/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see .
*/
/** @file spritecache.cpp Caching of sprites. */
#include "stdafx.h"
#include "random_access_file_type.h"
#include "spriteloader/grf.hpp"
#include "gfx_func.h"
#include "error.h"
#include "error_func.h"
#include "zoom_func.h"
#include "settings_type.h"
#include "blitter/factory.hpp"
#include "core/math_func.hpp"
#include "core/mem_func.hpp"
#include "video/video_driver.hpp"
#include "spritecache.h"
#include "spritecache_internal.h"
#include "table/sprites.h"
#include "table/strings.h"
#include "table/palette_convert.h"
#include "safeguards.h"
/* Default of 4MB spritecache */
uint _sprite_cache_size = 4;
static uint _spritecache_items = 0;
static SpriteCache *_spritecache = nullptr;
static std::vector> _sprite_files;
static inline SpriteCache *GetSpriteCache(uint index)
{
return &_spritecache[index];
}
SpriteCache *AllocateSpriteCache(uint index)
{
if (index >= _spritecache_items) {
/* Add another 1024 items to the 'pool' */
uint items = Align(index + 1, 1024);
Debug(sprite, 4, "Increasing sprite cache to {} items ({} bytes)", items, items * sizeof(*_spritecache));
_spritecache = ReallocT(_spritecache, items);
/* Reset the new items and update the count */
memset(_spritecache + _spritecache_items, 0, (items - _spritecache_items) * sizeof(*_spritecache));
_spritecache_items = items;
}
return GetSpriteCache(index);
}
/**
* Get the cached SpriteFile given the name of the file.
* @param filename The name of the file at the disk.
* @return The SpriteFile or \c null.
*/
static SpriteFile *GetCachedSpriteFileByName(const std::string &filename)
{
for (auto &f : _sprite_files) {
if (f->GetFilename() == filename) {
return f.get();
}
}
return nullptr;
}
/**
* Open/get the SpriteFile that is cached for use in the sprite cache.
* @param filename Name of the file at the disk.
* @param subdir The sub directory to search this file in.
* @param palette_remap Whether a palette remap needs to be performed for this file.
* @return The reference to the SpriteCache.
*/
SpriteFile &OpenCachedSpriteFile(const std::string &filename, Subdirectory subdir, bool palette_remap)
{
SpriteFile *file = GetCachedSpriteFileByName(filename);
if (file == nullptr) {
file = _sprite_files.insert(std::end(_sprite_files), std::make_unique(filename, subdir, palette_remap))->get();
} else {
file->SeekToBegin();
}
return *file;
}
struct MemBlock {
size_t size;
byte data[];
};
static uint _sprite_lru_counter;
static MemBlock *_spritecache_ptr;
static uint _allocated_sprite_cache_size = 0;
static int _compact_cache_counter;
static void CompactSpriteCache();
/**
* Skip the given amount of sprite graphics data.
* @param type the type of sprite (compressed etc)
* @param num the amount of sprites to skip
* @return true if the data could be correctly skipped.
*/
bool SkipSpriteData(SpriteFile &file, byte type, uint16_t num)
{
if (type & 2) {
file.SkipBytes(num);
} else {
while (num > 0) {
int8_t i = file.ReadByte();
if (i >= 0) {
int size = (i == 0) ? 0x80 : i;
if (size > num) return false;
num -= size;
file.SkipBytes(size);
} else {
i = -(i >> 3);
num -= i;
file.ReadByte();
}
}
}
return true;
}
/* Check if the given Sprite ID exists */
bool SpriteExists(SpriteID id)
{
if (id >= _spritecache_items) return false;
/* Special case for Sprite ID zero -- its position is also 0... */
if (id == 0) return true;
return !(GetSpriteCache(id)->file_pos == 0 && GetSpriteCache(id)->file == nullptr);
}
/**
* Get the sprite type of a given sprite.
* @param sprite The sprite to look at.
* @return the type of sprite.
*/
SpriteType GetSpriteType(SpriteID sprite)
{
if (!SpriteExists(sprite)) return SpriteType::Invalid;
return GetSpriteCache(sprite)->type;
}
/**
* Get the SpriteFile of a given sprite.
* @param sprite The sprite to look at.
* @return The SpriteFile.
*/
SpriteFile *GetOriginFile(SpriteID sprite)
{
if (!SpriteExists(sprite)) return nullptr;
return GetSpriteCache(sprite)->file;
}
/**
* Get the GRF-local sprite id of a given sprite.
* @param sprite The sprite to look at.
* @return The GRF-local sprite id.
*/
uint32_t GetSpriteLocalID(SpriteID sprite)
{
if (!SpriteExists(sprite)) return 0;
return GetSpriteCache(sprite)->id;
}
/**
* Count the sprites which originate from a specific file in a range of SpriteIDs.
* @param file The loaded SpriteFile.
* @param begin First sprite in range.
* @param end First sprite not in range.
* @return Number of sprites.
*/
uint GetSpriteCountForFile(const std::string &filename, SpriteID begin, SpriteID end)
{
SpriteFile *file = GetCachedSpriteFileByName(filename);
if (file == nullptr) return 0;
uint count = 0;
for (SpriteID i = begin; i != end; i++) {
if (SpriteExists(i)) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->file == file) {
count++;
Debug(sprite, 4, "Sprite: {}", i);
}
}
}
return count;
}
/**
* Get a reasonable (upper bound) estimate of the maximum
* SpriteID used in OpenTTD; there will be no sprites with
* a higher SpriteID, although there might be up to roughly
* a thousand unused SpriteIDs below this number.
* @note It's actually the number of spritecache items.
* @return maximum SpriteID
*/
uint GetMaxSpriteID()
{
return _spritecache_items;
}
static bool ResizeSpriteIn(SpriteLoader::SpriteCollection &sprite, ZoomLevel src, ZoomLevel tgt)
{
uint8_t scaled_1 = ScaleByZoom(1, (ZoomLevel)(src - tgt));
/* Check for possible memory overflow. */
if (sprite[src].width * scaled_1 > UINT16_MAX || sprite[src].height * scaled_1 > UINT16_MAX) return false;
sprite[tgt].width = sprite[src].width * scaled_1;
sprite[tgt].height = sprite[src].height * scaled_1;
sprite[tgt].x_offs = sprite[src].x_offs * scaled_1;
sprite[tgt].y_offs = sprite[src].y_offs * scaled_1;
sprite[tgt].colours = sprite[src].colours;
sprite[tgt].AllocateData(tgt, static_cast(sprite[tgt].width) * sprite[tgt].height);
SpriteLoader::CommonPixel *dst = sprite[tgt].data;
for (int y = 0; y < sprite[tgt].height; y++) {
const SpriteLoader::CommonPixel *src_ln = &sprite[src].data[y / scaled_1 * sprite[src].width];
for (int x = 0; x < sprite[tgt].width; x++) {
*dst = src_ln[x / scaled_1];
dst++;
}
}
return true;
}
static void ResizeSpriteOut(SpriteLoader::SpriteCollection &sprite, ZoomLevel zoom)
{
/* Algorithm based on 32bpp_Optimized::ResizeSprite() */
sprite[zoom].width = UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].width, zoom);
sprite[zoom].height = UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].height, zoom);
sprite[zoom].x_offs = UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].x_offs, zoom);
sprite[zoom].y_offs = UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].y_offs, zoom);
sprite[zoom].colours = sprite[ZOOM_LVL_NORMAL].colours;
sprite[zoom].AllocateData(zoom, static_cast(sprite[zoom].height) * sprite[zoom].width);
SpriteLoader::CommonPixel *dst = sprite[zoom].data;
const SpriteLoader::CommonPixel *src = sprite[zoom - 1].data;
[[maybe_unused]] const SpriteLoader::CommonPixel *src_end = src + sprite[zoom - 1].height * sprite[zoom - 1].width;
for (uint y = 0; y < sprite[zoom].height; y++) {
const SpriteLoader::CommonPixel *src_ln = src + sprite[zoom - 1].width;
assert(src_ln <= src_end);
for (uint x = 0; x < sprite[zoom].width; x++) {
assert(src < src_ln);
if (src + 1 != src_ln && (src + 1)->a != 0) {
*dst = *(src + 1);
} else {
*dst = *src;
}
dst++;
src += 2;
}
src = src_ln + sprite[zoom - 1].width;
}
}
static bool PadSingleSprite(SpriteLoader::Sprite *sprite, ZoomLevel zoom, uint pad_left, uint pad_top, uint pad_right, uint pad_bottom)
{
uint width = sprite->width + pad_left + pad_right;
uint height = sprite->height + pad_top + pad_bottom;
if (width > UINT16_MAX || height > UINT16_MAX) return false;
/* Copy source data and reallocate sprite memory. */
size_t sprite_size = static_cast(sprite->width) * sprite->height;
SpriteLoader::CommonPixel *src_data = MallocT(sprite_size);
MemCpyT(src_data, sprite->data, sprite_size);
sprite->AllocateData(zoom, static_cast(width) * height);
/* Copy with padding to destination. */
SpriteLoader::CommonPixel *src = src_data;
SpriteLoader::CommonPixel *data = sprite->data;
for (uint y = 0; y < height; y++) {
if (y < pad_top || pad_bottom + y >= height) {
/* Top/bottom padding. */
MemSetT(data, 0, width);
data += width;
} else {
if (pad_left > 0) {
/* Pad left. */
MemSetT(data, 0, pad_left);
data += pad_left;
}
/* Copy pixels. */
MemCpyT(data, src, sprite->width);
src += sprite->width;
data += sprite->width;
if (pad_right > 0) {
/* Pad right. */
MemSetT(data, 0, pad_right);
data += pad_right;
}
}
}
free(src_data);
/* Update sprite size. */
sprite->width = width;
sprite->height = height;
sprite->x_offs -= pad_left;
sprite->y_offs -= pad_top;
return true;
}
static bool PadSprites(SpriteLoader::SpriteCollection &sprite, uint8_t sprite_avail, SpriteEncoder *encoder)
{
/* Get minimum top left corner coordinates. */
int min_xoffs = INT32_MAX;
int min_yoffs = INT32_MAX;
for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_END; zoom++) {
if (HasBit(sprite_avail, zoom)) {
min_xoffs = std::min(min_xoffs, ScaleByZoom(sprite[zoom].x_offs, zoom));
min_yoffs = std::min(min_yoffs, ScaleByZoom(sprite[zoom].y_offs, zoom));
}
}
/* Get maximum dimensions taking necessary padding at the top left into account. */
int max_width = INT32_MIN;
int max_height = INT32_MIN;
for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_END; zoom++) {
if (HasBit(sprite_avail, zoom)) {
max_width = std::max(max_width, ScaleByZoom(sprite[zoom].width + sprite[zoom].x_offs - UnScaleByZoom(min_xoffs, zoom), zoom));
max_height = std::max(max_height, ScaleByZoom(sprite[zoom].height + sprite[zoom].y_offs - UnScaleByZoom(min_yoffs, zoom), zoom));
}
}
/* Align height and width if required to match the needs of the sprite encoder. */
uint align = encoder->GetSpriteAlignment();
if (align != 0) {
max_width = Align(max_width, align);
max_height = Align(max_height, align);
}
/* Pad sprites where needed. */
for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_END; zoom++) {
if (HasBit(sprite_avail, zoom)) {
/* Scaling the sprite dimensions in the blitter is done with rounding up,
* so a negative padding here is not an error. */
int pad_left = std::max(0, sprite[zoom].x_offs - UnScaleByZoom(min_xoffs, zoom));
int pad_top = std::max(0, sprite[zoom].y_offs - UnScaleByZoom(min_yoffs, zoom));
int pad_right = std::max(0, UnScaleByZoom(max_width, zoom) - sprite[zoom].width - pad_left);
int pad_bottom = std::max(0, UnScaleByZoom(max_height, zoom) - sprite[zoom].height - pad_top);
if (pad_left > 0 || pad_right > 0 || pad_top > 0 || pad_bottom > 0) {
if (!PadSingleSprite(&sprite[zoom], zoom, pad_left, pad_top, pad_right, pad_bottom)) return false;
}
}
}
return true;
}
static bool ResizeSprites(SpriteLoader::SpriteCollection &sprite, uint8_t sprite_avail, SpriteEncoder *encoder)
{
/* Create a fully zoomed image if it does not exist */
ZoomLevel first_avail = static_cast(FIND_FIRST_BIT(sprite_avail));
if (first_avail != ZOOM_LVL_NORMAL) {
if (!ResizeSpriteIn(sprite, first_avail, ZOOM_LVL_NORMAL)) return false;
SetBit(sprite_avail, ZOOM_LVL_NORMAL);
}
/* Pad sprites to make sizes match. */
if (!PadSprites(sprite, sprite_avail, encoder)) return false;
/* Create other missing zoom levels */
for (ZoomLevel zoom = ZOOM_LVL_OUT_2X; zoom != ZOOM_LVL_END; zoom++) {
if (HasBit(sprite_avail, zoom)) {
/* Check that size and offsets match the fully zoomed image. */
assert(sprite[zoom].width == UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].width, zoom));
assert(sprite[zoom].height == UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].height, zoom));
assert(sprite[zoom].x_offs == UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].x_offs, zoom));
assert(sprite[zoom].y_offs == UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].y_offs, zoom));
}
/* Zoom level is not available, or unusable, so create it */
if (!HasBit(sprite_avail, zoom)) ResizeSpriteOut(sprite, zoom);
}
/* Upscale to desired sprite_min_zoom if provided sprite only had zoomed in versions. */
if (first_avail < _settings_client.gui.sprite_zoom_min) {
if (_settings_client.gui.sprite_zoom_min >= ZOOM_LVL_OUT_4X) ResizeSpriteIn(sprite, ZOOM_LVL_OUT_4X, ZOOM_LVL_OUT_2X);
if (_settings_client.gui.sprite_zoom_min >= ZOOM_LVL_OUT_2X) ResizeSpriteIn(sprite, ZOOM_LVL_OUT_2X, ZOOM_LVL_NORMAL);
}
return true;
}
/**
* Load a recolour sprite into memory.
* @param file GRF we're reading from.
* @param num Size of the sprite in the GRF.
* @return Sprite data.
*/
static void *ReadRecolourSprite(SpriteFile &file, uint num)
{
/* "Normal" recolour sprites are ALWAYS 257 bytes. Then there is a small
* number of recolour sprites that are 17 bytes that only exist in DOS
* GRFs which are the same as 257 byte recolour sprites, but with the last
* 240 bytes zeroed. */
static const uint RECOLOUR_SPRITE_SIZE = 257;
byte *dest = (byte *)AllocSprite(std::max(RECOLOUR_SPRITE_SIZE, num));
if (file.NeedsPaletteRemap()) {
byte *dest_tmp = new byte[std::max(RECOLOUR_SPRITE_SIZE, num)];
/* Only a few recolour sprites are less than 257 bytes */
if (num < RECOLOUR_SPRITE_SIZE) memset(dest_tmp, 0, RECOLOUR_SPRITE_SIZE);
file.ReadBlock(dest_tmp, num);
/* The data of index 0 is never used; "literal 00" according to the (New)GRF specs. */
for (uint i = 1; i < RECOLOUR_SPRITE_SIZE; i++) {
dest[i] = _palmap_w2d[dest_tmp[_palmap_d2w[i - 1] + 1]];
}
delete[] dest_tmp;
} else {
file.ReadBlock(dest, num);
}
return dest;
}
/**
* Read a sprite from disk.
* @param sc Location of sprite.
* @param id Sprite number.
* @param sprite_type Type of sprite.
* @param allocator Allocator function to use.
* @param encoder Sprite encoder to use.
* @return Read sprite data.
*/
static void *ReadSprite(const SpriteCache *sc, SpriteID id, SpriteType sprite_type, AllocatorProc *allocator, SpriteEncoder *encoder)
{
/* Use current blitter if no other sprite encoder is given. */
if (encoder == nullptr) encoder = BlitterFactory::GetCurrentBlitter();
SpriteFile &file = *sc->file;
size_t file_pos = sc->file_pos;
assert(sprite_type != SpriteType::Recolour);
assert(IsMapgenSpriteID(id) == (sprite_type == SpriteType::MapGen));
assert(sc->type == sprite_type);
Debug(sprite, 9, "Load sprite {}", id);
SpriteLoader::SpriteCollection sprite;
uint8_t sprite_avail = 0;
sprite[ZOOM_LVL_NORMAL].type = sprite_type;
SpriteLoaderGrf sprite_loader(file.GetContainerVersion());
if (sprite_type != SpriteType::MapGen && encoder->Is32BppSupported()) {
/* Try for 32bpp sprites first. */
sprite_avail = sprite_loader.LoadSprite(sprite, file, file_pos, sprite_type, true, sc->control_flags);
}
if (sprite_avail == 0) {
sprite_avail = sprite_loader.LoadSprite(sprite, file, file_pos, sprite_type, false, sc->control_flags);
}
if (sprite_avail == 0) {
if (sprite_type == SpriteType::MapGen) return nullptr;
if (id == SPR_IMG_QUERY) UserError("Okay... something went horribly wrong. I couldn't load the fallback sprite. What should I do?");
return (void*)GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, allocator, encoder);
}
if (sprite_type == SpriteType::MapGen) {
/* Ugly hack to work around the problem that the old landscape
* generator assumes that those sprites are stored uncompressed in
* the memory, and they are only read directly by the code, never
* send to the blitter. So do not send it to the blitter (which will
* result in a data array in the format the blitter likes most), but
* extract the data directly and store that as sprite.
* Ugly: yes. Other solution: no. Blame the original author or
* something ;) The image should really have been a data-stream
* (so type = 0xFF basically). */
uint num = sprite[ZOOM_LVL_NORMAL].width * sprite[ZOOM_LVL_NORMAL].height;
Sprite *s = (Sprite *)allocator(sizeof(*s) + num);
s->width = sprite[ZOOM_LVL_NORMAL].width;
s->height = sprite[ZOOM_LVL_NORMAL].height;
s->x_offs = sprite[ZOOM_LVL_NORMAL].x_offs;
s->y_offs = sprite[ZOOM_LVL_NORMAL].y_offs;
SpriteLoader::CommonPixel *src = sprite[ZOOM_LVL_NORMAL].data;
byte *dest = s->data;
while (num-- > 0) {
*dest++ = src->m;
src++;
}
return s;
}
if (!ResizeSprites(sprite, sprite_avail, encoder)) {
if (id == SPR_IMG_QUERY) UserError("Okay... something went horribly wrong. I couldn't resize the fallback sprite. What should I do?");
return (void*)GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, allocator, encoder);
}
if (sprite[ZOOM_LVL_NORMAL].type == SpriteType::Font && _font_zoom != ZOOM_LVL_NORMAL) {
/* Make ZOOM_LVL_NORMAL be ZOOM_LVL_GUI */
sprite[ZOOM_LVL_NORMAL].width = sprite[_font_zoom].width;
sprite[ZOOM_LVL_NORMAL].height = sprite[_font_zoom].height;
sprite[ZOOM_LVL_NORMAL].x_offs = sprite[_font_zoom].x_offs;
sprite[ZOOM_LVL_NORMAL].y_offs = sprite[_font_zoom].y_offs;
sprite[ZOOM_LVL_NORMAL].data = sprite[_font_zoom].data;
sprite[ZOOM_LVL_NORMAL].colours = sprite[_font_zoom].colours;
}
return encoder->Encode(sprite, allocator);
}
struct GrfSpriteOffset {
size_t file_pos;
byte control_flags;
};
/** Map from sprite numbers to position in the GRF file. */
static std::map _grf_sprite_offsets;
/**
* Get the file offset for a specific sprite in the sprite section of a GRF.
* @param id ID of the sprite to look up.
* @return Position of the sprite in the sprite section or SIZE_MAX if no such sprite is present.
*/
size_t GetGRFSpriteOffset(uint32_t id)
{
return _grf_sprite_offsets.find(id) != _grf_sprite_offsets.end() ? _grf_sprite_offsets[id].file_pos : SIZE_MAX;
}
/**
* Parse the sprite section of GRFs.
* @param container_version Container version of the GRF we're currently processing.
*/
void ReadGRFSpriteOffsets(SpriteFile &file)
{
_grf_sprite_offsets.clear();
if (file.GetContainerVersion() >= 2) {
/* Seek to sprite section of the GRF. */
size_t data_offset = file.ReadDword();
size_t old_pos = file.GetPos();
file.SeekTo(data_offset, SEEK_CUR);
GrfSpriteOffset offset = { 0, 0 };
/* Loop over all sprite section entries and store the file
* offset for each newly encountered ID. */
uint32_t id, prev_id = 0;
while ((id = file.ReadDword()) != 0) {
if (id != prev_id) {
_grf_sprite_offsets[prev_id] = offset;
offset.file_pos = file.GetPos() - 4;
offset.control_flags = 0;
}
prev_id = id;
uint length = file.ReadDword();
if (length > 0) {
byte colour = file.ReadByte() & SCC_MASK;
length--;
if (length > 0) {
byte zoom = file.ReadByte();
length--;
if (colour != 0 && zoom == 0) { // ZOOM_LVL_OUT_4X (normal zoom)
SetBit(offset.control_flags, (colour != SCC_PAL) ? SCCF_ALLOW_ZOOM_MIN_1X_32BPP : SCCF_ALLOW_ZOOM_MIN_1X_PAL);
SetBit(offset.control_flags, (colour != SCC_PAL) ? SCCF_ALLOW_ZOOM_MIN_2X_32BPP : SCCF_ALLOW_ZOOM_MIN_2X_PAL);
}
if (colour != 0 && zoom == 2) { // ZOOM_LVL_OUT_2X (2x zoomed in)
SetBit(offset.control_flags, (colour != SCC_PAL) ? SCCF_ALLOW_ZOOM_MIN_2X_32BPP : SCCF_ALLOW_ZOOM_MIN_2X_PAL);
}
}
}
file.SkipBytes(length);
}
if (prev_id != 0) _grf_sprite_offsets[prev_id] = offset;
/* Continue processing the data section. */
file.SeekTo(old_pos, SEEK_SET);
}
}
/**
* Load a real or recolour sprite.
* @param load_index Global sprite index.
* @param file GRF to load from.
* @param file_sprite_id Sprite number in the GRF.
* @param container_version Container version of the GRF.
* @return True if a valid sprite was loaded, false on any error.
*/
bool LoadNextSprite(int load_index, SpriteFile &file, uint file_sprite_id)
{
size_t file_pos = file.GetPos();
/* Read sprite header. */
uint32_t num = file.GetContainerVersion() >= 2 ? file.ReadDword() : file.ReadWord();
if (num == 0) return false;
byte grf_type = file.ReadByte();
SpriteType type;
void *data = nullptr;
byte control_flags = 0;
if (grf_type == 0xFF) {
/* Some NewGRF files have "empty" pseudo-sprites which are 1
* byte long. Catch these so the sprites won't be displayed. */
if (num == 1) {
file.ReadByte();
return false;
}
type = SpriteType::Recolour;
data = ReadRecolourSprite(file, num);
} else if (file.GetContainerVersion() >= 2 && grf_type == 0xFD) {
if (num != 4) {
/* Invalid sprite section include, ignore. */
file.SkipBytes(num);
return false;
}
/* It is not an error if no sprite with the provided ID is found in the sprite section. */
auto iter = _grf_sprite_offsets.find(file.ReadDword());
if (iter != _grf_sprite_offsets.end()) {
file_pos = iter->second.file_pos;
control_flags = iter->second.control_flags;
} else {
file_pos = SIZE_MAX;
}
type = SpriteType::Normal;
} else {
file.SkipBytes(7);
type = SkipSpriteData(file, grf_type, num - 8) ? SpriteType::Normal : SpriteType::Invalid;
/* Inline sprites are not supported for container version >= 2. */
if (file.GetContainerVersion() >= 2) return false;
}
if (type == SpriteType::Invalid) return false;
if (load_index >= MAX_SPRITES) {
UserError("Tried to load too many sprites (#{}; max {})", load_index, MAX_SPRITES);
}
bool is_mapgen = IsMapgenSpriteID(load_index);
if (is_mapgen) {
if (type != SpriteType::Normal) UserError("Uhm, would you be so kind not to load a NewGRF that changes the type of the map generator sprites?");
type = SpriteType::MapGen;
}
SpriteCache *sc = AllocateSpriteCache(load_index);
sc->file = &file;
sc->file_pos = file_pos;
sc->ptr = data;
sc->lru = 0;
sc->id = file_sprite_id;
sc->type = type;
sc->warned = false;
sc->control_flags = control_flags;
return true;
}
void DupSprite(SpriteID old_spr, SpriteID new_spr)
{
SpriteCache *scnew = AllocateSpriteCache(new_spr); // may reallocate: so put it first
SpriteCache *scold = GetSpriteCache(old_spr);
scnew->file = scold->file;
scnew->file_pos = scold->file_pos;
scnew->ptr = nullptr;
scnew->id = scold->id;
scnew->type = scold->type;
scnew->warned = false;
}
/**
* S_FREE_MASK is used to mask-out lower bits of MemBlock::size
* If they are non-zero, the block is free.
* S_FREE_MASK has to ensure MemBlock is correctly aligned -
* it means 8B (S_FREE_MASK == 7) on 64bit systems!
*/
static const size_t S_FREE_MASK = sizeof(size_t) - 1;
/* to make sure nobody adds things to MemBlock without checking S_FREE_MASK first */
static_assert(sizeof(MemBlock) == sizeof(size_t));
/* make sure it's a power of two */
static_assert((sizeof(size_t) & (sizeof(size_t) - 1)) == 0);
static inline MemBlock *NextBlock(MemBlock *block)
{
return (MemBlock*)((byte*)block + (block->size & ~S_FREE_MASK));
}
static size_t GetSpriteCacheUsage()
{
size_t tot_size = 0;
MemBlock *s;
for (s = _spritecache_ptr; s->size != 0; s = NextBlock(s)) {
if (!(s->size & S_FREE_MASK)) tot_size += s->size;
}
return tot_size;
}
void IncreaseSpriteLRU()
{
/* Increase all LRU values */
if (_sprite_lru_counter > 16384) {
SpriteID i;
Debug(sprite, 5, "Fixing lru {}, inuse={}", _sprite_lru_counter, GetSpriteCacheUsage());
for (i = 0; i != _spritecache_items; i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->ptr != nullptr) {
if (sc->lru >= 0) {
sc->lru = -1;
} else if (sc->lru != -32768) {
sc->lru--;
}
}
}
_sprite_lru_counter = 0;
}
/* Compact sprite cache every now and then. */
if (++_compact_cache_counter >= 740) {
CompactSpriteCache();
_compact_cache_counter = 0;
}
}
/**
* Called when holes in the sprite cache should be removed.
* That is accomplished by moving the cached data.
*/
static void CompactSpriteCache()
{
MemBlock *s;
Debug(sprite, 3, "Compacting sprite cache, inuse={}", GetSpriteCacheUsage());
for (s = _spritecache_ptr; s->size != 0;) {
if (s->size & S_FREE_MASK) {
MemBlock *next = NextBlock(s);
MemBlock temp;
SpriteID i;
/* Since free blocks are automatically coalesced, this should hold true. */
assert(!(next->size & S_FREE_MASK));
/* If the next block is the sentinel block, we can safely return */
if (next->size == 0) break;
/* Locate the sprite belonging to the next pointer. */
for (i = 0; GetSpriteCache(i)->ptr != next->data; i++) {
assert(i != _spritecache_items);
}
GetSpriteCache(i)->ptr = s->data; // Adjust sprite array entry
/* Swap this and the next block */
temp = *s;
memmove(s, next, next->size);
s = NextBlock(s);
*s = temp;
/* Coalesce free blocks */
while (NextBlock(s)->size & S_FREE_MASK) {
s->size += NextBlock(s)->size & ~S_FREE_MASK;
}
} else {
s = NextBlock(s);
}
}
}
/**
* Delete a single entry from the sprite cache.
* @param item Entry to delete.
*/
static void DeleteEntryFromSpriteCache(uint item)
{
/* Mark the block as free (the block must be in use) */
MemBlock *s = (MemBlock*)GetSpriteCache(item)->ptr - 1;
assert(!(s->size & S_FREE_MASK));
s->size |= S_FREE_MASK;
GetSpriteCache(item)->ptr = nullptr;
/* And coalesce adjacent free blocks */
for (s = _spritecache_ptr; s->size != 0; s = NextBlock(s)) {
if (s->size & S_FREE_MASK) {
while (NextBlock(s)->size & S_FREE_MASK) {
s->size += NextBlock(s)->size & ~S_FREE_MASK;
}
}
}
}
static void DeleteEntryFromSpriteCache()
{
uint best = UINT_MAX;
int cur_lru;
Debug(sprite, 3, "DeleteEntryFromSpriteCache, inuse={}", GetSpriteCacheUsage());
cur_lru = 0xffff;
for (SpriteID i = 0; i != _spritecache_items; i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->type != SpriteType::Recolour && sc->ptr != nullptr && sc->lru < cur_lru) {
cur_lru = sc->lru;
best = i;
}
}
/* Display an error message and die, in case we found no sprite at all.
* This shouldn't really happen, unless all sprites are locked. */
if (best == UINT_MAX) FatalError("Out of sprite memory");
DeleteEntryFromSpriteCache(best);
}
void *AllocSprite(size_t mem_req)
{
mem_req += sizeof(MemBlock);
/* Align this to correct boundary. This also makes sure at least one
* bit is not used, so we can use it for other things. */
mem_req = Align(mem_req, S_FREE_MASK + 1);
for (;;) {
MemBlock *s;
for (s = _spritecache_ptr; s->size != 0; s = NextBlock(s)) {
if (s->size & S_FREE_MASK) {
size_t cur_size = s->size & ~S_FREE_MASK;
/* Is the block exactly the size we need or
* big enough for an additional free block? */
if (cur_size == mem_req ||
cur_size >= mem_req + sizeof(MemBlock)) {
/* Set size and in use */
s->size = mem_req;
/* Do we need to inject a free block too? */
if (cur_size != mem_req) {
NextBlock(s)->size = (cur_size - mem_req) | S_FREE_MASK;
}
return s->data;
}
}
}
/* Reached sentinel, but no block found yet. Delete some old entry. */
DeleteEntryFromSpriteCache();
}
}
/**
* Sprite allocator simply using malloc.
*/
void *SimpleSpriteAlloc(size_t size)
{
return MallocT(size);
}
/**
* Handles the case when a sprite of different type is requested than is present in the SpriteCache.
* For SpriteType::Font sprites, it is normal. In other cases, default sprite is loaded instead.
* @param sprite ID of loaded sprite
* @param requested requested sprite type
* @param sc the currently known sprite cache for the requested sprite
* @return fallback sprite
* @note this function will do UserError() in the case the fallback sprite isn't available
*/
static void *HandleInvalidSpriteRequest(SpriteID sprite, SpriteType requested, SpriteCache *sc, AllocatorProc *allocator)
{
static const char * const sprite_types[] = {
"normal", // SpriteType::Normal
"map generator", // SpriteType::MapGen
"character", // SpriteType::Font
"recolour", // SpriteType::Recolour
};
SpriteType available = sc->type;
if (requested == SpriteType::Font && available == SpriteType::Normal) {
if (sc->ptr == nullptr) sc->type = SpriteType::Font;
return GetRawSprite(sprite, sc->type, allocator);
}
byte warning_level = sc->warned ? 6 : 0;
sc->warned = true;
Debug(sprite, warning_level, "Tried to load {} sprite #{} as a {} sprite. Probable cause: NewGRF interference", sprite_types[static_cast(available)], sprite, sprite_types[static_cast(requested)]);
switch (requested) {
case SpriteType::Normal:
if (sprite == SPR_IMG_QUERY) UserError("Uhm, would you be so kind not to load a NewGRF that makes the 'query' sprite a non-normal sprite?");
FALLTHROUGH;
case SpriteType::Font:
return GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, allocator);
case SpriteType::Recolour:
if (sprite == PALETTE_TO_DARK_BLUE) UserError("Uhm, would you be so kind not to load a NewGRF that makes the 'PALETTE_TO_DARK_BLUE' sprite a non-remap sprite?");
return GetRawSprite(PALETTE_TO_DARK_BLUE, SpriteType::Recolour, allocator);
case SpriteType::MapGen:
/* this shouldn't happen, overriding of SpriteType::MapGen sprites is checked in LoadNextSprite()
* (the only case the check fails is when these sprites weren't even loaded...) */
default:
NOT_REACHED();
}
}
/**
* Reads a sprite (from disk or sprite cache).
* If the sprite is not available or of wrong type, a fallback sprite is returned.
* @param sprite Sprite to read.
* @param type Expected sprite type.
* @param allocator Allocator function to use. Set to nullptr to use the usual sprite cache.
* @param encoder Sprite encoder to use. Set to nullptr to use the currently active blitter.
* @return Sprite raw data
*/
void *GetRawSprite(SpriteID sprite, SpriteType type, AllocatorProc *allocator, SpriteEncoder *encoder)
{
assert(type != SpriteType::MapGen || IsMapgenSpriteID(sprite));
assert(type < SpriteType::Invalid);
if (!SpriteExists(sprite)) {
Debug(sprite, 1, "Tried to load non-existing sprite #{}. Probable cause: Wrong/missing NewGRFs", sprite);
/* SPR_IMG_QUERY is a BIG FAT RED ? */
sprite = SPR_IMG_QUERY;
}
SpriteCache *sc = GetSpriteCache(sprite);
if (sc->type != type) return HandleInvalidSpriteRequest(sprite, type, sc, allocator);
if (allocator == nullptr && encoder == nullptr) {
/* Load sprite into/from spritecache */
/* Update LRU */
sc->lru = ++_sprite_lru_counter;
/* Load the sprite, if it is not loaded, yet */
if (sc->ptr == nullptr) sc->ptr = ReadSprite(sc, sprite, type, AllocSprite, nullptr);
return sc->ptr;
} else {
/* Do not use the spritecache, but a different allocator. */
return ReadSprite(sc, sprite, type, allocator, encoder);
}
}
static void GfxInitSpriteCache()
{
/* initialize sprite cache heap */
int bpp = BlitterFactory::GetCurrentBlitter()->GetScreenDepth();
uint target_size = (bpp > 0 ? _sprite_cache_size * bpp / 8 : 1) * 1024 * 1024;
/* Remember 'target_size' from the previous allocation attempt, so we do not try to reach the target_size multiple times in case of failure. */
static uint last_alloc_attempt = 0;
if (_spritecache_ptr == nullptr || (_allocated_sprite_cache_size != target_size && target_size != last_alloc_attempt)) {
delete[] reinterpret_cast(_spritecache_ptr);
last_alloc_attempt = target_size;
_allocated_sprite_cache_size = target_size;
do {
/* Try to allocate 50% more to make sure we do not allocate almost all available. */
_spritecache_ptr = reinterpret_cast(new(std::nothrow) byte[_allocated_sprite_cache_size + _allocated_sprite_cache_size / 2]);
if (_spritecache_ptr != nullptr) {
/* Allocation succeeded, but we wanted less. */
delete[] reinterpret_cast(_spritecache_ptr);
_spritecache_ptr = reinterpret_cast(new byte[_allocated_sprite_cache_size]);
} else if (_allocated_sprite_cache_size < 2 * 1024 * 1024) {
UserError("Cannot allocate spritecache");
} else {
/* Try again to allocate half. */
_allocated_sprite_cache_size >>= 1;
}
} while (_spritecache_ptr == nullptr);
if (_allocated_sprite_cache_size != target_size) {
Debug(misc, 0, "Not enough memory to allocate {} MiB of spritecache. Spritecache was reduced to {} MiB.", target_size / 1024 / 1024, _allocated_sprite_cache_size / 1024 / 1024);
ErrorMessageData msg(STR_CONFIG_ERROR_OUT_OF_MEMORY, STR_CONFIG_ERROR_SPRITECACHE_TOO_BIG);
msg.SetDParam(0, target_size);
msg.SetDParam(1, _allocated_sprite_cache_size);
ScheduleErrorMessage(msg);
}
}
/* A big free block */
_spritecache_ptr->size = (_allocated_sprite_cache_size - sizeof(MemBlock)) | S_FREE_MASK;
/* Sentinel block (identified by size == 0) */
NextBlock(_spritecache_ptr)->size = 0;
}
void GfxInitSpriteMem()
{
GfxInitSpriteCache();
/* Reset the spritecache 'pool' */
free(_spritecache);
_spritecache_items = 0;
_spritecache = nullptr;
_compact_cache_counter = 0;
_sprite_files.clear();
}
/**
* Remove all encoded sprites from the sprite cache without
* discarding sprite location information.
*/
void GfxClearSpriteCache()
{
/* Clear sprite ptr for all cached items */
for (uint i = 0; i != _spritecache_items; i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->type != SpriteType::Recolour && sc->ptr != nullptr) DeleteEntryFromSpriteCache(i);
}
VideoDriver::GetInstance()->ClearSystemSprites();
}
/**
* Remove all encoded font sprites from the sprite cache without
* discarding sprite location information.
*/
void GfxClearFontSpriteCache()
{
/* Clear sprite ptr for all cached font items */
for (uint i = 0; i != _spritecache_items; i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->type == SpriteType::Font && sc->ptr != nullptr) DeleteEntryFromSpriteCache(i);
}
}
/* static */ ReusableBuffer SpriteLoader::Sprite::buffer[ZOOM_LVL_END];