  2,  0,  1,  0,
 

	
 
 0,  0,  0,  2,  0,  4,  4,  6,
 
 0,  8,  8, 10,  8, 12, 12, 14,
 
 0, 16, 16, 18, 16, 20, 20, 22,
 
16, 24, 24, 26, 24, 28, 28, 30,
 
 0, 32, 32, 34, 32, 36, 36, 38,
 
32, 40, 40, 42, 40, 44, 44, 46,
 
32, 48, 48, 50, 48, 52, 52, 54,
 
48, 56, 56, 58, 56, 60, 60, 62,
 
};
 

	
 
static void TPFMode1(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
 
{
 
	uint bits;
 
	int i;
 
	RememberData rd;
 
	TileIndex tile_org = tile;
 

	
 
	if (IsTileType(tile, MP_TUNNELBRIDGE)) {
 
		if (IsTunnel(tile)) {
 
			if (GetTunnelDirection(tile) != direction ||
 
					GetTunnelTransportType(tile) != tpf->tracktype) {
 
				return;
 
			}
 
			tile = SkipToEndOfTunnel(tpf, tile, direction);
 
		} else {
 
			TileIndex tile_end;
 
			if (GetBridgeRampDirection(tile) != direction ||
 
					GetBridgeTransportType(tile) != tpf->tracktype) {
 
				return;
 
			}
 
			//fprintf(stderr, "%s: Planning over bridge\n", __func__);
 
			// TODO doesn't work - WHAT doesn't work?
 
			TPFSetTileBit(tpf, tile, 14);
 
			tile_end = GetOtherBridgeEnd(tile);
 
			tpf->rd.cur_length += DistanceManhattan(tile, tile_end);
 
			tile = tile_end;
 
			TPFSetTileBit(tpf, tile, 14);
 
		}
 
	}
 
	tile += TileOffsByDiagDir(direction);
 

	
 
	/* Check in case of rail if the owner is the same */
 
	if (tpf->tracktype == TRANSPORT_RAIL) {
 
		// don't enter train depot from the back
 
		if (IsTileDepotType(tile, TRANSPORT_RAIL) && GetRailDepotDirection(tile) == direction) return;
 

	
 
		if (IsTileType(tile_org, MP_RAILWAY) || IsTileType(tile_org, MP_STATION) || IsTileType(tile_org, MP_TUNNELBRIDGE))
 
			if (IsTileType(tile, MP_RAILWAY) || IsTileType(tile, MP_STATION) || IsTileType(tile, MP_TUNNELBRIDGE))
 
				if (GetTileOwner(tile_org) != GetTileOwner(tile)) return;
 
	}
 

	
 
	// check if the new tile can be entered from that direction
 
	if (tpf->tracktype == TRANSPORT_ROAD) {
 
		// road stops and depots now have a track (r4419)
 
		// don't enter road stop from the back
 
		if (IsRoadStopTile(tile) && ReverseDiagDir(GetRoadStopDir(tile)) != direction) return;
 
		// don't enter road depot from the back
 
		if (IsTileDepotType(tile, TRANSPORT_ROAD) && ReverseDiagDir(GetRoadDepotDirection(tile)) != direction) return;
 
	}
 

	
 
	/* Check if the new tile is a tunnel or bridge head and that the direction
 
	 * and transport type match */
 
	if (IsTileType(tile, MP_TUNNELBRIDGE)) {
 
		if (IsTunnel(tile)) {
 
			if (GetTunnelDirection(tile) != direction ||
 
					GetTunnelTransportType(tile) != tpf->tracktype) {
 
				return;
 
			}
 
		} else if (IsBridge(tile)) {
 
			if (GetBridgeRampDirection(tile) != direction ||
 
					GetBridgeTransportType(tile) != tpf->tracktype) {
 
				return;
 
			}
 
		}
 
	}
 

	
 
	tpf->rd.cur_length++;
 

	
 
	bits = GetTileTrackStatus(tile, tpf->tracktype);
 

	
 
	if ((byte)bits != tpf->var2) {
 
		bits &= _tpfmode1_and[direction];
 
		bits = bits | (bits>>8);
 
	}
 
	bits &= 0xBF;
 

	
 
	if (bits != 0) {
 
		if (!tpf->disable_tile_hash || (tpf->rd.cur_length <= 64 && (KILL_FIRST_BIT(bits) == 0 || ++tpf->rd.depth <= 7))) {
 
			do {
 
				i = FIND_FIRST_BIT(bits);
 
				bits = KILL_FIRST_BIT(bits);
 

	
 
				tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
 
				rd = tpf->rd;
 

	
 
				if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
 
						!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
 
					TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
 
				}
 
				tpf->rd = rd;
 
			} while (bits != 0);
 
		}
 
	}
 

	
 
	/* the next is only used when signals are checked.
 
	 * seems to go in 2 directions simultaneously */
 

	
 
	/* if i can get rid of this, tail end recursion can be used to minimize
 
	 * stack space dramatically. */
 

	
 
	/* If we are doing signal setting, we must reverse at evere tile, so we
 
	 * iterate all the tracks in a signal block, even when a normal train would
 
	 * not reach it (for example, when two lines merge */
 
	if (tpf->hasbit_13)
 
		return;
 

	
 
	direction = ReverseDiagDir(direction);
 
	tile += TileOffsByDiagDir(direction);
 

	
 
	bits = GetTileTrackStatus(tile, tpf->tracktype);
 
	bits |= (bits >> 8);
 

	
 
	if ( (byte)bits != tpf->var2) {
 
		bits &= _bits_mask[direction];
 
	}
 

	
 
	bits &= 0xBF;
 
	if (bits == 0)
 
		return;
 

	
 
	do {
 
		i = FIND_FIRST_BIT(bits);
 
		bits = KILL_FIRST_BIT(bits);
 

	
 
		tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
 
		rd = tpf->rd;
 
		if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
 
				!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
 
			TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
 
		}
 
		tpf->rd = rd;
 
	} while (bits != 0);
 
}
 

	
 
void FollowTrack(TileIndex tile, uint16 flags, DiagDirection direction, TPFEnumProc *enum_proc, TPFAfterProc *after_proc, void *data)
 
{
 
	TrackPathFinder tpf;
 

	
 
	assert(direction < 4);
 

	
 
	/* initialize path finder variables */
 
	tpf.userdata = data;
 
	tpf.enum_proc = enum_proc;
 
	tpf.new_link = tpf.links;
 
	tpf.num_links_left = lengthof(tpf.links);
 

	
 
	tpf.rd.cur_length = 0;
 
	tpf.rd.depth = 0;
 
	tpf.rd.pft_var6 = 0;
 

	
 
	tpf.var2 = HASBIT(flags, 15) ? 0x43 : 0xFF; /* 0x8000 */
 

	
 
	tpf.disable_tile_hash = HASBIT(flags, 12);  /* 0x1000 */
 
	tpf.hasbit_13         = HASBIT(flags, 13);  /* 0x2000 */
 

	
 

	
 
	tpf.tracktype = (byte)flags;
 

	
 
	if (HASBIT(flags, 11)) {
 
		tpf.rd.pft_var6 = 0xFF;
 
		tpf.enum_proc(tile, data, 0, 0, 0);
 
		TPFMode2(&tpf, tile, direction);
 
	} else {
 
		/* clear the hash_heads */
 
		memset(tpf.hash_head, 0, sizeof(tpf.hash_head));
 
		TPFMode1(&tpf, tile, direction);
 
	}
 

	
 
	if (after_proc != NULL)
 
		after_proc(&tpf);
 
}
 

	
 
typedef struct {
 
	TileIndex tile;
 
	uint16 cur_length; // This is the current length to this tile.
 
	uint16 priority; // This is the current length + estimated length to the goal.
 
	byte track;
 
	byte depth;
 
	byte state;
 
	byte first_track;
 
} StackedItem;
 

	
 
static const byte _new_track[6][4] = {
 
{0,    0xff, 8,    0xff,},
 
{0xff, 1,    0xff, 9,},
 
{0xff, 2,    10,   0xff,},
 
{3,    0xff, 0xff, 11,},
 
{12,   4,    0xff, 0xff,},
 
{0xff, 0xff, 5,    13,},
 
};
 

	
 
typedef struct HashLink {
 
	TileIndex tile;
 
	uint16 typelength;
 
	uint16 next;
 
} HashLink;
 

	
 
typedef struct {
 
	NTPEnumProc *enum_proc;
 
	void *userdata;
 
	TileIndex dest;
 

	
 
	TransportType tracktype;
 
	RailTypeMask railtypes;
 
	uint maxlength;
 

	
 
	HashLink *new_link;
 
	uint num_links_left;
 

	
 
	uint nstack;
 
	StackedItem stack[256]; // priority queue of stacked items
 

	
 
	uint16 hash_head[0x400]; // hash heads. 0 means unused. 0xFFFC = length, 0x3 = dir
 
	TileIndex hash_tile[0x400]; // tiles. or links.
 

	
 
	HashLink links[0x400]; // hash links
 

	
 
} NewTrackPathFinder;
 
#define NTP_GET_LINK_OFFS(tpf, link) ((byte*)(link) - (byte*)tpf->links)
 
#define NTP_GET_LINK_PTR(tpf, link_offs) (HashLink*)((byte*)tpf->links + (link_offs))
 

	
 
#define ARR(i) tpf->stack[(i)-1]
 

	
 
// called after a new element was added in the queue at the last index.
 
// move it down to the proper position
 
static inline void HeapifyUp(NewTrackPathFinder *tpf)
 
{
 
	StackedItem si;
 
	int i = ++tpf->nstack;
 

	
 
	while (i != 1 && ARR(i).priority < ARR(i>>1).priority) {
 
		// the child element is larger than the parent item.
 
		// swap the child item and the parent item.
 
		si = ARR(i); ARR(i) = ARR(i>>1); ARR(i>>1) = si;
 
		i>>=1;
 
	}
 
}
 

	
 
// called after the element 0 was eaten. fill it with a new element
 
static inline void HeapifyDown(NewTrackPathFinder *tpf)
 
{
 
	StackedItem si;
 
	int i = 1, j;
 
	int n;
 

	
 
	assert(tpf->nstack > 0);
 
	n = --tpf->nstack;
 

	
 
	if (n == 0) return; // heap is empty so nothing to do?
 

	
 
	// copy the last item to index 0. we use it as base for heapify.
 
	ARR(1) = ARR(n+1);
 

	
 
	while ((j=i*2) <= n) {
 
		// figure out which is smaller of the children.
 
		if (j != n && ARR(j).priority > ARR(j+1).priority)
 
			j++; // right item is smaller
 

	
 
		assert(i <= n && j <= n);
 
		if (ARR(i).priority <= ARR(j).priority)
 
			break; // base elem smaller than smallest, done!
 

	
 
		// swap parent with the child
 
		si = ARR(i); ARR(i) = ARR(j); ARR(j) = si;
 
		i = j;
 
	}
 
}
 

	
 
// mark a tile as visited and store the length of the path.
 
// if we already had a better path to this tile, return false.
 
// otherwise return true.
 
static bool NtpVisit(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection dir, uint length)
 
{
 
	uint hash,head;
 
	HashLink *link, *new_link;
 

	
 
	assert(length < 16384-1);
 

	
 
	hash = PATHFIND_HASH_TILE(tile);
 

	
 
	// never visited before?
 
	if ((head=tpf->hash_head[hash]) == 0) {
 
		tpf->hash_tile[hash] = tile;
 
		tpf->hash_head[hash] = dir | (length << 2);
 
		return true;
 
	}
 

	
 
	if (head != 0xffff) {
 
		if (tile == tpf->hash_tile[hash] && (head & 0x3) == dir) {
 

	
 
			// longer length
 
			if (length >= (head >> 2)) return false;
 

	
 
			tpf->hash_head[hash] = dir | (length << 2);
 
			return true;
 
		}
 
		// two tiles with the same hash, need to make a link
 
		// allocate a link. if out of links, handle this by returning
 
		// that a tile was already visisted.
 
		if (tpf->num_links_left == 0) {
 
			DEBUG(ntp, 1, "No links left");
 
			return false;
 
		}
 

	
 
		tpf->num_links_left--;
 
		link = tpf->new_link++;
 

	
 
		/* move the data that was previously in the hash_??? variables
 
		 * to the link struct, and let the hash variables point to the link */
 
		link->tile = tpf->hash_tile[hash];
 
		tpf->hash_tile[hash] = NTP_GET_LINK_OFFS(tpf, link);
 

	
 
		link->typelength = tpf->hash_head[hash];
 
		tpf->hash_head[hash] = 0xFFFF; /* multi link */
 
		link->next = 0xFFFF;
 
	} else {
 
		// a linked list of many tiles,
 
		// find the one corresponding to the tile, if it exists.
 
		// otherwise make a new link
 

	
 
		uint offs = tpf->hash_tile[hash];
 
		do {
 
			link = NTP_GET_LINK_PTR(tpf, offs);
 
			if (tile == link->tile && (link->typelength & 0x3U) == dir) {
 
				if (length >= (uint)(link->typelength >> 2)) return false;
 
				link->typelength = dir | (length << 2);
 
				return true;
 
			}
 
		} while ((offs = link->next) != 0xFFFF);
 
	}
 

	
 
	/* get here if we need to add a new link to link,
 
	 * first, allocate a new link, in the same way as before */
 
	if (tpf->num_links_left == 0) {
 
		DEBUG(ntp, 1, "No links left");
 
		return false;
 
	}
 
	tpf->num_links_left--;
 
	new_link = tpf->new_link++;
 

	
 
	/* then fill the link with the new info, and establish a ptr from the old
 
	 * link to the new one */
 
	new_link->tile = tile;
 
	new_link->typelength = dir | (length << 2);
 
	new_link->next = 0xFFFF;
 

	
 
	link->next = NTP_GET_LINK_OFFS(tpf, new_link);
 
	return true;
 
}
 

	
 
/**
 
 * Checks if the shortest path to the given tile/dir so far is still the given
 
 * length.
 
 * @return true if the length is still the same
 
 * @pre    The given tile/dir combination should be present in the hash, by a
 
 *         previous call to NtpVisit().
 
 */
 
static bool NtpCheck(NewTrackPathFinder *tpf, TileIndex tile, uint dir, uint length)
 
{
 
	uint hash,head,offs;
 
	HashLink *link;
 

	
 
	hash = PATHFIND_HASH_TILE(tile);
 
	head=tpf->hash_head[hash];
 
	assert(head);
 

	
 
	if (head != 0xffff) {
 
		assert( tpf->hash_tile[hash] == tile && (head & 3) == dir);
 
		assert( (head >> 2) <= length);
 
		return length == (head >> 2);
 
	}
 

	
 
	// else it's a linked list of many tiles
 
	offs = tpf->hash_tile[hash];
 
	for (;;) {
 
		link = NTP_GET_LINK_PTR(tpf, offs);
 
		if (tile == link->tile && (link->typelength & 0x3U) == dir) {
 
			assert((uint)(link->typelength >> 2) <= length);
 
			return length == (uint)(link->typelength >> 2);
 
		}
 
		offs = link->next;
 
		assert(offs != 0xffff);
 
	}
 
}
 

	
 

	
 
static const uint16 _is_upwards_slope[15] = {
 
	0, // no tileh
 
	(1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_NW), // 1
 
	(1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_SE), // 2
 
	(1 << TRACKDIR_X_SW), // 3
 
	(1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_SE), // 4
 
	0, // 5
 
	(1 << TRACKDIR_Y_SE), // 6
 
	0, // 7
 
	(1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_NW), // 8,
 
	(1 << TRACKDIR_Y_NW), // 9
 
	0, //10
 
	0, //11,
 
	(1 << TRACKDIR_X_NE), //12
 
	0, //13
 
	0, //14
 
};
 

	
 
static uint DistanceMoo(TileIndex t0, TileIndex t1)
 
{
 
	const uint dx = abs(TileX(t0) - TileX(t1));
 
	const uint dy = abs(TileY(t0) - TileY(t1));
 

	
 
	const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */
 
	/* OPTIMISATION:
 
	 * Original: diagTracks = max(dx, dy) - min(dx,dy);
 
	 * Proof:
 
	 * (dx-dy) - straightTracks  == (min + max) - straightTracks = min + // max - 2 * min = max - min */
 
	const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */
 

	
 
	return diagTracks*DIAG_FACTOR + straightTracks*STR_FACTOR;
 
}
 

	
 
// These has to be small cause the max length of a track
 
// is currently limited to 16384
 

	
 
static const byte _length_of_track[16] = {
 
	DIAG_FACTOR, DIAG_FACTOR, STR_FACTOR, STR_FACTOR, STR_FACTOR, STR_FACTOR, 0, 0,
 
	DIAG_FACTOR, DIAG_FACTOR, STR_FACTOR, STR_FACTOR, STR_FACTOR, STR_FACTOR, 0, 0
 
};
 

	
 
// new more optimized pathfinder for trains...
 
// Tile is the tile the train is at.
 
// direction is the tile the train is moving towards.
 

	
 
static void NTPEnum(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
 
{
 
	TrackBits bits, allbits;
 
	uint track;
 
	TileIndex tile_org;
 
	StackedItem si;
 
	int estimation;
 

	
 

	
 

	
 
	// Need to have a special case for the start.
 
	// We shouldn't call the callback for the current tile.
 
	si.cur_length = 1; // Need to start at 1 cause 0 is a reserved value.
 
	si.depth = 0;
 
	si.state = 0;
 
	si.first_track = 0xFF;
 
	goto start_at;
 

	
 
	for (;;) {
 
		// Get the next item to search from from the priority queue
 
		do {
 
			if (tpf->nstack == 0)
 
				return; // nothing left? then we're done!
 
			si = tpf->stack[0];
 
			tile = si.tile;
 

	
 
			HeapifyDown(tpf);
 
			// Make sure we havn't already visited this tile.
 
		} while (!NtpCheck(tpf, tile, _tpf_prev_direction[si.track], si.cur_length));
 

	
 
		// Add the length of this track.
 
		si.cur_length += _length_of_track[si.track];
 

	
 
callback_and_continue:
 
		if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
 
			return;
 

	
 
		assert(si.track <= 13);
 
		direction = _tpf_new_direction[si.track];
 

	
 
start_at:
 
		// If the tile is the entry tile of a tunnel, and we're not going out of the tunnel,
 
		//   need to find the exit of the tunnel.
 
		if (IsTileType(tile, MP_TUNNELBRIDGE)) {
 
			if (IsTunnel(tile)) {
 
				if (GetTunnelDirection(tile) != ReverseDiagDir(direction)) {
 
					FindLengthOfTunnelResult flotr;
 

	
 
					/* We are not just driving out of the tunnel */
 
					if (GetTunnelDirection(tile) != direction ||
 
							GetTunnelTransportType(tile) != tpf->tracktype) {
 
						// We are not driving into the tunnel, or it is an invalid tunnel
 
						continue;
 
					}
 
					if (!HASBIT(tpf->railtypes, GetRailType(tile))) {
 
						bits = 0;
 
						break;
 
					}
 
					flotr = FindLengthOfTunnel(tile, direction);
 
					si.cur_length += flotr.length * DIAG_FACTOR;
 
					tile = flotr.tile;
 
					// tile now points to the exit tile of the tunnel
 
				}
 
			} else {
 
				TileIndex tile_end;
 
				if (GetBridgeRampDirection(tile) != ReverseDiagDir(direction)) {
 
					// We are not just leaving the bridge
 
					if (GetBridgeRampDirection(tile) != direction ||
 
							GetBridgeTransportType(tile) != tpf->tracktype) {
 
						// Not entering the bridge or not compatible
 
						continue;
 
					}
 
				}
 
				tile_end = GetOtherBridgeEnd(tile);
 
				si.cur_length += DistanceManhattan(tile, tile_end) * DIAG_FACTOR;
 
				tile = tile_end;
 
			}
 
		}
 

	
 
		// This is a special loop used to go through
 
		// a rail net and find the first intersection
 
		tile_org = tile;
 
		for (;;) {
 
			assert(direction <= 3);
 
			tile += TileOffsByDiagDir(direction);
 

	
 
			// too long search length? bail out.
 
			if (si.cur_length >= tpf->maxlength) {
 
				DEBUG(ntp, 1, "Cur_length too big");
 
				bits = 0;
 
				break;
 
			}
 

	
 
			// Not a regular rail tile?
 
			// Then we can't use the code below, but revert to more general code.
 
			if (!IsTileType(tile, MP_RAILWAY) || !IsPlainRailTile(tile)) {
 
				// We found a tile which is not a normal railway tile.
 
				// Determine which tracks that exist on this tile.
 
				bits = GetTileTrackStatus(tile, TRANSPORT_RAIL) & _tpfmode1_and[direction];
 
				bits = (bits | (bits >> 8)) & 0x3F;
 

	
 
				// Check that the tile contains exactly one track
 
				if (bits == 0 || KILL_FIRST_BIT(bits) != 0) break;
 

	
 
				if (!HASBIT(tpf->railtypes, IsTileType(tile, MP_STREET) ? GetRailTypeCrossing(tile) : GetRailType(tile))) {
 
					bits = 0;
 
					break;
 
				}
 

	
 
				///////////////////
 
				// If we reach here, the tile has exactly one track.
 
				//   tile - index to a tile that is not rail tile, but still straight (with optional signals)
 
				//   bits - bitmask of which track that exist on the tile (exactly one bit is set)
 
				//   direction - which direction are we moving in?
 
				///////////////////
 
				si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
 
				si.cur_length += _length_of_track[si.track];
 
				goto callback_and_continue;
 
			}
 

	
 
			/* Regular rail tile, determine which tracks exist. */
 
			allbits = GetTrackBits(tile);
 
			/* Which tracks are reachable? */
 
			bits = allbits & DiagdirReachesTracks(direction);
 

	
 
			/* The tile has no reachable tracks => End of rail segment
 
			 * or Intersection => End of rail segment. We check this agains all the
 
			 * bits, not just reachable ones, to prevent infinite loops. */
 
			if (bits == 0 || TracksOverlap(allbits)) break;
 

	
 
			if (!HASBIT(tpf->railtypes, GetRailType(tile))) {
 
				bits = 0;
 
				break;
 
			}
 

	
 
			/* If we reach here, the tile has exactly one track, and this
 
			 track is reachable => Rail segment continues */
 

	
 
			track = _new_track[FIND_FIRST_BIT(bits)][direction];
 
			assert(track != 0xff);
 

	
 
			si.cur_length += _length_of_track[track];
 

	
 
			// Check if this rail is an upwards slope. If it is, then add a penalty.
 
			// Small optimization here.. if (track&7)>1 then it can't be a slope so we avoid calling GetTileSlope
 
			if ((track & 7) <= 1 && (_is_upwards_slope[GetTileSlope(tile, NULL)] & (1 << track)) ) {
 
				// upwards slope. add some penalty.
 
				si.cur_length += 4*DIAG_FACTOR;
 
			}
 

	
 
			// railway tile with signals..?
 
			if (HasSignals(tile)) {
 
				if (!HasSignalOnTrackdir(tile, track)) {
 
					// if one way signal not pointing towards us, stop going in this direction => End of rail segment.
 
					if (HasSignalOnTrackdir(tile, ReverseTrackdir(track))) {
 
						bits = 0;
 
						break;
 
					}
 
				} else if (GetSignalStateByTrackdir(tile, track) == SIGNAL_STATE_GREEN) {
 
					// green signal in our direction. either one way or two way.
 
					si.state |= 3;
 
				} else {
 
					// reached a red signal.
 
					if (HasSignalOnTrackdir(tile, ReverseTrackdir(track))) {
 
						// two way red signal. unless we passed another green signal on the way,
 
						// stop going in this direction => End of rail segment.
 
						// this is to prevent us from going into a full platform.
 
						if (!(si.state&1)) {
 
							bits = 0;
 
							break;
 
						}
 
					}
 
					if (!(si.state & 2)) {
 
						// Is this the first signal we see? And it's red... add penalty
 
						si.cur_length += 10*DIAG_FACTOR;
 
						si.state += 2; // remember that we added penalty.
 
						// Because we added a penalty, we can't just continue as usual.
 
						// Need to get out and let A* do it's job with
 
						// possibly finding an even shorter path.
 
						break;
 
					}
 
				}
 

	
 
				if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
 
					return; /* Don't process this tile any further */
 
			}
 

	
 
			// continue with the next track
 
			direction = _tpf_new_direction[track];
 

	
 
			// safety check if we're running around chasing our tail... (infinite loop)
 
			if (tile == tile_org) {
 
				bits = 0;
 
				break;
 
			}
 
		}
 

	
 
		// There are no tracks to choose between.
 
		// Stop searching in this direction
 
		if (bits == 0)
 
			continue;
 

	
 
		////////////////
 
		// We got multiple tracks to choose between (intersection).
 
		// Branch the search space into several branches.
 
		////////////////
 

	
 
		// Check if we've already visited this intersection.
 
		// If we've already visited it with a better length, then
 
		// there's no point in visiting it again.
 
		if (!NtpVisit(tpf, tile, direction, si.cur_length))
 
			continue;
 

	
 
		// Push all possible alternatives that we can reach from here
 
		// onto the priority heap.
 
		// 'bits' contains the tracks that we can choose between.
 

	
 
		// First compute the estimated distance to the target.
 
		// This is used to implement A*
 
		estimation = 0;
 
		if (tpf->dest != 0)
 
			estimation = DistanceMoo(tile, tpf->dest);
 

	
 
		si.depth++;
 
		if (si.depth == 0)
 
			continue; /* We overflowed our depth. No more searching in this direction. */
 
		si.tile = tile;
 
		do {
 
			si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
 
			assert(si.track != 0xFF);
 
			si.priority = si.cur_length + estimation;
 

	
 
			// out of stack items, bail out?
 
			if (tpf->nstack >= lengthof(tpf->stack)) {
 
				DEBUG(ntp, 1, "Out of stack");
 
				break;
 
			}
 

	
 
			tpf->stack[tpf->nstack] = si;
 
			HeapifyUp(tpf);
 
		} while ((bits = KILL_FIRST_BIT(bits)) != 0);
 

	
 
		// If this is the first intersection, we need to fill the first_track member.
 
		// so the code outside knows which path is better.
 
		// also randomize the order in which we search through them.
 
		if (si.depth == 1) {
 
			assert(tpf->nstack == 1 || tpf->nstack == 2 || tpf->nstack == 3);
 
			if (tpf->nstack != 1) {
 
				uint32 r = Random();
 
				if (r&1) swap_byte(&tpf->stack[0].track, &tpf->stack[1].track);
 
				if (tpf->nstack != 2) {
 
					byte t = tpf->stack[2].track;
 
					if (r&2) swap_byte(&tpf->stack[0].track, &t);
 
					if (r&4) swap_byte(&tpf->stack[1].track, &t);
 
					tpf->stack[2].first_track = tpf->stack[2].track = t;
 
				}
 
				tpf->stack[0].first_track = tpf->stack[0].track;
 
				tpf->stack[1].first_track = tpf->stack[1].track;
 
			}
 
		}
 

	
 
		// Continue with the next from the queue...
 
	}
 
}
 

	
 

	
 
// new pathfinder for trains. better and faster.
 
void NewTrainPathfind(TileIndex tile, TileIndex dest, RailTypeMask railtypes, DiagDirection direction, NTPEnumProc* enum_proc, void* data)
 
{
 
	NewTrackPathFinder tpf;
 

	
 
	tpf.dest = dest;
 
	tpf.userdata = data;
 
	tpf.enum_proc = enum_proc;
 
	tpf.tracktype = TRANSPORT_RAIL;
 
	tpf.railtypes = railtypes;
 
	tpf.maxlength = min(_patches.pf_maxlength * 3, 10000);
 
	tpf.nstack = 0;
 
	tpf.new_link = tpf.links;
 
	tpf.num_links_left = lengthof(tpf.links);
 
	memset(tpf.hash_head, 0, sizeof(tpf.hash_head));
 

	
 
	NTPEnum(&tpf, tile, direction);
 
}