/* $Id$ */ #include "../stdafx.h" #include "yapf.hpp" #include "yapf_node_road.hpp" template class CYapfCostRoadT { public: typedef typename Types::Tpf Tpf; ///< pathfinder (derived from THIS class) typedef typename Types::TrackFollower TrackFollower; ///< track follower helper typedef typename Types::NodeList::Titem Node; ///< this will be our node type typedef typename Node::Key Key; ///< key to hash tables protected: /// to access inherited path finder Tpf& Yapf() {return *static_cast(this);} int SlopeCost(TileIndex tile, TileIndex next_tile, Trackdir trackdir) { // height of the center of the current tile int x1 = TileX(tile) * TILE_SIZE; int y1 = TileY(tile) * TILE_SIZE; int z1 = GetSlopeZ(x1 + TILE_SIZE / 2, y1 + TILE_SIZE / 2); // height of the center of the next tile int x2 = TileX(next_tile) * TILE_SIZE; int y2 = TileY(next_tile) * TILE_SIZE; int z2 = GetSlopeZ(x2 + TILE_SIZE / 2, y2 + TILE_SIZE / 2); if (z2 - z1 > 1) { /* Slope up */ return Yapf().PfGetSettings().road_slope_penalty; } return 0; } /** return one tile cost */ FORCEINLINE int OneTileCost(TileIndex tile, Trackdir trackdir) { int cost = 0; // set base cost if (IsDiagonalTrackdir(trackdir)) { cost += YAPF_TILE_LENGTH; switch (GetTileType(tile)) { case MP_STREET: /* Increase the cost for level crossings */ if (IsLevelCrossing(tile)) cost += Yapf().PfGetSettings().road_crossing_penalty; break; default: break; } } else { // non-diagonal trackdir cost = YAPF_TILE_CORNER_LENGTH; } return cost; } public: /** Called by YAPF to calculate the cost from the origin to the given node. * Calculates only the cost of given node, adds it to the parent node cost * and stores the result into Node::m_cost member */ FORCEINLINE bool PfCalcCost(Node& n) { int segment_cost = 0; // start at n.m_key.m_tile / n.m_key.m_td and walk to the end of segment TileIndex tile = n.m_key.m_tile; Trackdir trackdir = n.m_key.m_td; while (true) { // base tile cost depending on distance between edges segment_cost += Yapf().OneTileCost(tile, trackdir); // stop if we have just entered the depot if (IsTileDepotType(tile, TRANSPORT_ROAD) && trackdir == DiagdirToDiagTrackdir(ReverseDiagDir(GetRoadDepotDirection(tile)))) { // next time we will reverse and leave the depot break; } // if there are no reachable trackdirs on new tile, we have end of road TrackFollower F(Yapf().GetVehicle()); if (!F.Follow(tile, trackdir)) break; // if there are more trackdirs available & reachable, we are at the end of segment if (KillFirstBit2x64(F.m_new_td_bits) != 0) break; Trackdir new_td = (Trackdir)FindFirstBit2x64(F.m_new_td_bits); // stop if RV is on simple loop with no junctions if (F.m_new_tile == n.m_key.m_tile && new_td == n.m_key.m_td) return false; // if we skipped some tunnel tiles, add their cost segment_cost += F.m_tiles_skipped * YAPF_TILE_LENGTH; // add hilly terrain penalty segment_cost += Yapf().SlopeCost(tile, F.m_new_tile, trackdir); // add min/max speed penalties int min_speed = 0; int max_speed = F.GetSpeedLimit(&min_speed); const Vehicle* v = Yapf().GetVehicle(); if (max_speed < v->max_speed) segment_cost += 1 * (v->max_speed - max_speed); if (min_speed > v->max_speed) segment_cost += 10 * (min_speed - v->max_speed); // move to the next tile tile = F.m_new_tile; trackdir = new_td; }; // save end of segment back to the node n.m_segment_last_tile = tile; n.m_segment_last_td = trackdir; // save also tile cost int parent_cost = (n.m_parent != NULL) ? n.m_parent->m_cost : 0; n.m_cost = parent_cost + segment_cost; return true; } }; template class CYapfDestinationAnyDepotRoadT { public: typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class) typedef typename Types::TrackFollower TrackFollower; typedef typename Types::NodeList::Titem Node; ///< this will be our node type typedef typename Node::Key Key; ///< key to hash tables /// to access inherited path finder Tpf& Yapf() {return *static_cast(this);} /// Called by YAPF to detect if node ends in the desired destination FORCEINLINE bool PfDetectDestination(Node& n) { bool bDest = IsTileDepotType(n.m_segment_last_tile, TRANSPORT_ROAD); return bDest; } /** Called by YAPF to calculate cost estimate. Calculates distance to the destination * adds it to the actual cost from origin and stores the sum to the Node::m_estimate */ FORCEINLINE bool PfCalcEstimate(Node& n) { n.m_estimate = n.m_cost; return true; } }; template class CYapfDestinationTileRoadT { public: typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class) typedef typename Types::TrackFollower TrackFollower; typedef typename Types::NodeList::Titem Node; ///< this will be our node type typedef typename Node::Key Key; ///< key to hash tables protected: TileIndex m_destTile; TrackdirBits m_destTrackdirs; public: void SetDestination(TileIndex tile, TrackdirBits trackdirs) { m_destTile = tile; m_destTrackdirs = trackdirs; } protected: /// to access inherited path finder Tpf& Yapf() {return *static_cast(this);} public: /// Called by YAPF to detect if node ends in the desired destination FORCEINLINE bool PfDetectDestination(Node& n) { bool bDest = (n.m_segment_last_tile == m_destTile) && ((m_destTrackdirs & TrackdirToTrackdirBits(n.m_segment_last_td)) != TRACKDIR_BIT_NONE); return bDest; } /** Called by YAPF to calculate cost estimate. Calculates distance to the destination * adds it to the actual cost from origin and stores the sum to the Node::m_estimate */ inline bool PfCalcEstimate(Node& n) { static int dg_dir_to_x_offs[] = {-1, 0, 1, 0}; static int dg_dir_to_y_offs[] = {0, 1, 0, -1}; if (PfDetectDestination(n)) { n.m_estimate = n.m_cost; return true; } TileIndex tile = n.m_segment_last_tile; DiagDirection exitdir = TrackdirToExitdir(n.m_segment_last_td); int x1 = 2 * TileX(tile) + dg_dir_to_x_offs[(int)exitdir]; int y1 = 2 * TileY(tile) + dg_dir_to_y_offs[(int)exitdir]; int x2 = 2 * TileX(m_destTile); int y2 = 2 * TileY(m_destTile); int dx = abs(x1 - x2); int dy = abs(y1 - y2); int dmin = min(dx, dy); int dxy = abs(dx - dy); int d = dmin * YAPF_TILE_CORNER_LENGTH + (dxy - 1) * (YAPF_TILE_LENGTH / 2); n.m_estimate = n.m_cost + d; assert(n.m_estimate >= n.m_parent->m_estimate); return true; } }; template class CYapfFollowRoadT { public: typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class) typedef typename Types::TrackFollower TrackFollower; typedef typename Types::NodeList::Titem Node; ///< this will be our node type typedef typename Node::Key Key; ///< key to hash tables protected: /// to access inherited path finder FORCEINLINE Tpf& Yapf() {return *static_cast(this);} public: /** Called by YAPF to move from the given node to the next tile. For each * reachable trackdir on the new tile creates new node, initializes it * and adds it to the open list by calling Yapf().AddNewNode(n) */ inline void PfFollowNode(Node& old_node) { TrackFollower F(Yapf().GetVehicle()); if (F.Follow(old_node.m_segment_last_tile, old_node.m_segment_last_td)) Yapf().AddMultipleNodes(&old_node, F.m_new_tile, F.m_new_td_bits); } /// return debug report character to identify the transportation type FORCEINLINE char TransportTypeChar() const {return 'r';} static Trackdir stChooseRoadTrack(Vehicle *v, TileIndex tile, DiagDirection enterdir) { Tpf pf; return pf.ChooseRoadTrack(v, tile, enterdir); } FORCEINLINE Trackdir ChooseRoadTrack(Vehicle *v, TileIndex tile, DiagDirection enterdir) { // handle special case - when next tile is destination tile if (tile == v->dest_tile) { // choose diagonal trackdir reachable from enterdir return (Trackdir)DiagdirToDiagTrackdir(enterdir); } // our source tile will be the next vehicle tile (should be the given one) TileIndex src_tile = tile; // get available trackdirs on the start tile uint ts = GetTileTrackStatus(tile, TRANSPORT_ROAD); TrackdirBits src_trackdirs = (TrackdirBits)(ts & TRACKDIR_BIT_MASK); // select reachable trackdirs only src_trackdirs &= DiagdirReachesTrackdirs(enterdir); // get available trackdirs on the destination tile TileIndex dest_tile = v->dest_tile; uint dest_ts = GetTileTrackStatus(dest_tile, TRANSPORT_ROAD); TrackdirBits dest_trackdirs = (TrackdirBits)(dest_ts & TRACKDIR_BIT_MASK); // set origin and destination nodes Yapf().SetOrigin(src_tile, src_trackdirs); Yapf().SetDestination(dest_tile, dest_trackdirs); // find the best path Yapf().FindPath(v); // if path not found - return INVALID_TRACKDIR Trackdir next_trackdir = INVALID_TRACKDIR; Node* pNode = &Yapf().GetBestNode(); if (pNode != NULL) { // path was found or at least suggested // walk through the path back to its origin while (pNode->m_parent != NULL) { pNode = pNode->m_parent; } // return trackdir from the best origin node (one of start nodes) Node& best_next_node = *pNode; assert(best_next_node.GetTile() == tile); next_trackdir = best_next_node.GetTrackdir(); } return next_trackdir; } static uint stDistanceToTile(const Vehicle *v, TileIndex tile) { Tpf pf; return pf.DistanceToTile(v, tile); } FORCEINLINE uint DistanceToTile(const Vehicle *v, TileIndex dst_tile) { // handle special case - when current tile is the destination tile if (dst_tile == v->tile) { // distance is zero in this case return 0; } if (!SetOriginFromVehiclePos(v)) return UINT_MAX; // set destination tile, trackdir // get available trackdirs on the destination tile uint dest_ts = GetTileTrackStatus(dst_tile, TRANSPORT_ROAD); TrackdirBits dst_td_bits = (TrackdirBits)(dest_ts & TRACKDIR_BIT_MASK); Yapf().SetDestination(dst_tile, dst_td_bits); // find the best path Yapf().FindPath(v); // if path not found - return distance = UINT_MAX uint dist = UINT_MAX; Node* pNode = &Yapf().GetBestNode(); if (pNode != NULL) { // path was found or at least suggested // get the path cost estimate dist = pNode->GetCostEstimate(); } return dist; } /** Return true if the valid origin (tile/trackdir) was set from the current vehicle position. */ FORCEINLINE bool SetOriginFromVehiclePos(const Vehicle *v) { // set origin (tile, trackdir) TileIndex src_tile = v->tile; Trackdir src_td = GetVehicleTrackdir(v); if ((GetTileTrackStatus(src_tile, TRANSPORT_ROAD) & TrackdirToTrackdirBits(src_td)) == 0) { // sometimes the roadveh is not on the road (it resides on non-existing track) // how should we handle that situation? return false; } Yapf().SetOrigin(src_tile, TrackdirToTrackdirBits(src_td)); return true; } static Depot* stFindNearestDepot(Vehicle* v, TileIndex tile, Trackdir td) { Tpf pf; return pf.FindNearestDepot(v, tile, td); } FORCEINLINE Depot* FindNearestDepot(Vehicle* v, TileIndex tile, Trackdir td) { // set origin and destination nodes Yapf().SetOrigin(tile, TrackdirToTrackdirBits(td)); // find the best path bool bFound = Yapf().FindPath(v); if (!bFound) return false; // some path found // get found depot tile Node& n = Yapf().GetBestNode(); TileIndex depot_tile = n.m_segment_last_tile; assert(IsTileDepotType(depot_tile, TRANSPORT_ROAD)); Depot* ret = GetDepotByTile(depot_tile); return ret; } }; template class Tdestination> struct CYapfRoad_TypesT { typedef CYapfRoad_TypesT Types; typedef Tpf_ Tpf; typedef CFollowTrackRoad TrackFollower; typedef Tnode_list NodeList; typedef CYapfBaseT PfBase; typedef CYapfFollowRoadT PfFollow; typedef CYapfOriginTileT PfOrigin; typedef Tdestination PfDestination; typedef CYapfSegmentCostCacheNoneT PfCache; typedef CYapfCostRoadT PfCost; }; struct CYapfRoad1 : CYapfT > {}; struct CYapfRoad2 : CYapfT > {}; struct CYapfRoadAnyDepot1 : CYapfT > {}; struct CYapfRoadAnyDepot2 : CYapfT > {}; Trackdir YapfChooseRoadTrack(Vehicle *v, TileIndex tile, DiagDirection enterdir) { // default is YAPF type 2 typedef Trackdir (*PfnChooseRoadTrack)(Vehicle*, TileIndex, DiagDirection); PfnChooseRoadTrack pfnChooseRoadTrack = &CYapfRoad2::stChooseRoadTrack; // default: ExitDir, allow 90-deg // check if non-default YAPF type should be used if (_patches.yapf.disable_node_optimization) pfnChooseRoadTrack = &CYapfRoad1::stChooseRoadTrack; // Trackdir, allow 90-deg Trackdir td_ret = pfnChooseRoadTrack(v, tile, enterdir); return td_ret; } uint YapfRoadVehDistanceToTile(const Vehicle* v, TileIndex tile) { // default is YAPF type 2 typedef uint (*PfnDistanceToTile)(const Vehicle*, TileIndex); PfnDistanceToTile pfnDistanceToTile = &CYapfRoad2::stDistanceToTile; // default: ExitDir, allow 90-deg // check if non-default YAPF type should be used if (_patches.yapf.disable_node_optimization) pfnDistanceToTile = &CYapfRoad1::stDistanceToTile; // Trackdir, allow 90-deg // measure distance in YAPF units uint dist = pfnDistanceToTile(v, tile); // convert distance to tiles if (dist != UINT_MAX) dist = (dist + 10 - 1) / YAPF_TILE_LENGTH; return dist; } Depot* YapfFindNearestRoadDepot(const Vehicle *v) { TileIndex tile = v->tile; if (v->u.road.state == 255) tile = GetVehicleOutOfTunnelTile(v); Trackdir trackdir = GetVehicleTrackdir(v); if ((GetTileTrackStatus(tile, TRANSPORT_ROAD) & TrackdirToTrackdirBits(trackdir)) == 0) return NULL; // handle the case when our vehicle is already in the depot tile if (IsTileType(tile, MP_STREET) && IsTileDepotType(tile, TRANSPORT_ROAD)) { // only what we need to return is the Depot* return GetDepotByTile(tile); } // default is YAPF type 2 typedef Depot* (*PfnFindNearestDepot)(Vehicle*, TileIndex, Trackdir); PfnFindNearestDepot pfnFindNearestDepot = &CYapfRoadAnyDepot2::stFindNearestDepot; // check if non-default YAPF type should be used if (_patches.yapf.disable_node_optimization) pfnFindNearestDepot = &CYapfRoadAnyDepot1::stFindNearestDepot; // Trackdir, allow 90-deg Depot* ret = pfnFindNearestDepot(const_cast(v), tile, trackdir); return ret; }