/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** * @file saveload.cpp * All actions handling saving and loading goes on in this file. The general actions * are as follows for saving a game (loading is analogous): *
    *
  1. initialize the writer by creating a temporary memory-buffer for it *
  2. go through all to-be saved elements, each 'chunk' (#ChunkHandler) prefixed by a label *
  3. use their description array (#SaveLoad) to know what elements to save and in what version * of the game it was active (used when loading) *
  4. write all data byte-by-byte to the temporary buffer so it is endian-safe *
  5. when the buffer is full; flush it to the output (eg save to file) (_sl.buf, _sl.bufp, _sl.bufe) *
  6. repeat this until everything is done, and flush any remaining output to file *
*/ #include "../stdafx.h" #include "../debug.h" #include "../station_base.h" #include "../thread.h" #include "../town.h" #include "../network/network.h" #include "../window_func.h" #include "../strings_func.h" #include "../core/endian_func.hpp" #include "../vehicle_base.h" #include "../company_func.h" #include "../timer/timer_game_calendar.h" #include "../autoreplace_base.h" #include "../roadstop_base.h" #include "../linkgraph/linkgraph.h" #include "../linkgraph/linkgraphjob.h" #include "../statusbar_gui.h" #include "../fileio_func.h" #include "../gamelog.h" #include "../string_func.h" #include "../fios.h" #include "../error.h" #include #include #ifdef __EMSCRIPTEN__ # include #endif #include "table/strings.h" #include "saveload_internal.h" #include "saveload_filter.h" #include "../safeguards.h" extern const SaveLoadVersion SAVEGAME_VERSION = (SaveLoadVersion)(SL_MAX_VERSION - 1); ///< Current savegame version of OpenTTD. SavegameType _savegame_type; ///< type of savegame we are loading FileToSaveLoad _file_to_saveload; ///< File to save or load in the openttd loop. uint32 _ttdp_version; ///< version of TTDP savegame (if applicable) SaveLoadVersion _sl_version; ///< the major savegame version identifier byte _sl_minor_version; ///< the minor savegame version, DO NOT USE! std::string _savegame_format; ///< how to compress savegames bool _do_autosave; ///< are we doing an autosave at the moment? /** What are we currently doing? */ enum SaveLoadAction { SLA_LOAD, ///< loading SLA_SAVE, ///< saving SLA_PTRS, ///< fixing pointers SLA_NULL, ///< null all pointers (on loading error) SLA_LOAD_CHECK, ///< partial loading into #_load_check_data }; enum NeedLength { NL_NONE = 0, ///< not working in NeedLength mode NL_WANTLENGTH = 1, ///< writing length and data NL_CALCLENGTH = 2, ///< need to calculate the length }; /** Save in chunks of 128 KiB. */ static const size_t MEMORY_CHUNK_SIZE = 128 * 1024; /** A buffer for reading (and buffering) savegame data. */ struct ReadBuffer { byte buf[MEMORY_CHUNK_SIZE]; ///< Buffer we're going to read from. byte *bufp; ///< Location we're at reading the buffer. byte *bufe; ///< End of the buffer we can read from. LoadFilter *reader; ///< The filter used to actually read. size_t read; ///< The amount of read bytes so far from the filter. /** * Initialise our variables. * @param reader The filter to actually read data. */ ReadBuffer(LoadFilter *reader) : bufp(nullptr), bufe(nullptr), reader(reader), read(0) { } inline byte ReadByte() { if (this->bufp == this->bufe) { size_t len = this->reader->Read(this->buf, lengthof(this->buf)); if (len == 0) SlErrorCorrupt("Unexpected end of chunk"); this->read += len; this->bufp = this->buf; this->bufe = this->buf + len; } return *this->bufp++; } /** * Get the size of the memory dump made so far. * @return The size. */ size_t GetSize() const { return this->read - (this->bufe - this->bufp); } }; /** Container for dumping the savegame (quickly) to memory. */ struct MemoryDumper { std::vector blocks; ///< Buffer with blocks of allocated memory. byte *buf; ///< Buffer we're going to write to. byte *bufe; ///< End of the buffer we write to. /** Initialise our variables. */ MemoryDumper() : buf(nullptr), bufe(nullptr) { } ~MemoryDumper() { for (auto p : this->blocks) { free(p); } } /** * Write a single byte into the dumper. * @param b The byte to write. */ inline void WriteByte(byte b) { /* Are we at the end of this chunk? */ if (this->buf == this->bufe) { this->buf = CallocT(MEMORY_CHUNK_SIZE); this->blocks.push_back(this->buf); this->bufe = this->buf + MEMORY_CHUNK_SIZE; } *this->buf++ = b; } /** * Flush this dumper into a writer. * @param writer The filter we want to use. */ void Flush(SaveFilter *writer) { uint i = 0; size_t t = this->GetSize(); while (t > 0) { size_t to_write = std::min(MEMORY_CHUNK_SIZE, t); writer->Write(this->blocks[i++], to_write); t -= to_write; } writer->Finish(); } /** * Get the size of the memory dump made so far. * @return The size. */ size_t GetSize() const { return this->blocks.size() * MEMORY_CHUNK_SIZE - (this->bufe - this->buf); } }; /** The saveload struct, containing reader-writer functions, buffer, version, etc. */ struct SaveLoadParams { SaveLoadAction action; ///< are we doing a save or a load atm. NeedLength need_length; ///< working in NeedLength (Autolength) mode? byte block_mode; ///< ??? bool error; ///< did an error occur or not size_t obj_len; ///< the length of the current object we are busy with int array_index, last_array_index; ///< in the case of an array, the current and last positions bool expect_table_header; ///< In the case of a table, if the header is saved/loaded. MemoryDumper *dumper; ///< Memory dumper to write the savegame to. SaveFilter *sf; ///< Filter to write the savegame to. ReadBuffer *reader; ///< Savegame reading buffer. LoadFilter *lf; ///< Filter to read the savegame from. StringID error_str; ///< the translatable error message to show std::string extra_msg; ///< the error message bool saveinprogress; ///< Whether there is currently a save in progress. }; static SaveLoadParams _sl; ///< Parameters used for/at saveload. static const std::vector &ChunkHandlers() { /* These define the chunks */ extern const ChunkHandlerTable _gamelog_chunk_handlers; extern const ChunkHandlerTable _map_chunk_handlers; extern const ChunkHandlerTable _misc_chunk_handlers; extern const ChunkHandlerTable _name_chunk_handlers; extern const ChunkHandlerTable _cheat_chunk_handlers; extern const ChunkHandlerTable _setting_chunk_handlers; extern const ChunkHandlerTable _company_chunk_handlers; extern const ChunkHandlerTable _engine_chunk_handlers; extern const ChunkHandlerTable _veh_chunk_handlers; extern const ChunkHandlerTable _waypoint_chunk_handlers; extern const ChunkHandlerTable _depot_chunk_handlers; extern const ChunkHandlerTable _order_chunk_handlers; extern const ChunkHandlerTable _town_chunk_handlers; extern const ChunkHandlerTable _sign_chunk_handlers; extern const ChunkHandlerTable _station_chunk_handlers; extern const ChunkHandlerTable _industry_chunk_handlers; extern const ChunkHandlerTable _economy_chunk_handlers; extern const ChunkHandlerTable _subsidy_chunk_handlers; extern const ChunkHandlerTable _cargomonitor_chunk_handlers; extern const ChunkHandlerTable _goal_chunk_handlers; extern const ChunkHandlerTable _story_page_chunk_handlers; extern const ChunkHandlerTable _league_chunk_handlers; extern const ChunkHandlerTable _ai_chunk_handlers; extern const ChunkHandlerTable _game_chunk_handlers; extern const ChunkHandlerTable _animated_tile_chunk_handlers; extern const ChunkHandlerTable _newgrf_chunk_handlers; extern const ChunkHandlerTable _group_chunk_handlers; extern const ChunkHandlerTable _cargopacket_chunk_handlers; extern const ChunkHandlerTable _autoreplace_chunk_handlers; extern const ChunkHandlerTable _labelmaps_chunk_handlers; extern const ChunkHandlerTable _linkgraph_chunk_handlers; extern const ChunkHandlerTable _airport_chunk_handlers; extern const ChunkHandlerTable _object_chunk_handlers; extern const ChunkHandlerTable _persistent_storage_chunk_handlers; /** List of all chunks in a savegame. */ static const ChunkHandlerTable _chunk_handler_tables[] = { _gamelog_chunk_handlers, _map_chunk_handlers, _misc_chunk_handlers, _name_chunk_handlers, _cheat_chunk_handlers, _setting_chunk_handlers, _veh_chunk_handlers, _waypoint_chunk_handlers, _depot_chunk_handlers, _order_chunk_handlers, _industry_chunk_handlers, _economy_chunk_handlers, _subsidy_chunk_handlers, _cargomonitor_chunk_handlers, _goal_chunk_handlers, _story_page_chunk_handlers, _league_chunk_handlers, _engine_chunk_handlers, _town_chunk_handlers, _sign_chunk_handlers, _station_chunk_handlers, _company_chunk_handlers, _ai_chunk_handlers, _game_chunk_handlers, _animated_tile_chunk_handlers, _newgrf_chunk_handlers, _group_chunk_handlers, _cargopacket_chunk_handlers, _autoreplace_chunk_handlers, _labelmaps_chunk_handlers, _linkgraph_chunk_handlers, _airport_chunk_handlers, _object_chunk_handlers, _persistent_storage_chunk_handlers, }; static std::vector _chunk_handlers; if (_chunk_handlers.empty()) { for (auto &chunk_handler_table : _chunk_handler_tables) { for (auto &chunk_handler : chunk_handler_table) { _chunk_handlers.push_back(chunk_handler); } } } return _chunk_handlers; } /** Null all pointers (convert index -> nullptr) */ static void SlNullPointers() { _sl.action = SLA_NULL; /* We don't want any savegame conversion code to run * during NULLing; especially those that try to get * pointers from other pools. */ _sl_version = SAVEGAME_VERSION; for (const ChunkHandler &ch : ChunkHandlers()) { Debug(sl, 3, "Nulling pointers for {}", ch.GetName()); ch.FixPointers(); } assert(_sl.action == SLA_NULL); } /** * Error handler. Sets everything up to show an error message and to clean * up the mess of a partial savegame load. * @param string The translatable error message to show. * @param extra_msg An extra error message coming from one of the APIs. * @note This function does never return as it throws an exception to * break out of all the saveload code. */ void NORETURN SlError(StringID string, const std::string &extra_msg) { /* Distinguish between loading into _load_check_data vs. normal save/load. */ if (_sl.action == SLA_LOAD_CHECK) { _load_check_data.error = string; _load_check_data.error_msg = extra_msg; } else { _sl.error_str = string; _sl.extra_msg = extra_msg; } /* We have to nullptr all pointers here; we might be in a state where * the pointers are actually filled with indices, which means that * when we access them during cleaning the pool dereferences of * those indices will be made with segmentation faults as result. */ if (_sl.action == SLA_LOAD || _sl.action == SLA_PTRS) SlNullPointers(); /* Logging could be active. */ _gamelog.StopAnyAction(); throw std::exception(); } /** * Error handler for corrupt savegames. Sets everything up to show the * error message and to clean up the mess of a partial savegame load. * @param msg Location the corruption has been spotted. * @note This function does never return as it throws an exception to * break out of all the saveload code. */ void NORETURN SlErrorCorrupt(const std::string &msg) { SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_SAVEGAME, msg); } typedef void (*AsyncSaveFinishProc)(); ///< Callback for when the savegame loading is finished. static std::atomic _async_save_finish; ///< Callback to call when the savegame loading is finished. static std::thread _save_thread; ///< The thread we're using to compress and write a savegame /** * Called by save thread to tell we finished saving. * @param proc The callback to call when saving is done. */ static void SetAsyncSaveFinish(AsyncSaveFinishProc proc) { if (_exit_game) return; while (_async_save_finish.load(std::memory_order_acquire) != nullptr) CSleep(10); _async_save_finish.store(proc, std::memory_order_release); } /** * Handle async save finishes. */ void ProcessAsyncSaveFinish() { AsyncSaveFinishProc proc = _async_save_finish.exchange(nullptr, std::memory_order_acq_rel); if (proc == nullptr) return; proc(); if (_save_thread.joinable()) { _save_thread.join(); } } /** * Wrapper for reading a byte from the buffer. * @return The read byte. */ byte SlReadByte() { return _sl.reader->ReadByte(); } /** * Wrapper for writing a byte to the dumper. * @param b The byte to write. */ void SlWriteByte(byte b) { _sl.dumper->WriteByte(b); } static inline int SlReadUint16() { int x = SlReadByte() << 8; return x | SlReadByte(); } static inline uint32 SlReadUint32() { uint32 x = SlReadUint16() << 16; return x | SlReadUint16(); } static inline uint64 SlReadUint64() { uint32 x = SlReadUint32(); uint32 y = SlReadUint32(); return (uint64)x << 32 | y; } static inline void SlWriteUint16(uint16 v) { SlWriteByte(GB(v, 8, 8)); SlWriteByte(GB(v, 0, 8)); } static inline void SlWriteUint32(uint32 v) { SlWriteUint16(GB(v, 16, 16)); SlWriteUint16(GB(v, 0, 16)); } static inline void SlWriteUint64(uint64 x) { SlWriteUint32((uint32)(x >> 32)); SlWriteUint32((uint32)x); } /** * Read in the header descriptor of an object or an array. * If the highest bit is set (7), then the index is bigger than 127 * elements, so use the next byte to read in the real value. * The actual value is then both bytes added with the first shifted * 8 bits to the left, and dropping the highest bit (which only indicated a big index). * x = ((x & 0x7F) << 8) + SlReadByte(); * @return Return the value of the index */ static uint SlReadSimpleGamma() { uint i = SlReadByte(); if (HasBit(i, 7)) { i &= ~0x80; if (HasBit(i, 6)) { i &= ~0x40; if (HasBit(i, 5)) { i &= ~0x20; if (HasBit(i, 4)) { i &= ~0x10; if (HasBit(i, 3)) { SlErrorCorrupt("Unsupported gamma"); } i = SlReadByte(); // 32 bits only. } i = (i << 8) | SlReadByte(); } i = (i << 8) | SlReadByte(); } i = (i << 8) | SlReadByte(); } return i; } /** * Write the header descriptor of an object or an array. * If the element is bigger than 127, use 2 bytes for saving * and use the highest byte of the first written one as a notice * that the length consists of 2 bytes, etc.. like this: * 0xxxxxxx * 10xxxxxx xxxxxxxx * 110xxxxx xxxxxxxx xxxxxxxx * 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx * 11110--- xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx * We could extend the scheme ad infinum to support arbitrarily * large chunks, but as sizeof(size_t) == 4 is still very common * we don't support anything above 32 bits. That's why in the last * case the 3 most significant bits are unused. * @param i Index being written */ static void SlWriteSimpleGamma(size_t i) { if (i >= (1 << 7)) { if (i >= (1 << 14)) { if (i >= (1 << 21)) { if (i >= (1 << 28)) { assert(i <= UINT32_MAX); // We can only support 32 bits for now. SlWriteByte((byte)(0xF0)); SlWriteByte((byte)(i >> 24)); } else { SlWriteByte((byte)(0xE0 | (i >> 24))); } SlWriteByte((byte)(i >> 16)); } else { SlWriteByte((byte)(0xC0 | (i >> 16))); } SlWriteByte((byte)(i >> 8)); } else { SlWriteByte((byte)(0x80 | (i >> 8))); } } SlWriteByte((byte)i); } /** Return how many bytes used to encode a gamma value */ static inline uint SlGetGammaLength(size_t i) { return 1 + (i >= (1 << 7)) + (i >= (1 << 14)) + (i >= (1 << 21)) + (i >= (1 << 28)); } static inline uint SlReadSparseIndex() { return SlReadSimpleGamma(); } static inline void SlWriteSparseIndex(uint index) { SlWriteSimpleGamma(index); } static inline uint SlReadArrayLength() { return SlReadSimpleGamma(); } static inline void SlWriteArrayLength(size_t length) { SlWriteSimpleGamma(length); } static inline uint SlGetArrayLength(size_t length) { return SlGetGammaLength(length); } /** * Return the type as saved/loaded inside the savegame. */ static uint8 GetSavegameFileType(const SaveLoad &sld) { switch (sld.cmd) { case SL_VAR: return GetVarFileType(sld.conv); break; case SL_STDSTR: case SL_ARR: case SL_VECTOR: case SL_DEQUE: return GetVarFileType(sld.conv) | SLE_FILE_HAS_LENGTH_FIELD; break; case SL_REF: return IsSavegameVersionBefore(SLV_69) ? SLE_FILE_U16 : SLE_FILE_U32; case SL_REFLIST: return (IsSavegameVersionBefore(SLV_69) ? SLE_FILE_U16 : SLE_FILE_U32) | SLE_FILE_HAS_LENGTH_FIELD; case SL_SAVEBYTE: return SLE_FILE_U8; case SL_STRUCT: case SL_STRUCTLIST: return SLE_FILE_STRUCT | SLE_FILE_HAS_LENGTH_FIELD; default: NOT_REACHED(); } } /** * Return the size in bytes of a certain type of normal/atomic variable * as it appears in memory. See VarTypes * @param conv VarType type of variable that is used for calculating the size * @return Return the size of this type in bytes */ static inline uint SlCalcConvMemLen(VarType conv) { static const byte conv_mem_size[] = {1, 1, 1, 2, 2, 4, 4, 8, 8, 0}; switch (GetVarMemType(conv)) { case SLE_VAR_STR: case SLE_VAR_STRQ: return SlReadArrayLength(); default: uint8 type = GetVarMemType(conv) >> 4; assert(type < lengthof(conv_mem_size)); return conv_mem_size[type]; } } /** * Return the size in bytes of a certain type of normal/atomic variable * as it appears in a saved game. See VarTypes * @param conv VarType type of variable that is used for calculating the size * @return Return the size of this type in bytes */ static inline byte SlCalcConvFileLen(VarType conv) { static const byte conv_file_size[] = {0, 1, 1, 2, 2, 4, 4, 8, 8, 2}; uint8 type = GetVarFileType(conv); assert(type < lengthof(conv_file_size)); return conv_file_size[type]; } /** Return the size in bytes of a reference (pointer) */ static inline size_t SlCalcRefLen() { return IsSavegameVersionBefore(SLV_69) ? 2 : 4; } void SlSetArrayIndex(uint index) { _sl.need_length = NL_WANTLENGTH; _sl.array_index = index; } static size_t _next_offs; /** * Iterate through the elements of an array and read the whole thing * @return The index of the object, or -1 if we have reached the end of current block */ int SlIterateArray() { /* After reading in the whole array inside the loop * we must have read in all the data, so we must be at end of current block. */ if (_next_offs != 0 && _sl.reader->GetSize() != _next_offs) { SlErrorCorruptFmt("Invalid chunk size iterating array - expected to be at position {}, actually at {}", _next_offs, _sl.reader->GetSize()); } for (;;) { uint length = SlReadArrayLength(); if (length == 0) { assert(!_sl.expect_table_header); _next_offs = 0; return -1; } _sl.obj_len = --length; _next_offs = _sl.reader->GetSize() + length; if (_sl.expect_table_header) { _sl.expect_table_header = false; return INT32_MAX; } int index; switch (_sl.block_mode) { case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: index = (int)SlReadSparseIndex(); break; case CH_TABLE: case CH_ARRAY: index = _sl.array_index++; break; default: Debug(sl, 0, "SlIterateArray error"); return -1; // error } if (length != 0) return index; } } /** * Skip an array or sparse array */ void SlSkipArray() { while (SlIterateArray() != -1) { SlSkipBytes(_next_offs - _sl.reader->GetSize()); } } /** * Sets the length of either a RIFF object or the number of items in an array. * This lets us load an object or an array of arbitrary size * @param length The length of the sought object/array */ void SlSetLength(size_t length) { assert(_sl.action == SLA_SAVE); switch (_sl.need_length) { case NL_WANTLENGTH: _sl.need_length = NL_NONE; if ((_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE) && _sl.expect_table_header) { _sl.expect_table_header = false; SlWriteArrayLength(length + 1); break; } switch (_sl.block_mode) { case CH_RIFF: /* Ugly encoding of >16M RIFF chunks * The lower 24 bits are normal * The uppermost 4 bits are bits 24:27 */ assert(length < (1 << 28)); SlWriteUint32((uint32)((length & 0xFFFFFF) | ((length >> 24) << 28))); break; case CH_TABLE: case CH_ARRAY: assert(_sl.last_array_index <= _sl.array_index); while (++_sl.last_array_index <= _sl.array_index) { SlWriteArrayLength(1); } SlWriteArrayLength(length + 1); break; case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: SlWriteArrayLength(length + 1 + SlGetArrayLength(_sl.array_index)); // Also include length of sparse index. SlWriteSparseIndex(_sl.array_index); break; default: NOT_REACHED(); } break; case NL_CALCLENGTH: _sl.obj_len += (int)length; break; default: NOT_REACHED(); } } /** * Save/Load bytes. These do not need to be converted to Little/Big Endian * so directly write them or read them to/from file * @param ptr The source or destination of the object being manipulated * @param length number of bytes this fast CopyBytes lasts */ static void SlCopyBytes(void *ptr, size_t length) { byte *p = (byte *)ptr; switch (_sl.action) { case SLA_LOAD_CHECK: case SLA_LOAD: for (; length != 0; length--) *p++ = SlReadByte(); break; case SLA_SAVE: for (; length != 0; length--) SlWriteByte(*p++); break; default: NOT_REACHED(); } } /** Get the length of the current object */ size_t SlGetFieldLength() { return _sl.obj_len; } /** * Return a signed-long version of the value of a setting * @param ptr pointer to the variable * @param conv type of variable, can be a non-clean * type, eg one with other flags because it is parsed * @return returns the value of the pointer-setting */ int64 ReadValue(const void *ptr, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: return (*(const bool *)ptr != 0); case SLE_VAR_I8: return *(const int8 *)ptr; case SLE_VAR_U8: return *(const byte *)ptr; case SLE_VAR_I16: return *(const int16 *)ptr; case SLE_VAR_U16: return *(const uint16*)ptr; case SLE_VAR_I32: return *(const int32 *)ptr; case SLE_VAR_U32: return *(const uint32*)ptr; case SLE_VAR_I64: return *(const int64 *)ptr; case SLE_VAR_U64: return *(const uint64*)ptr; case SLE_VAR_NULL:return 0; default: NOT_REACHED(); } } /** * Write the value of a setting * @param ptr pointer to the variable * @param conv type of variable, can be a non-clean type, eg * with other flags. It is parsed upon read * @param val the new value being given to the variable */ void WriteValue(void *ptr, VarType conv, int64 val) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: *(bool *)ptr = (val != 0); break; case SLE_VAR_I8: *(int8 *)ptr = val; break; case SLE_VAR_U8: *(byte *)ptr = val; break; case SLE_VAR_I16: *(int16 *)ptr = val; break; case SLE_VAR_U16: *(uint16*)ptr = val; break; case SLE_VAR_I32: *(int32 *)ptr = val; break; case SLE_VAR_U32: *(uint32*)ptr = val; break; case SLE_VAR_I64: *(int64 *)ptr = val; break; case SLE_VAR_U64: *(uint64*)ptr = val; break; case SLE_VAR_NAME: *reinterpret_cast(ptr) = CopyFromOldName(val); break; case SLE_VAR_NULL: break; default: NOT_REACHED(); } } /** * Handle all conversion and typechecking of variables here. * In the case of saving, read in the actual value from the struct * and then write them to file, endian safely. Loading a value * goes exactly the opposite way * @param ptr The object being filled/read * @param conv VarType type of the current element of the struct */ static void SlSaveLoadConv(void *ptr, VarType conv) { switch (_sl.action) { case SLA_SAVE: { int64 x = ReadValue(ptr, conv); /* Write the value to the file and check if its value is in the desired range */ switch (GetVarFileType(conv)) { case SLE_FILE_I8: assert(x >= -128 && x <= 127); SlWriteByte(x);break; case SLE_FILE_U8: assert(x >= 0 && x <= 255); SlWriteByte(x);break; case SLE_FILE_I16:assert(x >= -32768 && x <= 32767); SlWriteUint16(x);break; case SLE_FILE_STRINGID: case SLE_FILE_U16:assert(x >= 0 && x <= 65535); SlWriteUint16(x);break; case SLE_FILE_I32: case SLE_FILE_U32: SlWriteUint32((uint32)x);break; case SLE_FILE_I64: case SLE_FILE_U64: SlWriteUint64(x);break; default: NOT_REACHED(); } break; } case SLA_LOAD_CHECK: case SLA_LOAD: { int64 x; /* Read a value from the file */ switch (GetVarFileType(conv)) { case SLE_FILE_I8: x = (int8 )SlReadByte(); break; case SLE_FILE_U8: x = (byte )SlReadByte(); break; case SLE_FILE_I16: x = (int16 )SlReadUint16(); break; case SLE_FILE_U16: x = (uint16)SlReadUint16(); break; case SLE_FILE_I32: x = (int32 )SlReadUint32(); break; case SLE_FILE_U32: x = (uint32)SlReadUint32(); break; case SLE_FILE_I64: x = (int64 )SlReadUint64(); break; case SLE_FILE_U64: x = (uint64)SlReadUint64(); break; case SLE_FILE_STRINGID: x = RemapOldStringID((uint16)SlReadUint16()); break; default: NOT_REACHED(); } /* Write The value to the struct. These ARE endian safe. */ WriteValue(ptr, conv, x); break; } case SLA_PTRS: break; case SLA_NULL: break; default: NOT_REACHED(); } } /** * Calculate the gross length of the string that it * will occupy in the savegame. This includes the real length, returned * by SlCalcNetStringLen and the length that the index will occupy. * @param ptr Pointer to the \c std::string. * @return The gross length of the string. */ static inline size_t SlCalcStdStringLen(const void *ptr) { const std::string *str = reinterpret_cast(ptr); size_t len = str->length(); return len + SlGetArrayLength(len); // also include the length of the index } /** * Save/Load a \c std::string. * @param ptr the string being manipulated * @param conv must be SLE_FILE_STRING */ static void SlStdString(void *ptr, VarType conv) { std::string *str = reinterpret_cast(ptr); switch (_sl.action) { case SLA_SAVE: { size_t len = str->length(); SlWriteArrayLength(len); SlCopyBytes(const_cast(static_cast(str->c_str())), len); break; } case SLA_LOAD_CHECK: case SLA_LOAD: { size_t len = SlReadArrayLength(); if (GetVarMemType(conv) == SLE_VAR_NULL) { SlSkipBytes(len); return; } str->resize(len + 1); SlCopyBytes(str->data(), len); (*str)[len] = '\0'; // properly terminate the string StringValidationSettings settings = SVS_REPLACE_WITH_QUESTION_MARK; if ((conv & SLF_ALLOW_CONTROL) != 0) { settings = settings | SVS_ALLOW_CONTROL_CODE; if (IsSavegameVersionBefore(SLV_169)) { str_fix_scc_encoded(str->data(), str->data() + len); } } if ((conv & SLF_ALLOW_NEWLINE) != 0) { settings = settings | SVS_ALLOW_NEWLINE; } *str = StrMakeValid(*str, settings); } case SLA_PTRS: break; case SLA_NULL: break; default: NOT_REACHED(); } } /** * Internal function to save/Load a list of SL_VARs. * SlCopy() and SlArray() are very similar, with the exception of the header. * This function represents the common part. * @param object The object being manipulated. * @param length The length of the object in elements * @param conv VarType type of the items. */ static void SlCopyInternal(void *object, size_t length, VarType conv) { if (GetVarMemType(conv) == SLE_VAR_NULL) { assert(_sl.action != SLA_SAVE); // Use SL_NULL if you want to write null-bytes SlSkipBytes(length * SlCalcConvFileLen(conv)); return; } /* NOTICE - handle some buggy stuff, in really old versions everything was saved * as a byte-type. So detect this, and adjust object size accordingly */ if (_sl.action != SLA_SAVE && _sl_version == 0) { /* all objects except difficulty settings */ if (conv == SLE_INT16 || conv == SLE_UINT16 || conv == SLE_STRINGID || conv == SLE_INT32 || conv == SLE_UINT32) { SlCopyBytes(object, length * SlCalcConvFileLen(conv)); return; } /* used for conversion of Money 32bit->64bit */ if (conv == (SLE_FILE_I32 | SLE_VAR_I64)) { for (uint i = 0; i < length; i++) { ((int64*)object)[i] = (int32)BSWAP32(SlReadUint32()); } return; } } /* If the size of elements is 1 byte both in file and memory, no special * conversion is needed, use specialized copy-copy function to speed up things */ if (conv == SLE_INT8 || conv == SLE_UINT8) { SlCopyBytes(object, length); } else { byte *a = (byte*)object; byte mem_size = SlCalcConvMemLen(conv); for (; length != 0; length --) { SlSaveLoadConv(a, conv); a += mem_size; // get size } } } /** * Copy a list of SL_VARs to/from a savegame. * These entries are copied as-is, and you as caller have to make sure things * like length-fields are calculated correctly. * @param object The object being manipulated. * @param length The length of the object in elements * @param conv VarType type of the items. */ void SlCopy(void *object, size_t length, VarType conv) { if (_sl.action == SLA_PTRS || _sl.action == SLA_NULL) return; /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(length * SlCalcConvFileLen(conv)); /* Determine length only? */ if (_sl.need_length == NL_CALCLENGTH) return; } SlCopyInternal(object, length, conv); } /** * Return the size in bytes of a certain type of atomic array * @param length The length of the array counted in elements * @param conv VarType type of the variable that is used in calculating the size */ static inline size_t SlCalcArrayLen(size_t length, VarType conv) { return SlCalcConvFileLen(conv) * length + SlGetArrayLength(length); } /** * Save/Load the length of the array followed by the array of SL_VAR elements. * @param array The array being manipulated * @param length The length of the array in elements * @param conv VarType type of the atomic array (int, byte, uint64, etc.) */ static void SlArray(void *array, size_t length, VarType conv) { switch (_sl.action) { case SLA_SAVE: SlWriteArrayLength(length); SlCopyInternal(array, length, conv); return; case SLA_LOAD_CHECK: case SLA_LOAD: { if (!IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) { size_t sv_length = SlReadArrayLength(); if (GetVarMemType(conv) == SLE_VAR_NULL) { /* We don't know this field, so we assume the length in the savegame is correct. */ length = sv_length; } else if (sv_length != length) { /* If the SLE_ARR changes size, a savegame bump is required * and the developer should have written conversion lines. * Error out to make this more visible. */ SlErrorCorrupt("Fixed-length array is of wrong length"); } } SlCopyInternal(array, length, conv); return; } case SLA_PTRS: case SLA_NULL: return; default: NOT_REACHED(); } } /** * Pointers cannot be saved to a savegame, so this functions gets * the index of the item, and if not available, it hussles with * pointers (looks really bad :() * Remember that a nullptr item has value 0, and all * indices have +1, so vehicle 0 is saved as index 1. * @param obj The object that we want to get the index of * @param rt SLRefType type of the object the index is being sought of * @return Return the pointer converted to an index of the type pointed to */ static size_t ReferenceToInt(const void *obj, SLRefType rt) { assert(_sl.action == SLA_SAVE); if (obj == nullptr) return 0; switch (rt) { case REF_VEHICLE_OLD: // Old vehicles we save as new ones case REF_VEHICLE: return ((const Vehicle*)obj)->index + 1; case REF_STATION: return ((const Station*)obj)->index + 1; case REF_TOWN: return ((const Town*)obj)->index + 1; case REF_ORDER: return ((const Order*)obj)->index + 1; case REF_ROADSTOPS: return ((const RoadStop*)obj)->index + 1; case REF_ENGINE_RENEWS: return ((const EngineRenew*)obj)->index + 1; case REF_CARGO_PACKET: return ((const CargoPacket*)obj)->index + 1; case REF_ORDERLIST: return ((const OrderList*)obj)->index + 1; case REF_STORAGE: return ((const PersistentStorage*)obj)->index + 1; case REF_LINK_GRAPH: return ((const LinkGraph*)obj)->index + 1; case REF_LINK_GRAPH_JOB: return ((const LinkGraphJob*)obj)->index + 1; default: NOT_REACHED(); } } /** * Pointers cannot be loaded from a savegame, so this function * gets the index from the savegame and returns the appropriate * pointer from the already loaded base. * Remember that an index of 0 is a nullptr pointer so all indices * are +1 so vehicle 0 is saved as 1. * @param index The index that is being converted to a pointer * @param rt SLRefType type of the object the pointer is sought of * @return Return the index converted to a pointer of any type */ static void *IntToReference(size_t index, SLRefType rt) { static_assert(sizeof(size_t) <= sizeof(void *)); assert(_sl.action == SLA_PTRS); /* After version 4.3 REF_VEHICLE_OLD is saved as REF_VEHICLE, * and should be loaded like that */ if (rt == REF_VEHICLE_OLD && !IsSavegameVersionBefore(SLV_4, 4)) { rt = REF_VEHICLE; } /* No need to look up nullptr pointers, just return immediately */ if (index == (rt == REF_VEHICLE_OLD ? 0xFFFF : 0)) return nullptr; /* Correct index. Old vehicles were saved differently: * invalid vehicle was 0xFFFF, now we use 0x0000 for everything invalid. */ if (rt != REF_VEHICLE_OLD) index--; switch (rt) { case REF_ORDERLIST: if (OrderList::IsValidID(index)) return OrderList::Get(index); SlErrorCorrupt("Referencing invalid OrderList"); case REF_ORDER: if (Order::IsValidID(index)) return Order::Get(index); /* in old versions, invalid order was used to mark end of order list */ if (IsSavegameVersionBefore(SLV_5, 2)) return nullptr; SlErrorCorrupt("Referencing invalid Order"); case REF_VEHICLE_OLD: case REF_VEHICLE: if (Vehicle::IsValidID(index)) return Vehicle::Get(index); SlErrorCorrupt("Referencing invalid Vehicle"); case REF_STATION: if (Station::IsValidID(index)) return Station::Get(index); SlErrorCorrupt("Referencing invalid Station"); case REF_TOWN: if (Town::IsValidID(index)) return Town::Get(index); SlErrorCorrupt("Referencing invalid Town"); case REF_ROADSTOPS: if (RoadStop::IsValidID(index)) return RoadStop::Get(index); SlErrorCorrupt("Referencing invalid RoadStop"); case REF_ENGINE_RENEWS: if (EngineRenew::IsValidID(index)) return EngineRenew::Get(index); SlErrorCorrupt("Referencing invalid EngineRenew"); case REF_CARGO_PACKET: if (CargoPacket::IsValidID(index)) return CargoPacket::Get(index); SlErrorCorrupt("Referencing invalid CargoPacket"); case REF_STORAGE: if (PersistentStorage::IsValidID(index)) return PersistentStorage::Get(index); SlErrorCorrupt("Referencing invalid PersistentStorage"); case REF_LINK_GRAPH: if (LinkGraph::IsValidID(index)) return LinkGraph::Get(index); SlErrorCorrupt("Referencing invalid LinkGraph"); case REF_LINK_GRAPH_JOB: if (LinkGraphJob::IsValidID(index)) return LinkGraphJob::Get(index); SlErrorCorrupt("Referencing invalid LinkGraphJob"); default: NOT_REACHED(); } } /** * Handle conversion for references. * @param ptr The object being filled/read. * @param conv VarType type of the current element of the struct. */ void SlSaveLoadRef(void *ptr, VarType conv) { switch (_sl.action) { case SLA_SAVE: SlWriteUint32((uint32)ReferenceToInt(*(void **)ptr, (SLRefType)conv)); break; case SLA_LOAD_CHECK: case SLA_LOAD: *(size_t *)ptr = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : SlReadUint32(); break; case SLA_PTRS: *(void **)ptr = IntToReference(*(size_t *)ptr, (SLRefType)conv); break; case SLA_NULL: *(void **)ptr = nullptr; break; default: NOT_REACHED(); } } /** * Template class to help with list-like types. */ template typename Tstorage, typename Tvar, typename Tallocator = std::allocator> class SlStorageHelper { typedef Tstorage SlStorageT; public: /** * Internal templated helper to return the size in bytes of a list-like type. * @param storage The storage to find the size of * @param conv VarType type of variable that is used for calculating the size * @param cmd The SaveLoadType ware are saving/loading. */ static size_t SlCalcLen(const void *storage, VarType conv, SaveLoadType cmd = SL_VAR) { assert(cmd == SL_VAR || cmd == SL_REF); const SlStorageT *list = static_cast(storage); int type_size = SlGetArrayLength(list->size()); int item_size = SlCalcConvFileLen(cmd == SL_VAR ? conv : (VarType)SLE_FILE_U32); return list->size() * item_size + type_size; } static void SlSaveLoadMember(SaveLoadType cmd, Tvar *item, VarType conv) { switch (cmd) { case SL_VAR: SlSaveLoadConv(item, conv); break; case SL_REF: SlSaveLoadRef(item, conv); break; default: NOT_REACHED(); } } /** * Internal templated helper to save/load a list-like type. * @param storage The storage being manipulated. * @param conv VarType type of variable that is used for calculating the size. * @param cmd The SaveLoadType ware are saving/loading. */ static void SlSaveLoad(void *storage, VarType conv, SaveLoadType cmd = SL_VAR) { assert(cmd == SL_VAR || cmd == SL_REF); SlStorageT *list = static_cast(storage); switch (_sl.action) { case SLA_SAVE: SlWriteArrayLength(list->size()); for (auto &item : *list) { SlSaveLoadMember(cmd, &item, conv); } break; case SLA_LOAD_CHECK: case SLA_LOAD: { size_t length; switch (cmd) { case SL_VAR: length = IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH) ? SlReadUint32() : SlReadArrayLength(); break; case SL_REF: length = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH) ? SlReadUint32() : SlReadArrayLength(); break; default: NOT_REACHED(); } /* Load each value and push to the end of the storage. */ for (size_t i = 0; i < length; i++) { Tvar &data = list->emplace_back(); SlSaveLoadMember(cmd, &data, conv); } break; } case SLA_PTRS: for (auto &item : *list) { SlSaveLoadMember(cmd, &item, conv); } break; case SLA_NULL: list->clear(); break; default: NOT_REACHED(); } } }; /** * Return the size in bytes of a list. * @param list The std::list to find the size of. * @param conv VarType type of variable that is used for calculating the size. */ static inline size_t SlCalcRefListLen(const void *list, VarType conv) { return SlStorageHelper::SlCalcLen(list, conv, SL_REF); } /** * Save/Load a list. * @param list The list being manipulated. * @param conv VarType type of variable that is used for calculating the size. */ static void SlRefList(void *list, VarType conv) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcRefListLen(list, conv)); /* Determine length only? */ if (_sl.need_length == NL_CALCLENGTH) return; } SlStorageHelper::SlSaveLoad(list, conv, SL_REF); } /** * Return the size in bytes of a std::deque. * @param deque The std::deque to find the size of * @param conv VarType type of variable that is used for calculating the size */ static inline size_t SlCalcDequeLen(const void *deque, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: return SlStorageHelper::SlCalcLen(deque, conv); case SLE_VAR_I8: return SlStorageHelper::SlCalcLen(deque, conv); case SLE_VAR_U8: return SlStorageHelper::SlCalcLen(deque, conv); case SLE_VAR_I16: return SlStorageHelper::SlCalcLen(deque, conv); case SLE_VAR_U16: return SlStorageHelper::SlCalcLen(deque, conv); case SLE_VAR_I32: return SlStorageHelper::SlCalcLen(deque, conv); case SLE_VAR_U32: return SlStorageHelper::SlCalcLen(deque, conv); case SLE_VAR_I64: return SlStorageHelper::SlCalcLen(deque, conv); case SLE_VAR_U64: return SlStorageHelper::SlCalcLen(deque, conv); default: NOT_REACHED(); } } /** * Save/load a std::deque. * @param deque The std::deque being manipulated * @param conv VarType type of variable that is used for calculating the size */ static void SlDeque(void *deque, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: SlStorageHelper::SlSaveLoad(deque, conv); break; case SLE_VAR_I8: SlStorageHelper::SlSaveLoad(deque, conv); break; case SLE_VAR_U8: SlStorageHelper::SlSaveLoad(deque, conv); break; case SLE_VAR_I16: SlStorageHelper::SlSaveLoad(deque, conv); break; case SLE_VAR_U16: SlStorageHelper::SlSaveLoad(deque, conv); break; case SLE_VAR_I32: SlStorageHelper::SlSaveLoad(deque, conv); break; case SLE_VAR_U32: SlStorageHelper::SlSaveLoad(deque, conv); break; case SLE_VAR_I64: SlStorageHelper::SlSaveLoad(deque, conv); break; case SLE_VAR_U64: SlStorageHelper::SlSaveLoad(deque, conv); break; default: NOT_REACHED(); } } /** * Return the size in bytes of a std::vector. * @param vector The std::vector to find the size of * @param conv VarType type of variable that is used for calculating the size */ static inline size_t SlCalcVectorLen(const void *vector, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: NOT_REACHED(); // Not supported case SLE_VAR_I8: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_U8: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_I16: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_U16: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_I32: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_U32: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_I64: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_U64: return SlStorageHelper::SlCalcLen(vector, conv); default: NOT_REACHED(); } } /** * Save/load a std::vector. * @param vector The std::vector being manipulated * @param conv VarType type of variable that is used for calculating the size */ static void SlVector(void *vector, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: NOT_REACHED(); // Not supported case SLE_VAR_I8: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_U8: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_I16: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_U16: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_I32: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_U32: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_I64: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_U64: SlStorageHelper::SlSaveLoad(vector, conv); break; default: NOT_REACHED(); } } /** Are we going to save this object or not? */ static inline bool SlIsObjectValidInSavegame(const SaveLoad &sld) { return (_sl_version >= sld.version_from && _sl_version < sld.version_to); } /** * Calculate the size of the table header. * @param slt The SaveLoad table with objects to save/load. * @return size of given object. */ static size_t SlCalcTableHeader(const SaveLoadTable &slt) { size_t length = 0; for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; length += SlCalcConvFileLen(SLE_UINT8); length += SlCalcStdStringLen(&sld.name); } length += SlCalcConvFileLen(SLE_UINT8); // End-of-list entry. for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) { length += SlCalcTableHeader(sld.handler->GetDescription()); } } return length; } /** * Calculate the size of an object. * @param object to be measured. * @param slt The SaveLoad table with objects to save/load. * @return size of given object. */ size_t SlCalcObjLength(const void *object, const SaveLoadTable &slt) { size_t length = 0; /* Need to determine the length and write a length tag. */ for (auto &sld : slt) { length += SlCalcObjMemberLength(object, sld); } return length; } size_t SlCalcObjMemberLength(const void *object, const SaveLoad &sld) { assert(_sl.action == SLA_SAVE); if (!SlIsObjectValidInSavegame(sld)) return 0; switch (sld.cmd) { case SL_VAR: return SlCalcConvFileLen(sld.conv); case SL_REF: return SlCalcRefLen(); case SL_ARR: return SlCalcArrayLen(sld.length, sld.conv); case SL_REFLIST: return SlCalcRefListLen(GetVariableAddress(object, sld), sld.conv); case SL_DEQUE: return SlCalcDequeLen(GetVariableAddress(object, sld), sld.conv); case SL_VECTOR: return SlCalcVectorLen(GetVariableAddress(object, sld), sld.conv); case SL_STDSTR: return SlCalcStdStringLen(GetVariableAddress(object, sld)); case SL_SAVEBYTE: return 1; // a byte is logically of size 1 case SL_NULL: return SlCalcConvFileLen(sld.conv) * sld.length; case SL_STRUCT: case SL_STRUCTLIST: { NeedLength old_need_length = _sl.need_length; size_t old_obj_len = _sl.obj_len; _sl.need_length = NL_CALCLENGTH; _sl.obj_len = 0; /* Pretend that we are saving to collect the object size. Other * means are difficult, as we don't know the length of the list we * are about to store. */ sld.handler->Save(const_cast(object)); size_t length = _sl.obj_len; _sl.obj_len = old_obj_len; _sl.need_length = old_need_length; if (sld.cmd == SL_STRUCT) { length += SlGetArrayLength(1); } return length; } default: NOT_REACHED(); } return 0; } /** * Check whether the variable size of the variable in the saveload configuration * matches with the actual variable size. * @param sld The saveload configuration to test. */ [[maybe_unused]] static bool IsVariableSizeRight(const SaveLoad &sld) { if (GetVarMemType(sld.conv) == SLE_VAR_NULL) return true; switch (sld.cmd) { case SL_VAR: switch (GetVarMemType(sld.conv)) { case SLE_VAR_BL: return sld.size == sizeof(bool); case SLE_VAR_I8: case SLE_VAR_U8: return sld.size == sizeof(int8); case SLE_VAR_I16: case SLE_VAR_U16: return sld.size == sizeof(int16); case SLE_VAR_I32: case SLE_VAR_U32: return sld.size == sizeof(int32); case SLE_VAR_I64: case SLE_VAR_U64: return sld.size == sizeof(int64); case SLE_VAR_NAME: return sld.size == sizeof(std::string); default: return sld.size == sizeof(void *); } case SL_REF: /* These should all be pointer sized. */ return sld.size == sizeof(void *); case SL_STDSTR: /* These should be all pointers to std::string. */ return sld.size == sizeof(std::string); default: return true; } } static bool SlObjectMember(void *object, const SaveLoad &sld) { assert(IsVariableSizeRight(sld)); if (!SlIsObjectValidInSavegame(sld)) return false; VarType conv = GB(sld.conv, 0, 8); switch (sld.cmd) { case SL_VAR: case SL_REF: case SL_ARR: case SL_REFLIST: case SL_DEQUE: case SL_VECTOR: case SL_STDSTR: { void *ptr = GetVariableAddress(object, sld); switch (sld.cmd) { case SL_VAR: SlSaveLoadConv(ptr, conv); break; case SL_REF: SlSaveLoadRef(ptr, conv); break; case SL_ARR: SlArray(ptr, sld.length, conv); break; case SL_REFLIST: SlRefList(ptr, conv); break; case SL_DEQUE: SlDeque(ptr, conv); break; case SL_VECTOR: SlVector(ptr, conv); break; case SL_STDSTR: SlStdString(ptr, sld.conv); break; default: NOT_REACHED(); } break; } /* SL_SAVEBYTE writes a value to the savegame to identify the type of an object. * When loading, the value is read explicitly with SlReadByte() to determine which * object description to use. */ case SL_SAVEBYTE: { void *ptr = GetVariableAddress(object, sld); switch (_sl.action) { case SLA_SAVE: SlWriteByte(*(uint8 *)ptr); break; case SLA_LOAD_CHECK: case SLA_LOAD: case SLA_PTRS: case SLA_NULL: break; default: NOT_REACHED(); } break; } case SL_NULL: { assert(GetVarMemType(sld.conv) == SLE_VAR_NULL); switch (_sl.action) { case SLA_LOAD_CHECK: case SLA_LOAD: SlSkipBytes(SlCalcConvFileLen(sld.conv) * sld.length); break; case SLA_SAVE: for (int i = 0; i < SlCalcConvFileLen(sld.conv) * sld.length; i++) SlWriteByte(0); break; case SLA_PTRS: case SLA_NULL: break; default: NOT_REACHED(); } break; } case SL_STRUCT: case SL_STRUCTLIST: switch (_sl.action) { case SLA_SAVE: { if (sld.cmd == SL_STRUCT) { /* Store in the savegame if this struct was written or not. */ SlSetStructListLength(SlCalcObjMemberLength(object, sld) > SlGetArrayLength(1) ? 1 : 0); } sld.handler->Save(object); break; } case SLA_LOAD_CHECK: { if (sld.cmd == SL_STRUCT && !IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) { SlGetStructListLength(1); } sld.handler->LoadCheck(object); break; } case SLA_LOAD: { if (sld.cmd == SL_STRUCT && !IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) { SlGetStructListLength(1); } sld.handler->Load(object); break; } case SLA_PTRS: sld.handler->FixPointers(object); break; case SLA_NULL: break; default: NOT_REACHED(); } break; default: NOT_REACHED(); } return true; } /** * Set the length of this list. * @param The length of the list. */ void SlSetStructListLength(size_t length) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlGetArrayLength(length)); if (_sl.need_length == NL_CALCLENGTH) return; } SlWriteArrayLength(length); } /** * Get the length of this list; if it exceeds the limit, error out. * @param limit The maximum size the list can be. * @return The length of the list. */ size_t SlGetStructListLength(size_t limit) { size_t length = SlReadArrayLength(); if (length > limit) SlErrorCorrupt("List exceeds storage size"); return length; } /** * Main SaveLoad function. * @param object The object that is being saved or loaded. * @param slt The SaveLoad table with objects to save/load. */ void SlObject(void *object, const SaveLoadTable &slt) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcObjLength(object, slt)); if (_sl.need_length == NL_CALCLENGTH) return; } for (auto &sld : slt) { SlObjectMember(object, sld); } } /** * Handler that is assigned when there is a struct read in the savegame which * is not known to the code. This means we are going to skip it. */ class SlSkipHandler : public SaveLoadHandler { void Save(void *object) const override { NOT_REACHED(); } void Load(void *object) const override { size_t length = SlGetStructListLength(UINT32_MAX); for (; length > 0; length--) { SlObject(object, this->GetLoadDescription()); } } void LoadCheck(void *object) const override { this->Load(object); } virtual SaveLoadTable GetDescription() const override { return {}; } virtual SaveLoadCompatTable GetCompatDescription() const override { NOT_REACHED(); } }; /** * Save or Load a table header. * @note a table-header can never contain more than 65535 fields. * @param slt The SaveLoad table with objects to save/load. * @return When loading, the ordered SaveLoad array to use; otherwise an empty list. */ std::vector SlTableHeader(const SaveLoadTable &slt) { /* You can only use SlTableHeader if you are a CH_TABLE. */ assert(_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE); switch (_sl.action) { case SLA_LOAD_CHECK: case SLA_LOAD: { std::vector saveloads; /* Build a key lookup mapping based on the available fields. */ std::map key_lookup; for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; /* Check that there is only one active SaveLoad for a given name. */ assert(key_lookup.find(sld.name) == key_lookup.end()); key_lookup[sld.name] = &sld; } while (true) { uint8 type; SlSaveLoadConv(&type, SLE_UINT8); if (type == SLE_FILE_END) break; std::string key; SlStdString(&key, SLE_STR); auto sld_it = key_lookup.find(key); if (sld_it == key_lookup.end()) { /* SLA_LOADCHECK triggers this debug statement a lot and is perfectly normal. */ Debug(sl, _sl.action == SLA_LOAD ? 2 : 6, "Field '{}' of type 0x{:02x} not found, skipping", key, type); std::shared_ptr handler = nullptr; SaveLoadType saveload_type; switch (type & SLE_FILE_TYPE_MASK) { case SLE_FILE_STRING: /* Strings are always marked with SLE_FILE_HAS_LENGTH_FIELD, as they are a list of chars. */ saveload_type = SL_STDSTR; break; case SLE_FILE_STRUCT: /* Structs are always marked with SLE_FILE_HAS_LENGTH_FIELD as SL_STRUCT is seen as a list of 0/1 in length. */ saveload_type = SL_STRUCTLIST; handler = std::make_shared(); break; default: saveload_type = (type & SLE_FILE_HAS_LENGTH_FIELD) ? SL_ARR : SL_VAR; break; } /* We don't know this field, so read to nothing. */ saveloads.push_back({key, saveload_type, ((VarType)type & SLE_FILE_TYPE_MASK) | SLE_VAR_NULL, 1, SL_MIN_VERSION, SL_MAX_VERSION, 0, nullptr, 0, handler}); continue; } /* Validate the type of the field. If it is changed, the * savegame should have been bumped so we know how to do the * conversion. If this error triggers, that clearly didn't * happen and this is a friendly poke to the developer to bump * the savegame version and add conversion code. */ uint8 correct_type = GetSavegameFileType(*sld_it->second); if (correct_type != type) { Debug(sl, 1, "Field type for '{}' was expected to be 0x{:02x} but 0x{:02x} was found", key, correct_type, type); SlErrorCorrupt("Field type is different than expected"); } saveloads.push_back(*sld_it->second); } for (auto &sld : saveloads) { if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) { sld.handler->load_description = SlTableHeader(sld.handler->GetDescription()); } } return saveloads; } case SLA_SAVE: { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcTableHeader(slt)); if (_sl.need_length == NL_CALCLENGTH) break; } for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; /* Make sure we are not storing empty keys. */ assert(!sld.name.empty()); uint8 type = GetSavegameFileType(sld); assert(type != SLE_FILE_END); SlSaveLoadConv(&type, SLE_UINT8); SlStdString(const_cast(&sld.name), SLE_STR); } /* Add an end-of-header marker. */ uint8 type = SLE_FILE_END; SlSaveLoadConv(&type, SLE_UINT8); /* After the table, write down any sub-tables we might have. */ for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) { /* SlCalcTableHeader already looks in sub-lists, so avoid the length being added twice. */ NeedLength old_need_length = _sl.need_length; _sl.need_length = NL_NONE; SlTableHeader(sld.handler->GetDescription()); _sl.need_length = old_need_length; } } break; } default: NOT_REACHED(); } return std::vector(); } /** * Load a table header in a savegame compatible way. If the savegame was made * before table headers were added, it will fall back to the * SaveLoadCompatTable for the order of fields while loading. * * @note You only have to call this function if the chunk existed as a * non-table type before converting it to a table. New chunks created as * table can call SlTableHeader() directly. * * @param slt The SaveLoad table with objects to save/load. * @param slct The SaveLoadCompat table the original order of the fields. * @return When loading, the ordered SaveLoad array to use; otherwise an empty list. */ std::vector SlCompatTableHeader(const SaveLoadTable &slt, const SaveLoadCompatTable &slct) { assert(_sl.action == SLA_LOAD || _sl.action == SLA_LOAD_CHECK); /* CH_TABLE / CH_SPARSE_TABLE always have a header. */ if (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE) return SlTableHeader(slt); std::vector saveloads; /* Build a key lookup mapping based on the available fields. */ std::map> key_lookup; for (auto &sld : slt) { /* All entries should have a name; otherwise the entry should just be removed. */ assert(!sld.name.empty()); key_lookup[sld.name].push_back(&sld); } for (auto &slc : slct) { if (slc.name.empty()) { /* In old savegames there can be data we no longer care for. We * skip this by simply reading the amount of bytes indicated and * send those to /dev/null. */ saveloads.push_back({"", SL_NULL, SLE_FILE_U8 | SLE_VAR_NULL, slc.length, slc.version_from, slc.version_to, 0, nullptr, 0, nullptr}); } else { auto sld_it = key_lookup.find(slc.name); /* If this branch triggers, it means that an entry in the * SaveLoadCompat list is not mentioned in the SaveLoad list. Did * you rename a field in one and not in the other? */ if (sld_it == key_lookup.end()) { /* This isn't an assert, as that leaves no information what * field was to blame. This way at least we have breadcrumbs. */ Debug(sl, 0, "internal error: saveload compatibility field '{}' not found", slc.name); SlErrorCorrupt("Internal error with savegame compatibility"); } for (auto &sld : sld_it->second) { saveloads.push_back(*sld); } } } for (auto &sld : saveloads) { if (!SlIsObjectValidInSavegame(sld)) continue; if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) { sld.handler->load_description = SlCompatTableHeader(sld.handler->GetDescription(), sld.handler->GetCompatDescription()); } } return saveloads; } /** * Save or Load (a list of) global variables. * @param slt The SaveLoad table with objects to save/load. */ void SlGlobList(const SaveLoadTable &slt) { SlObject(nullptr, slt); } /** * Do something of which I have no idea what it is :P * @param proc The callback procedure that is called * @param arg The variable that will be used for the callback procedure */ void SlAutolength(AutolengthProc *proc, void *arg) { assert(_sl.action == SLA_SAVE); /* Tell it to calculate the length */ _sl.need_length = NL_CALCLENGTH; _sl.obj_len = 0; proc(arg); /* Setup length */ _sl.need_length = NL_WANTLENGTH; SlSetLength(_sl.obj_len); size_t start_pos = _sl.dumper->GetSize(); size_t expected_offs = start_pos + _sl.obj_len; /* And write the stuff */ proc(arg); if (expected_offs != _sl.dumper->GetSize()) { SlErrorCorruptFmt("Invalid chunk size when writing autolength block, expected {}, got {}", _sl.obj_len, _sl.dumper->GetSize() - start_pos); } } void ChunkHandler::LoadCheck(size_t len) const { switch (_sl.block_mode) { case CH_TABLE: case CH_SPARSE_TABLE: SlTableHeader({}); FALLTHROUGH; case CH_ARRAY: case CH_SPARSE_ARRAY: SlSkipArray(); break; case CH_RIFF: SlSkipBytes(len); break; default: NOT_REACHED(); } } /** * Load a chunk of data (eg vehicles, stations, etc.) * @param ch The chunkhandler that will be used for the operation */ static void SlLoadChunk(const ChunkHandler &ch) { byte m = SlReadByte(); _sl.block_mode = m & CH_TYPE_MASK; _sl.obj_len = 0; _sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE); /* The header should always be at the start. Read the length; the * Load() should as first action process the header. */ if (_sl.expect_table_header) { SlIterateArray(); } switch (_sl.block_mode) { case CH_TABLE: case CH_ARRAY: _sl.array_index = 0; ch.Load(); if (_next_offs != 0) SlErrorCorrupt("Invalid array length"); break; case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: ch.Load(); if (_next_offs != 0) SlErrorCorrupt("Invalid array length"); break; case CH_RIFF: { /* Read length */ size_t len = (SlReadByte() << 16) | ((m >> 4) << 24); len += SlReadUint16(); _sl.obj_len = len; size_t start_pos = _sl.reader->GetSize(); size_t endoffs = start_pos + len; ch.Load(); if (_sl.reader->GetSize() != endoffs) { SlErrorCorruptFmt("Invalid chunk size in RIFF in {} - expected {}, got {}", ch.GetName(), len, _sl.reader->GetSize() - start_pos); } break; } default: SlErrorCorrupt("Invalid chunk type"); break; } if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header"); } /** * Load a chunk of data for checking savegames. * If the chunkhandler is nullptr, the chunk is skipped. * @param ch The chunkhandler that will be used for the operation */ static void SlLoadCheckChunk(const ChunkHandler &ch) { byte m = SlReadByte(); _sl.block_mode = m & CH_TYPE_MASK; _sl.obj_len = 0; _sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE); /* The header should always be at the start. Read the length; the * LoadCheck() should as first action process the header. */ if (_sl.expect_table_header) { SlIterateArray(); } switch (_sl.block_mode) { case CH_TABLE: case CH_ARRAY: _sl.array_index = 0; ch.LoadCheck(); break; case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: ch.LoadCheck(); break; case CH_RIFF: { /* Read length */ size_t len = (SlReadByte() << 16) | ((m >> 4) << 24); len += SlReadUint16(); _sl.obj_len = len; size_t start_pos = _sl.reader->GetSize(); size_t endoffs = start_pos + len; ch.LoadCheck(len); if (_sl.reader->GetSize() != endoffs) { SlErrorCorruptFmt("Invalid chunk size in RIFF in {} - expected {}, got {}", ch.GetName(), len, _sl.reader->GetSize() - start_pos); } break; } default: SlErrorCorrupt("Invalid chunk type"); break; } if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header"); } /** * Save a chunk of data (eg. vehicles, stations, etc.). Each chunk is * prefixed by an ID identifying it, followed by data, and terminator where appropriate * @param ch The chunkhandler that will be used for the operation */ static void SlSaveChunk(const ChunkHandler &ch) { if (ch.type == CH_READONLY) return; SlWriteUint32(ch.id); Debug(sl, 2, "Saving chunk {}", ch.GetName()); _sl.block_mode = ch.type; _sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE); _sl.need_length = (_sl.expect_table_header || _sl.block_mode == CH_RIFF) ? NL_WANTLENGTH : NL_NONE; switch (_sl.block_mode) { case CH_RIFF: ch.Save(); break; case CH_TABLE: case CH_ARRAY: _sl.last_array_index = 0; SlWriteByte(_sl.block_mode); ch.Save(); SlWriteArrayLength(0); // Terminate arrays break; case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: SlWriteByte(_sl.block_mode); ch.Save(); SlWriteArrayLength(0); // Terminate arrays break; default: NOT_REACHED(); } if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header"); } /** Save all chunks */ static void SlSaveChunks() { for (auto &ch : ChunkHandlers()) { SlSaveChunk(ch); } /* Terminator */ SlWriteUint32(0); } /** * Find the ChunkHandler that will be used for processing the found * chunk in the savegame or in memory * @param id the chunk in question * @return returns the appropriate chunkhandler */ static const ChunkHandler *SlFindChunkHandler(uint32 id) { for (const ChunkHandler &ch : ChunkHandlers()) if (ch.id == id) return &ch; return nullptr; } /** Load all chunks */ static void SlLoadChunks() { uint32 id; const ChunkHandler *ch; for (id = SlReadUint32(); id != 0; id = SlReadUint32()) { Debug(sl, 2, "Loading chunk {:c}{:c}{:c}{:c}", id >> 24, id >> 16, id >> 8, id); ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); SlLoadChunk(*ch); } } /** Load all chunks for savegame checking */ static void SlLoadCheckChunks() { uint32 id; const ChunkHandler *ch; for (id = SlReadUint32(); id != 0; id = SlReadUint32()) { Debug(sl, 2, "Loading chunk {:c}{:c}{:c}{:c}", id >> 24, id >> 16, id >> 8, id); ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); SlLoadCheckChunk(*ch); } } /** Fix all pointers (convert index -> pointer) */ static void SlFixPointers() { _sl.action = SLA_PTRS; for (const ChunkHandler &ch : ChunkHandlers()) { Debug(sl, 3, "Fixing pointers for {}", ch.GetName()); ch.FixPointers(); } assert(_sl.action == SLA_PTRS); } /** Yes, simply reading from a file. */ struct FileReader : LoadFilter { FILE *file; ///< The file to read from. long begin; ///< The begin of the file. /** * Create the file reader, so it reads from a specific file. * @param file The file to read from. */ FileReader(FILE *file) : LoadFilter(nullptr), file(file), begin(ftell(file)) { } /** Make sure everything is cleaned up. */ ~FileReader() { if (this->file != nullptr) fclose(this->file); this->file = nullptr; /* Make sure we don't double free. */ _sl.sf = nullptr; } size_t Read(byte *buf, size_t size) override { /* We're in the process of shutting down, i.e. in "failure" mode. */ if (this->file == nullptr) return 0; return fread(buf, 1, size, this->file); } void Reset() override { clearerr(this->file); if (fseek(this->file, this->begin, SEEK_SET)) { Debug(sl, 1, "Could not reset the file reading"); } } }; /** Yes, simply writing to a file. */ struct FileWriter : SaveFilter { FILE *file; ///< The file to write to. /** * Create the file writer, so it writes to a specific file. * @param file The file to write to. */ FileWriter(FILE *file) : SaveFilter(nullptr), file(file) { } /** Make sure everything is cleaned up. */ ~FileWriter() { this->Finish(); /* Make sure we don't double free. */ _sl.sf = nullptr; } void Write(byte *buf, size_t size) override { /* We're in the process of shutting down, i.e. in "failure" mode. */ if (this->file == nullptr) return; if (fwrite(buf, 1, size, this->file) != size) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_WRITEABLE); } void Finish() override { if (this->file != nullptr) fclose(this->file); this->file = nullptr; } }; /******************************************* ********** START OF LZO CODE ************** *******************************************/ #ifdef WITH_LZO #include /** Buffer size for the LZO compressor */ static const uint LZO_BUFFER_SIZE = 8192; /** Filter using LZO compression. */ struct LZOLoadFilter : LoadFilter { /** * Initialise this filter. * @param chain The next filter in this chain. */ LZOLoadFilter(LoadFilter *chain) : LoadFilter(chain) { if (lzo_init() != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor"); } size_t Read(byte *buf, size_t ssize) override { assert(ssize >= LZO_BUFFER_SIZE); /* Buffer size is from the LZO docs plus the chunk header size. */ byte out[LZO_BUFFER_SIZE + LZO_BUFFER_SIZE / 16 + 64 + 3 + sizeof(uint32) * 2]; uint32 tmp[2]; uint32 size; lzo_uint len = ssize; /* Read header*/ if (this->chain->Read((byte*)tmp, sizeof(tmp)) != sizeof(tmp)) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE, "File read failed"); /* Check if size is bad */ ((uint32*)out)[0] = size = tmp[1]; if (_sl_version != SL_MIN_VERSION) { tmp[0] = TO_BE32(tmp[0]); size = TO_BE32(size); } if (size >= sizeof(out)) SlErrorCorrupt("Inconsistent size"); /* Read block */ if (this->chain->Read(out + sizeof(uint32), size) != size) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE); /* Verify checksum */ if (tmp[0] != lzo_adler32(0, out, size + sizeof(uint32))) SlErrorCorrupt("Bad checksum"); /* Decompress */ int ret = lzo1x_decompress_safe(out + sizeof(uint32) * 1, size, buf, &len, nullptr); if (ret != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE); return len; } }; /** Filter using LZO compression. */ struct LZOSaveFilter : SaveFilter { /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ LZOSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain) { if (lzo_init() != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor"); } void Write(byte *buf, size_t size) override { const lzo_bytep in = buf; /* Buffer size is from the LZO docs plus the chunk header size. */ byte out[LZO_BUFFER_SIZE + LZO_BUFFER_SIZE / 16 + 64 + 3 + sizeof(uint32) * 2]; byte wrkmem[LZO1X_1_MEM_COMPRESS]; lzo_uint outlen; do { /* Compress up to LZO_BUFFER_SIZE bytes at once. */ lzo_uint len = size > LZO_BUFFER_SIZE ? LZO_BUFFER_SIZE : (lzo_uint)size; lzo1x_1_compress(in, len, out + sizeof(uint32) * 2, &outlen, wrkmem); ((uint32*)out)[1] = TO_BE32((uint32)outlen); ((uint32*)out)[0] = TO_BE32(lzo_adler32(0, out + sizeof(uint32), outlen + sizeof(uint32))); this->chain->Write(out, outlen + sizeof(uint32) * 2); /* Move to next data chunk. */ size -= len; in += len; } while (size > 0); } }; #endif /* WITH_LZO */ /********************************************* ******** START OF NOCOMP CODE (uncompressed)* *********************************************/ /** Filter without any compression. */ struct NoCompLoadFilter : LoadFilter { /** * Initialise this filter. * @param chain The next filter in this chain. */ NoCompLoadFilter(LoadFilter *chain) : LoadFilter(chain) { } size_t Read(byte *buf, size_t size) override { return this->chain->Read(buf, size); } }; /** Filter without any compression. */ struct NoCompSaveFilter : SaveFilter { /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ NoCompSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain) { } void Write(byte *buf, size_t size) override { this->chain->Write(buf, size); } }; /******************************************** ********** START OF ZLIB CODE ************** ********************************************/ #if defined(WITH_ZLIB) #include /** Filter using Zlib compression. */ struct ZlibLoadFilter : LoadFilter { z_stream z; ///< Stream state we are reading from. byte fread_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for reading from the file. /** * Initialise this filter. * @param chain The next filter in this chain. */ ZlibLoadFilter(LoadFilter *chain) : LoadFilter(chain) { memset(&this->z, 0, sizeof(this->z)); if (inflateInit(&this->z) != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor"); } /** Clean everything up. */ ~ZlibLoadFilter() { inflateEnd(&this->z); } size_t Read(byte *buf, size_t size) override { this->z.next_out = buf; this->z.avail_out = (uint)size; do { /* read more bytes from the file? */ if (this->z.avail_in == 0) { this->z.next_in = this->fread_buf; this->z.avail_in = (uint)this->chain->Read(this->fread_buf, sizeof(this->fread_buf)); } /* inflate the data */ int r = inflate(&this->z, 0); if (r == Z_STREAM_END) break; if (r != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "inflate() failed"); } while (this->z.avail_out != 0); return size - this->z.avail_out; } }; /** Filter using Zlib compression. */ struct ZlibSaveFilter : SaveFilter { z_stream z; ///< Stream state we are writing to. byte fwrite_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for writing to the file. /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ ZlibSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain) { memset(&this->z, 0, sizeof(this->z)); if (deflateInit(&this->z, compression_level) != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor"); } /** Clean up what we allocated. */ ~ZlibSaveFilter() { deflateEnd(&this->z); } /** * Helper loop for writing the data. * @param p The bytes to write. * @param len Amount of bytes to write. * @param mode Mode for deflate. */ void WriteLoop(byte *p, size_t len, int mode) { uint n; this->z.next_in = p; this->z.avail_in = (uInt)len; do { this->z.next_out = this->fwrite_buf; this->z.avail_out = sizeof(this->fwrite_buf); /** * For the poor next soul who sees many valgrind warnings of the * "Conditional jump or move depends on uninitialised value(s)" kind: * According to the author of zlib it is not a bug and it won't be fixed. * http://groups.google.com/group/comp.compression/browse_thread/thread/b154b8def8c2a3ef/cdf9b8729ce17ee2 * [Mark Adler, Feb 24 2004, 'zlib-1.2.1 valgrind warnings' in the newsgroup comp.compression] */ int r = deflate(&this->z, mode); /* bytes were emitted? */ if ((n = sizeof(this->fwrite_buf) - this->z.avail_out) != 0) { this->chain->Write(this->fwrite_buf, n); } if (r == Z_STREAM_END) break; if (r != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "zlib returned error code"); } while (this->z.avail_in || !this->z.avail_out); } void Write(byte *buf, size_t size) override { this->WriteLoop(buf, size, 0); } void Finish() override { this->WriteLoop(nullptr, 0, Z_FINISH); this->chain->Finish(); } }; #endif /* WITH_ZLIB */ /******************************************** ********** START OF LZMA CODE ************** ********************************************/ #if defined(WITH_LIBLZMA) #include /** * Have a copy of an initialised LZMA stream. We need this as it's * impossible to "re"-assign LZMA_STREAM_INIT to a variable in some * compilers, i.e. LZMA_STREAM_INIT can't be used to set something. * This var has to be used instead. */ static const lzma_stream _lzma_init = LZMA_STREAM_INIT; /** Filter without any compression. */ struct LZMALoadFilter : LoadFilter { lzma_stream lzma; ///< Stream state that we are reading from. byte fread_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for reading from the file. /** * Initialise this filter. * @param chain The next filter in this chain. */ LZMALoadFilter(LoadFilter *chain) : LoadFilter(chain), lzma(_lzma_init) { /* Allow saves up to 256 MB uncompressed */ if (lzma_auto_decoder(&this->lzma, 1 << 28, 0) != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor"); } /** Clean everything up. */ ~LZMALoadFilter() { lzma_end(&this->lzma); } size_t Read(byte *buf, size_t size) override { this->lzma.next_out = buf; this->lzma.avail_out = size; do { /* read more bytes from the file? */ if (this->lzma.avail_in == 0) { this->lzma.next_in = this->fread_buf; this->lzma.avail_in = this->chain->Read(this->fread_buf, sizeof(this->fread_buf)); } /* inflate the data */ lzma_ret r = lzma_code(&this->lzma, LZMA_RUN); if (r == LZMA_STREAM_END) break; if (r != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "liblzma returned error code"); } while (this->lzma.avail_out != 0); return size - this->lzma.avail_out; } }; /** Filter using LZMA compression. */ struct LZMASaveFilter : SaveFilter { lzma_stream lzma; ///< Stream state that we are writing to. byte fwrite_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for writing to the file. /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ LZMASaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain), lzma(_lzma_init) { if (lzma_easy_encoder(&this->lzma, compression_level, LZMA_CHECK_CRC32) != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor"); } /** Clean up what we allocated. */ ~LZMASaveFilter() { lzma_end(&this->lzma); } /** * Helper loop for writing the data. * @param p The bytes to write. * @param len Amount of bytes to write. * @param action Action for lzma_code. */ void WriteLoop(byte *p, size_t len, lzma_action action) { size_t n; this->lzma.next_in = p; this->lzma.avail_in = len; do { this->lzma.next_out = this->fwrite_buf; this->lzma.avail_out = sizeof(this->fwrite_buf); lzma_ret r = lzma_code(&this->lzma, action); /* bytes were emitted? */ if ((n = sizeof(this->fwrite_buf) - this->lzma.avail_out) != 0) { this->chain->Write(this->fwrite_buf, n); } if (r == LZMA_STREAM_END) break; if (r != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "liblzma returned error code"); } while (this->lzma.avail_in || !this->lzma.avail_out); } void Write(byte *buf, size_t size) override { this->WriteLoop(buf, size, LZMA_RUN); } void Finish() override { this->WriteLoop(nullptr, 0, LZMA_FINISH); this->chain->Finish(); } }; #endif /* WITH_LIBLZMA */ /******************************************* ************* END OF CODE ***************** *******************************************/ /** The format for a reader/writer type of a savegame */ struct SaveLoadFormat { const char *name; ///< name of the compressor/decompressor (debug-only) uint32 tag; ///< the 4-letter tag by which it is identified in the savegame LoadFilter *(*init_load)(LoadFilter *chain); ///< Constructor for the load filter. SaveFilter *(*init_write)(SaveFilter *chain, byte compression); ///< Constructor for the save filter. byte min_compression; ///< the minimum compression level of this format byte default_compression; ///< the default compression level of this format byte max_compression; ///< the maximum compression level of this format }; /** The different saveload formats known/understood by OpenTTD. */ static const SaveLoadFormat _saveload_formats[] = { #if defined(WITH_LZO) /* Roughly 75% larger than zlib level 6 at only ~7% of the CPU usage. */ {"lzo", TO_BE32X('OTTD'), CreateLoadFilter, CreateSaveFilter, 0, 0, 0}, #else {"lzo", TO_BE32X('OTTD'), nullptr, nullptr, 0, 0, 0}, #endif /* Roughly 5 times larger at only 1% of the CPU usage over zlib level 6. */ {"none", TO_BE32X('OTTN'), CreateLoadFilter, CreateSaveFilter, 0, 0, 0}, #if defined(WITH_ZLIB) /* After level 6 the speed reduction is significant (1.5x to 2.5x slower per level), but the reduction in filesize is * fairly insignificant (~1% for each step). Lower levels become ~5-10% bigger by each level than level 6 while level * 1 is "only" 3 times as fast. Level 0 results in uncompressed savegames at about 8 times the cost of "none". */ {"zlib", TO_BE32X('OTTZ'), CreateLoadFilter, CreateSaveFilter, 0, 6, 9}, #else {"zlib", TO_BE32X('OTTZ'), nullptr, nullptr, 0, 0, 0}, #endif #if defined(WITH_LIBLZMA) /* Level 2 compression is speed wise as fast as zlib level 6 compression (old default), but results in ~10% smaller saves. * Higher compression levels are possible, and might improve savegame size by up to 25%, but are also up to 10 times slower. * The next significant reduction in file size is at level 4, but that is already 4 times slower. Level 3 is primarily 50% * slower while not improving the filesize, while level 0 and 1 are faster, but don't reduce savegame size much. * It's OTTX and not e.g. OTTL because liblzma is part of xz-utils and .tar.xz is preferred over .tar.lzma. */ {"lzma", TO_BE32X('OTTX'), CreateLoadFilter, CreateSaveFilter, 0, 2, 9}, #else {"lzma", TO_BE32X('OTTX'), nullptr, nullptr, 0, 0, 0}, #endif }; /** * Return the savegameformat of the game. Whether it was created with ZLIB compression * uncompressed, or another type * @param full_name Name of the savegame format. If empty it picks the first available one * @param compression_level Output for telling what compression level we want. * @return Pointer to SaveLoadFormat struct giving all characteristics of this type of savegame */ static const SaveLoadFormat *GetSavegameFormat(const std::string &full_name, byte *compression_level) { const SaveLoadFormat *def = lastof(_saveload_formats); /* find default savegame format, the highest one with which files can be written */ while (!def->init_write) def--; if (!full_name.empty()) { /* Get the ":..." of the compression level out of the way */ size_t separator = full_name.find(':'); bool has_comp_level = separator != std::string::npos; const std::string name(full_name, 0, has_comp_level ? separator : full_name.size()); for (const SaveLoadFormat *slf = &_saveload_formats[0]; slf != endof(_saveload_formats); slf++) { if (slf->init_write != nullptr && name.compare(slf->name) == 0) { *compression_level = slf->default_compression; if (has_comp_level) { const std::string complevel(full_name, separator + 1); /* Get the level and determine whether all went fine. */ size_t processed; long level = std::stol(complevel, &processed, 10); if (processed == 0 || level != Clamp(level, slf->min_compression, slf->max_compression)) { SetDParamStr(0, complevel); ShowErrorMessage(STR_CONFIG_ERROR, STR_CONFIG_ERROR_INVALID_SAVEGAME_COMPRESSION_LEVEL, WL_CRITICAL); } else { *compression_level = level; } } return slf; } } SetDParamStr(0, name); SetDParamStr(1, def->name); ShowErrorMessage(STR_CONFIG_ERROR, STR_CONFIG_ERROR_INVALID_SAVEGAME_COMPRESSION_ALGORITHM, WL_CRITICAL); } *compression_level = def->default_compression; return def; } /* actual loader/saver function */ void InitializeGame(uint size_x, uint size_y, bool reset_date, bool reset_settings); extern bool AfterLoadGame(); extern bool LoadOldSaveGame(const std::string &file); /** * Clear temporary data that is passed between various saveload phases. */ static void ResetSaveloadData() { ResetTempEngineData(); ResetLabelMaps(); ResetOldWaypoints(); } /** * Clear/free saveload state. */ static inline void ClearSaveLoadState() { delete _sl.dumper; _sl.dumper = nullptr; delete _sl.sf; _sl.sf = nullptr; delete _sl.reader; _sl.reader = nullptr; delete _sl.lf; _sl.lf = nullptr; } /** Update the gui accordingly when starting saving and set locks on saveload. */ static void SaveFileStart() { SetMouseCursorBusy(true); InvalidateWindowData(WC_STATUS_BAR, 0, SBI_SAVELOAD_START); _sl.saveinprogress = true; } /** Update the gui accordingly when saving is done and release locks on saveload. */ static void SaveFileDone() { SetMouseCursorBusy(false); InvalidateWindowData(WC_STATUS_BAR, 0, SBI_SAVELOAD_FINISH); _sl.saveinprogress = false; #ifdef __EMSCRIPTEN__ EM_ASM(if (window["openttd_syncfs"]) openttd_syncfs()); #endif } /** Set the error message from outside of the actual loading/saving of the game (AfterLoadGame and friends) */ void SetSaveLoadError(StringID str) { _sl.error_str = str; } /** Get the string representation of the error message */ const char *GetSaveLoadErrorString() { SetDParam(0, _sl.error_str); SetDParamStr(1, _sl.extra_msg); static char err_str[512]; GetString(err_str, _sl.action == SLA_SAVE ? STR_ERROR_GAME_SAVE_FAILED : STR_ERROR_GAME_LOAD_FAILED, lastof(err_str)); return err_str; } /** Show a gui message when saving has failed */ static void SaveFileError() { SetDParamStr(0, GetSaveLoadErrorString()); ShowErrorMessage(STR_JUST_RAW_STRING, INVALID_STRING_ID, WL_ERROR); SaveFileDone(); } /** * We have written the whole game into memory, _memory_savegame, now find * and appropriate compressor and start writing to file. */ static SaveOrLoadResult SaveFileToDisk(bool threaded) { try { byte compression; const SaveLoadFormat *fmt = GetSavegameFormat(_savegame_format, &compression); /* We have written our stuff to memory, now write it to file! */ uint32 hdr[2] = { fmt->tag, TO_BE32(SAVEGAME_VERSION << 16) }; _sl.sf->Write((byte*)hdr, sizeof(hdr)); _sl.sf = fmt->init_write(_sl.sf, compression); _sl.dumper->Flush(_sl.sf); ClearSaveLoadState(); if (threaded) SetAsyncSaveFinish(SaveFileDone); return SL_OK; } catch (...) { ClearSaveLoadState(); AsyncSaveFinishProc asfp = SaveFileDone; /* We don't want to shout when saving is just * cancelled due to a client disconnecting. */ if (_sl.error_str != STR_NETWORK_ERROR_LOSTCONNECTION) { /* Skip the "colour" character */ Debug(sl, 0, "{}", GetSaveLoadErrorString() + 3); asfp = SaveFileError; } if (threaded) { SetAsyncSaveFinish(asfp); } else { asfp(); } return SL_ERROR; } } void WaitTillSaved() { if (!_save_thread.joinable()) return; _save_thread.join(); /* Make sure every other state is handled properly as well. */ ProcessAsyncSaveFinish(); } /** * Actually perform the saving of the savegame. * General tactics is to first save the game to memory, then write it to file * using the writer, either in threaded mode if possible, or single-threaded. * @param writer The filter to write the savegame to. * @param threaded Whether to try to perform the saving asynchronously. * @return Return the result of the action. #SL_OK or #SL_ERROR */ static SaveOrLoadResult DoSave(SaveFilter *writer, bool threaded) { assert(!_sl.saveinprogress); _sl.dumper = new MemoryDumper(); _sl.sf = writer; _sl_version = SAVEGAME_VERSION; SaveViewportBeforeSaveGame(); SlSaveChunks(); SaveFileStart(); if (!threaded || !StartNewThread(&_save_thread, "ottd:savegame", &SaveFileToDisk, true)) { if (threaded) Debug(sl, 1, "Cannot create savegame thread, reverting to single-threaded mode..."); SaveOrLoadResult result = SaveFileToDisk(false); SaveFileDone(); return result; } return SL_OK; } /** * Save the game using a (writer) filter. * @param writer The filter to write the savegame to. * @param threaded Whether to try to perform the saving asynchronously. * @return Return the result of the action. #SL_OK or #SL_ERROR */ SaveOrLoadResult SaveWithFilter(SaveFilter *writer, bool threaded) { try { _sl.action = SLA_SAVE; return DoSave(writer, threaded); } catch (...) { ClearSaveLoadState(); return SL_ERROR; } } /** * Actually perform the loading of a "non-old" savegame. * @param reader The filter to read the savegame from. * @param load_check Whether to perform the checking ("preview") or actually load the game. * @return Return the result of the action. #SL_OK or #SL_REINIT ("unload" the game) */ static SaveOrLoadResult DoLoad(LoadFilter *reader, bool load_check) { _sl.lf = reader; if (load_check) { /* Clear previous check data */ _load_check_data.Clear(); /* Mark SL_LOAD_CHECK as supported for this savegame. */ _load_check_data.checkable = true; } uint32 hdr[2]; if (_sl.lf->Read((byte*)hdr, sizeof(hdr)) != sizeof(hdr)) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE); /* see if we have any loader for this type. */ const SaveLoadFormat *fmt = _saveload_formats; for (;;) { /* No loader found, treat as version 0 and use LZO format */ if (fmt == endof(_saveload_formats)) { Debug(sl, 0, "Unknown savegame type, trying to load it as the buggy format"); _sl.lf->Reset(); _sl_version = SL_MIN_VERSION; _sl_minor_version = 0; /* Try to find the LZO savegame format; it uses 'OTTD' as tag. */ fmt = _saveload_formats; for (;;) { if (fmt == endof(_saveload_formats)) { /* Who removed LZO support? */ NOT_REACHED(); } if (fmt->tag == TO_BE32X('OTTD')) break; fmt++; } break; } if (fmt->tag == hdr[0]) { /* check version number */ _sl_version = (SaveLoadVersion)(TO_BE32(hdr[1]) >> 16); /* Minor is not used anymore from version 18.0, but it is still needed * in versions before that (4 cases) which can't be removed easy. * Therefore it is loaded, but never saved (or, it saves a 0 in any scenario). */ _sl_minor_version = (TO_BE32(hdr[1]) >> 8) & 0xFF; Debug(sl, 1, "Loading savegame version {}", _sl_version); /* Is the version higher than the current? */ if (_sl_version > SAVEGAME_VERSION) SlError(STR_GAME_SAVELOAD_ERROR_TOO_NEW_SAVEGAME); if (_sl_version >= SLV_START_PATCHPACKS && _sl_version <= SLV_END_PATCHPACKS) SlError(STR_GAME_SAVELOAD_ERROR_PATCHPACK); break; } fmt++; } /* loader for this savegame type is not implemented? */ if (fmt->init_load == nullptr) { char err_str[64]; seprintf(err_str, lastof(err_str), "Loader for '%s' is not available.", fmt->name); SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, err_str); } _sl.lf = fmt->init_load(_sl.lf); _sl.reader = new ReadBuffer(_sl.lf); _next_offs = 0; if (!load_check) { ResetSaveloadData(); /* Old maps were hardcoded to 256x256 and thus did not contain * any mapsize information. Pre-initialize to 256x256 to not to * confuse old games */ InitializeGame(256, 256, true, true); _gamelog.Reset(); if (IsSavegameVersionBefore(SLV_4)) { /* * NewGRFs were introduced between 0.3,4 and 0.3.5, which both * shared savegame version 4. Anything before that 'obviously' * does not have any NewGRFs. Between the introduction and * savegame version 41 (just before 0.5) the NewGRF settings * were not stored in the savegame and they were loaded by * using the settings from the main menu. * So, to recap: * - savegame version < 4: do not load any NewGRFs. * - savegame version >= 41: load NewGRFs from savegame, which is * already done at this stage by * overwriting the main menu settings. * - other savegame versions: use main menu settings. * * This means that users *can* crash savegame version 4..40 * savegames if they set incompatible NewGRFs in the main menu, * but can't crash anymore for savegame version < 4 savegames. * * Note: this is done here because AfterLoadGame is also called * for TTO/TTD/TTDP savegames which have their own NewGRF logic. */ ClearGRFConfigList(&_grfconfig); } } if (load_check) { /* Load chunks into _load_check_data. * No pools are loaded. References are not possible, and thus do not need resolving. */ SlLoadCheckChunks(); } else { /* Load chunks and resolve references */ SlLoadChunks(); SlFixPointers(); } ClearSaveLoadState(); _savegame_type = SGT_OTTD; if (load_check) { /* The only part from AfterLoadGame() we need */ _load_check_data.grf_compatibility = IsGoodGRFConfigList(_load_check_data.grfconfig); } else { _gamelog.StartAction(GLAT_LOAD); /* After loading fix up savegame for any internal changes that * might have occurred since then. If it fails, load back the old game. */ if (!AfterLoadGame()) { _gamelog.StopAction(); return SL_REINIT; } _gamelog.StopAction(); } return SL_OK; } /** * Load the game using a (reader) filter. * @param reader The filter to read the savegame from. * @return Return the result of the action. #SL_OK or #SL_REINIT ("unload" the game) */ SaveOrLoadResult LoadWithFilter(LoadFilter *reader) { try { _sl.action = SLA_LOAD; return DoLoad(reader, false); } catch (...) { ClearSaveLoadState(); return SL_REINIT; } } /** * Main Save or Load function where the high-level saveload functions are * handled. It opens the savegame, selects format and checks versions * @param filename The name of the savegame being created/loaded * @param fop Save or load mode. Load can also be a TTD(Patch) game. * @param sb The sub directory to save the savegame in * @param threaded True when threaded saving is allowed * @return Return the result of the action. #SL_OK, #SL_ERROR, or #SL_REINIT ("unload" the game) */ SaveOrLoadResult SaveOrLoad(const std::string &filename, SaveLoadOperation fop, DetailedFileType dft, Subdirectory sb, bool threaded) { /* An instance of saving is already active, so don't go saving again */ if (_sl.saveinprogress && fop == SLO_SAVE && dft == DFT_GAME_FILE && threaded) { /* if not an autosave, but a user action, show error message */ if (!_do_autosave) ShowErrorMessage(STR_ERROR_SAVE_STILL_IN_PROGRESS, INVALID_STRING_ID, WL_ERROR); return SL_OK; } WaitTillSaved(); try { /* Load a TTDLX or TTDPatch game */ if (fop == SLO_LOAD && dft == DFT_OLD_GAME_FILE) { ResetSaveloadData(); InitializeGame(256, 256, true, true); // set a mapsize of 256x256 for TTDPatch games or it might get confused /* TTD/TTO savegames have no NewGRFs, TTDP savegame have them * and if so a new NewGRF list will be made in LoadOldSaveGame. * Note: this is done here because AfterLoadGame is also called * for OTTD savegames which have their own NewGRF logic. */ ClearGRFConfigList(&_grfconfig); _gamelog.Reset(); if (!LoadOldSaveGame(filename)) return SL_REINIT; _sl_version = SL_MIN_VERSION; _sl_minor_version = 0; _gamelog.StartAction(GLAT_LOAD); if (!AfterLoadGame()) { _gamelog.StopAction(); return SL_REINIT; } _gamelog.StopAction(); return SL_OK; } assert(dft == DFT_GAME_FILE); switch (fop) { case SLO_CHECK: _sl.action = SLA_LOAD_CHECK; break; case SLO_LOAD: _sl.action = SLA_LOAD; break; case SLO_SAVE: _sl.action = SLA_SAVE; break; default: NOT_REACHED(); } FILE *fh = (fop == SLO_SAVE) ? FioFOpenFile(filename, "wb", sb) : FioFOpenFile(filename, "rb", sb); /* Make it a little easier to load savegames from the console */ if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", SAVE_DIR); if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", BASE_DIR); if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", SCENARIO_DIR); if (fh == nullptr) { SlError(fop == SLO_SAVE ? STR_GAME_SAVELOAD_ERROR_FILE_NOT_WRITEABLE : STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE); } if (fop == SLO_SAVE) { // SAVE game Debug(desync, 1, "save: {:08x}; {:02x}; {}", TimerGameCalendar::date, TimerGameCalendar::date_fract, filename); if (_network_server || !_settings_client.gui.threaded_saves) threaded = false; return DoSave(new FileWriter(fh), threaded); } /* LOAD game */ assert(fop == SLO_LOAD || fop == SLO_CHECK); Debug(desync, 1, "load: {}", filename); return DoLoad(new FileReader(fh), fop == SLO_CHECK); } catch (...) { /* This code may be executed both for old and new save games. */ ClearSaveLoadState(); /* Skip the "colour" character */ if (fop != SLO_CHECK) Debug(sl, 0, "{}", GetSaveLoadErrorString() + 3); /* A saver/loader exception!! reinitialize all variables to prevent crash! */ return (fop == SLO_LOAD) ? SL_REINIT : SL_ERROR; } } /** * Create an autosave or netsave. * @param counter A reference to the counter variable to be used for rotating the file name. * @param netsave Indicates if this is a regular autosave or a netsave. */ void DoAutoOrNetsave(FiosNumberedSaveName &counter) { char buf[MAX_PATH]; if (_settings_client.gui.keep_all_autosave) { GenerateDefaultSaveName(buf, lastof(buf)); strecat(buf, counter.Extension().c_str(), lastof(buf)); } else { strecpy(buf, counter.Filename().c_str(), lastof(buf)); } Debug(sl, 2, "Autosaving to '{}'", buf); if (SaveOrLoad(buf, SLO_SAVE, DFT_GAME_FILE, AUTOSAVE_DIR) != SL_OK) { ShowErrorMessage(STR_ERROR_AUTOSAVE_FAILED, INVALID_STRING_ID, WL_ERROR); } } /** Do a save when exiting the game (_settings_client.gui.autosave_on_exit) */ void DoExitSave() { SaveOrLoad("exit.sav", SLO_SAVE, DFT_GAME_FILE, AUTOSAVE_DIR); } /** * Fill the buffer with the default name for a savegame *or* screenshot. * @param buf the buffer to write to. * @param last the last element in the buffer. */ void GenerateDefaultSaveName(char *buf, const char *last) { /* Check if we have a name for this map, which is the name of the first * available company. When there's no company available we'll use * 'Spectator' as "company" name. */ CompanyID cid = _local_company; if (!Company::IsValidID(cid)) { for (const Company *c : Company::Iterate()) { cid = c->index; break; } } SetDParam(0, cid); /* Insert current date */ switch (_settings_client.gui.date_format_in_default_names) { case 0: SetDParam(1, STR_JUST_DATE_LONG); break; case 1: SetDParam(1, STR_JUST_DATE_TINY); break; case 2: SetDParam(1, STR_JUST_DATE_ISO); break; default: NOT_REACHED(); } SetDParam(2, TimerGameCalendar::date); /* Get the correct string (special string for when there's not company) */ GetString(buf, !Company::IsValidID(cid) ? STR_SAVEGAME_NAME_SPECTATOR : STR_SAVEGAME_NAME_DEFAULT, last); SanitizeFilename(buf); } /** * Set the mode and file type of the file to save or load based on the type of file entry at the file system. * @param ft Type of file entry of the file system. */ void FileToSaveLoad::SetMode(FiosType ft) { this->SetMode(SLO_LOAD, GetAbstractFileType(ft), GetDetailedFileType(ft)); } /** * Set the mode and file type of the file to save or load. * @param fop File operation being performed. * @param aft Abstract file type. * @param dft Detailed file type. */ void FileToSaveLoad::SetMode(SaveLoadOperation fop, AbstractFileType aft, DetailedFileType dft) { if (aft == FT_INVALID || aft == FT_NONE) { this->file_op = SLO_INVALID; this->detail_ftype = DFT_INVALID; this->abstract_ftype = FT_INVALID; return; } this->file_op = fop; this->detail_ftype = dft; this->abstract_ftype = aft; } /** * Set the title of the file. * @param title Title of the file. */ void FileToSaveLoad::Set(const FiosItem &item) { this->SetMode(item.type); this->name = item.name; this->title = item.title; } SaveLoadTable SaveLoadHandler::GetLoadDescription() const { assert(this->load_description.has_value()); return *this->load_description; }