/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see .
*/
/** @file framerate_gui.cpp GUI for displaying framerate/game speed information. */
#include "framerate_type.h"
#include
#include "gfx_func.h"
#include "window_gui.h"
#include "window_func.h"
#include "table/sprites.h"
#include "string_func.h"
#include "strings_func.h"
#include "console_func.h"
#include "console_type.h"
#include "company_base.h"
#include "ai/ai_info.hpp"
#include "ai/ai_instance.hpp"
#include "game/game.hpp"
#include "game/game_instance.hpp"
#include "timer/timer.h"
#include "timer/timer_window.h"
#include "widgets/framerate_widget.h"
#include
#include
#include "safeguards.h"
static std::mutex _sound_perf_lock;
static std::atomic _sound_perf_pending;
static std::vector _sound_perf_measurements;
/**
* Private declarations for performance measurement implementation
*/
namespace {
/** Number of data points to keep in buffer for each performance measurement */
const int NUM_FRAMERATE_POINTS = 512;
/** %Units a second is divided into in performance measurements */
const TimingMeasurement TIMESTAMP_PRECISION = 1000000;
struct PerformanceData {
/** Duration value indicating the value is not valid should be considered a gap in measurements */
static const TimingMeasurement INVALID_DURATION = UINT64_MAX;
/** Time spent processing each cycle of the performance element, circular buffer */
TimingMeasurement durations[NUM_FRAMERATE_POINTS];
/** Start time of each cycle of the performance element, circular buffer */
TimingMeasurement timestamps[NUM_FRAMERATE_POINTS];
/** Expected number of cycles per second when the system is running without slowdowns */
double expected_rate;
/** Next index to write to in \c durations and \c timestamps */
int next_index;
/** Last index written to in \c durations and \c timestamps */
int prev_index;
/** Number of data points recorded, clamped to \c NUM_FRAMERATE_POINTS */
int num_valid;
/** Current accumulated duration */
TimingMeasurement acc_duration;
/** Start time for current accumulation cycle */
TimingMeasurement acc_timestamp;
/**
* Initialize a data element with an expected collection rate
* @param expected_rate
* Expected number of cycles per second of the performance element. Use 1 if unknown or not relevant.
* The rate is used for highlighting slow-running elements in the GUI.
*/
explicit PerformanceData(double expected_rate) : expected_rate(expected_rate), next_index(0), prev_index(0), num_valid(0) { }
/** Collect a complete measurement, given start and ending times for a processing block */
void Add(TimingMeasurement start_time, TimingMeasurement end_time)
{
this->durations[this->next_index] = end_time - start_time;
this->timestamps[this->next_index] = start_time;
this->prev_index = this->next_index;
this->next_index += 1;
if (this->next_index >= NUM_FRAMERATE_POINTS) this->next_index = 0;
this->num_valid = std::min(NUM_FRAMERATE_POINTS, this->num_valid + 1);
}
/** Begin an accumulation of multiple measurements into a single value, from a given start time */
void BeginAccumulate(TimingMeasurement start_time)
{
this->timestamps[this->next_index] = this->acc_timestamp;
this->durations[this->next_index] = this->acc_duration;
this->prev_index = this->next_index;
this->next_index += 1;
if (this->next_index >= NUM_FRAMERATE_POINTS) this->next_index = 0;
this->num_valid = std::min(NUM_FRAMERATE_POINTS, this->num_valid + 1);
this->acc_duration = 0;
this->acc_timestamp = start_time;
}
/** Accumulate a period onto the current measurement */
void AddAccumulate(TimingMeasurement duration)
{
this->acc_duration += duration;
}
/** Indicate a pause/expected discontinuity in processing the element */
void AddPause(TimingMeasurement start_time)
{
if (this->durations[this->prev_index] != INVALID_DURATION) {
this->timestamps[this->next_index] = start_time;
this->durations[this->next_index] = INVALID_DURATION;
this->prev_index = this->next_index;
this->next_index += 1;
if (this->next_index >= NUM_FRAMERATE_POINTS) this->next_index = 0;
this->num_valid += 1;
}
}
/** Get average cycle processing time over a number of data points */
double GetAverageDurationMilliseconds(int count)
{
count = std::min(count, this->num_valid);
int first_point = this->prev_index - count;
if (first_point < 0) first_point += NUM_FRAMERATE_POINTS;
/* Sum durations, skipping invalid points */
double sumtime = 0;
for (int i = first_point; i < first_point + count; i++) {
auto d = this->durations[i % NUM_FRAMERATE_POINTS];
if (d != INVALID_DURATION) {
sumtime += d;
} else {
/* Don't count the invalid durations */
count--;
}
}
if (count == 0) return 0; // avoid div by zero
return sumtime * 1000 / count / TIMESTAMP_PRECISION;
}
/** Get current rate of a performance element, based on approximately the past one second of data */
double GetRate()
{
/* Start at last recorded point, end at latest when reaching the earliest recorded point */
int point = this->prev_index;
int last_point = this->next_index - this->num_valid;
if (last_point < 0) last_point += NUM_FRAMERATE_POINTS;
/* Number of data points collected */
int count = 0;
/* Time of previous data point */
TimingMeasurement last = this->timestamps[point];
/* Total duration covered by collected points */
TimingMeasurement total = 0;
/* We have nothing to compare the first point against */
point--;
if (point < 0) point = NUM_FRAMERATE_POINTS - 1;
while (point != last_point) {
/* Only record valid data points, but pretend the gaps in measurements aren't there */
if (this->durations[point] != INVALID_DURATION) {
total += last - this->timestamps[point];
count++;
}
last = this->timestamps[point];
if (total >= TIMESTAMP_PRECISION) break; // end after 1 second has been collected
point--;
if (point < 0) point = NUM_FRAMERATE_POINTS - 1;
}
if (total == 0 || count == 0) return 0;
return (double)count * TIMESTAMP_PRECISION / total;
}
};
/** %Game loop rate, cycles per second */
static const double GL_RATE = 1000.0 / MILLISECONDS_PER_TICK;
/**
* Storage for all performance element measurements.
* Elements are initialized with the expected rate in recorded values per second.
* @hideinitializer
*/
PerformanceData _pf_data[PFE_MAX] = {
PerformanceData(GL_RATE), // PFE_GAMELOOP
PerformanceData(1), // PFE_ACC_GL_ECONOMY
PerformanceData(1), // PFE_ACC_GL_TRAINS
PerformanceData(1), // PFE_ACC_GL_ROADVEHS
PerformanceData(1), // PFE_ACC_GL_SHIPS
PerformanceData(1), // PFE_ACC_GL_AIRCRAFT
PerformanceData(1), // PFE_GL_LANDSCAPE
PerformanceData(1), // PFE_GL_LINKGRAPH
PerformanceData(1000.0 / 30), // PFE_DRAWING
PerformanceData(1), // PFE_ACC_DRAWWORLD
PerformanceData(60.0), // PFE_VIDEO
PerformanceData(1000.0 * 8192 / 44100), // PFE_SOUND
PerformanceData(1), // PFE_ALLSCRIPTS
PerformanceData(1), // PFE_GAMESCRIPT
PerformanceData(1), // PFE_AI0 ...
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1),
PerformanceData(1), // PFE_AI14
};
}
/**
* Return a timestamp with \c TIMESTAMP_PRECISION ticks per second precision.
* The basis of the timestamp is implementation defined, but the value should be steady,
* so differences can be taken to reliably measure intervals.
*/
static TimingMeasurement GetPerformanceTimer()
{
using namespace std::chrono;
return (TimingMeasurement)time_point_cast(high_resolution_clock::now()).time_since_epoch().count();
}
/**
* Begin a cycle of a measured element.
* @param elem The element to be measured
*/
PerformanceMeasurer::PerformanceMeasurer(PerformanceElement elem)
{
assert(elem < PFE_MAX);
this->elem = elem;
this->start_time = GetPerformanceTimer();
}
/** Finish a cycle of a measured element and store the measurement taken. */
PerformanceMeasurer::~PerformanceMeasurer()
{
if (this->elem == PFE_ALLSCRIPTS) {
/* Hack to not record scripts total when no scripts are active */
bool any_active = _pf_data[PFE_GAMESCRIPT].num_valid > 0;
for (uint e = PFE_AI0; e < PFE_MAX; e++) any_active |= _pf_data[e].num_valid > 0;
if (!any_active) {
PerformanceMeasurer::SetInactive(PFE_ALLSCRIPTS);
return;
}
}
if (this->elem == PFE_SOUND) {
/* PFE_SOUND measurements are made from the mixer thread.
* _pf_data cannot be concurrently accessed from the mixer thread
* and the main thread, so store the measurement results in a
* mutex-protected queue which is drained by the main thread.
* See: ProcessPendingPerformanceMeasurements() */
TimingMeasurement end = GetPerformanceTimer();
std::lock_guard lk(_sound_perf_lock);
if (_sound_perf_measurements.size() >= NUM_FRAMERATE_POINTS * 2) return;
_sound_perf_measurements.push_back(this->start_time);
_sound_perf_measurements.push_back(end);
_sound_perf_pending.store(true, std::memory_order_release);
return;
}
_pf_data[this->elem].Add(this->start_time, GetPerformanceTimer());
}
/** Set the rate of expected cycles per second of a performance element. */
void PerformanceMeasurer::SetExpectedRate(double rate)
{
_pf_data[this->elem].expected_rate = rate;
}
/** Mark a performance element as not currently in use. */
/* static */ void PerformanceMeasurer::SetInactive(PerformanceElement elem)
{
_pf_data[elem].num_valid = 0;
_pf_data[elem].next_index = 0;
_pf_data[elem].prev_index = 0;
}
/**
* Indicate that a cycle of "pause" where no processing occurs.
* @param elem The element not currently being processed
*/
/* static */ void PerformanceMeasurer::Paused(PerformanceElement elem)
{
PerformanceMeasurer::SetInactive(elem);
_pf_data[elem].AddPause(GetPerformanceTimer());
}
/**
* Begin measuring one block of the accumulating value.
* @param elem The element to be measured
*/
PerformanceAccumulator::PerformanceAccumulator(PerformanceElement elem)
{
assert(elem < PFE_MAX);
this->elem = elem;
this->start_time = GetPerformanceTimer();
}
/** Finish and add one block of the accumulating value. */
PerformanceAccumulator::~PerformanceAccumulator()
{
_pf_data[this->elem].AddAccumulate(GetPerformanceTimer() - this->start_time);
}
/**
* Store the previous accumulator value and reset for a new cycle of accumulating measurements.
* @note This function must be called once per frame, otherwise measurements are not collected.
* @param elem The element to begin a new measurement cycle of
*/
void PerformanceAccumulator::Reset(PerformanceElement elem)
{
_pf_data[elem].BeginAccumulate(GetPerformanceTimer());
}
void ShowFrametimeGraphWindow(PerformanceElement elem);
static const PerformanceElement DISPLAY_ORDER_PFE[PFE_MAX] = {
PFE_GAMELOOP,
PFE_GL_ECONOMY,
PFE_GL_TRAINS,
PFE_GL_ROADVEHS,
PFE_GL_SHIPS,
PFE_GL_AIRCRAFT,
PFE_GL_LANDSCAPE,
PFE_ALLSCRIPTS,
PFE_GAMESCRIPT,
PFE_AI0,
PFE_AI1,
PFE_AI2,
PFE_AI3,
PFE_AI4,
PFE_AI5,
PFE_AI6,
PFE_AI7,
PFE_AI8,
PFE_AI9,
PFE_AI10,
PFE_AI11,
PFE_AI12,
PFE_AI13,
PFE_AI14,
PFE_GL_LINKGRAPH,
PFE_DRAWING,
PFE_DRAWWORLD,
PFE_VIDEO,
PFE_SOUND,
};
static const char * GetAIName(int ai_index)
{
if (!Company::IsValidAiID(ai_index)) return "";
return Company::Get(ai_index)->ai_info->GetName().c_str();
}
/** @hideinitializer */
static const NWidgetPart _framerate_window_widgets[] = {
NWidget(NWID_HORIZONTAL),
NWidget(WWT_CLOSEBOX, COLOUR_GREY),
NWidget(WWT_CAPTION, COLOUR_GREY, WID_FRW_CAPTION), SetDataTip(STR_FRAMERATE_CAPTION, STR_TOOLTIP_WINDOW_TITLE_DRAG_THIS),
NWidget(WWT_SHADEBOX, COLOUR_GREY),
NWidget(WWT_STICKYBOX, COLOUR_GREY),
EndContainer(),
NWidget(WWT_PANEL, COLOUR_GREY),
NWidget(NWID_VERTICAL), SetPadding(WidgetDimensions::unscaled.frametext), SetPIP(0, WidgetDimensions::unscaled.vsep_normal, 0),
NWidget(WWT_TEXT, COLOUR_GREY, WID_FRW_RATE_GAMELOOP), SetDataTip(STR_FRAMERATE_RATE_GAMELOOP, STR_FRAMERATE_RATE_GAMELOOP_TOOLTIP), SetFill(1, 0), SetResize(1, 0),
NWidget(WWT_TEXT, COLOUR_GREY, WID_FRW_RATE_DRAWING), SetDataTip(STR_FRAMERATE_RATE_BLITTER, STR_FRAMERATE_RATE_BLITTER_TOOLTIP), SetFill(1, 0), SetResize(1, 0),
NWidget(WWT_TEXT, COLOUR_GREY, WID_FRW_RATE_FACTOR), SetDataTip(STR_FRAMERATE_SPEED_FACTOR, STR_FRAMERATE_SPEED_FACTOR_TOOLTIP), SetFill(1, 0), SetResize(1, 0),
EndContainer(),
EndContainer(),
NWidget(NWID_HORIZONTAL),
NWidget(WWT_PANEL, COLOUR_GREY),
NWidget(NWID_VERTICAL), SetPadding(WidgetDimensions::unscaled.frametext), SetPIP(0, WidgetDimensions::unscaled.vsep_wide, 0),
NWidget(NWID_HORIZONTAL), SetPIP(0, WidgetDimensions::unscaled.hsep_wide, 0),
NWidget(WWT_EMPTY, COLOUR_GREY, WID_FRW_TIMES_NAMES), SetScrollbar(WID_FRW_SCROLLBAR),
NWidget(WWT_EMPTY, COLOUR_GREY, WID_FRW_TIMES_CURRENT), SetScrollbar(WID_FRW_SCROLLBAR),
NWidget(WWT_EMPTY, COLOUR_GREY, WID_FRW_TIMES_AVERAGE), SetScrollbar(WID_FRW_SCROLLBAR),
NWidget(NWID_SELECTION, INVALID_COLOUR, WID_FRW_SEL_MEMORY),
NWidget(WWT_EMPTY, COLOUR_GREY, WID_FRW_ALLOCSIZE), SetScrollbar(WID_FRW_SCROLLBAR),
EndContainer(),
EndContainer(),
NWidget(WWT_TEXT, COLOUR_GREY, WID_FRW_INFO_DATA_POINTS), SetDataTip(STR_FRAMERATE_DATA_POINTS, 0x0), SetFill(1, 0), SetResize(1, 0),
EndContainer(),
EndContainer(),
NWidget(NWID_VERTICAL),
NWidget(NWID_VSCROLLBAR, COLOUR_GREY, WID_FRW_SCROLLBAR),
NWidget(WWT_RESIZEBOX, COLOUR_GREY),
EndContainer(),
EndContainer(),
};
struct FramerateWindow : Window {
bool small;
bool showing_memory;
int num_active;
int num_displayed;
struct CachedDecimal {
StringID strid;
uint32_t value;
inline void SetRate(double value, double target)
{
const double threshold_good = target * 0.95;
const double threshold_bad = target * 2 / 3;
this->value = (uint32_t)(value * 100);
this->strid = (value > threshold_good) ? STR_FRAMERATE_FPS_GOOD : (value < threshold_bad) ? STR_FRAMERATE_FPS_BAD : STR_FRAMERATE_FPS_WARN;
}
inline void SetTime(double value, double target)
{
const double threshold_good = target / 3;
const double threshold_bad = target;
this->value = (uint32_t)(value * 100);
this->strid = (value < threshold_good) ? STR_FRAMERATE_MS_GOOD : (value > threshold_bad) ? STR_FRAMERATE_MS_BAD : STR_FRAMERATE_MS_WARN;
}
inline void InsertDParams(uint n) const
{
SetDParam(n, this->value);
SetDParam(n + 1, 2);
}
};
CachedDecimal rate_gameloop; ///< cached game loop tick rate
CachedDecimal rate_drawing; ///< cached drawing frame rate
CachedDecimal speed_gameloop; ///< cached game loop speed factor
CachedDecimal times_shortterm[PFE_MAX]; ///< cached short term average times
CachedDecimal times_longterm[PFE_MAX]; ///< cached long term average times
static constexpr int MIN_ELEMENTS = 5; ///< smallest number of elements to display
FramerateWindow(WindowDesc *desc, WindowNumber number) : Window(desc)
{
this->InitNested(number);
this->small = this->IsShaded();
this->showing_memory = true;
this->UpdateData();
this->num_displayed = this->num_active;
/* Window is always initialised to MIN_ELEMENTS height, resize to contain num_displayed */
ResizeWindow(this, 0, (std::max(MIN_ELEMENTS, this->num_displayed) - MIN_ELEMENTS) * FONT_HEIGHT_NORMAL);
}
void OnRealtimeTick([[maybe_unused]] uint delta_ms) override
{
/* Check if the shaded state has changed, switch caption text if it has */
if (this->small != this->IsShaded()) {
this->small = this->IsShaded();
this->GetWidget(WID_FRW_CAPTION)->SetDataTip(this->small ? STR_FRAMERATE_CAPTION_SMALL : STR_FRAMERATE_CAPTION, STR_TOOLTIP_WINDOW_TITLE_DRAG_THIS);
this->UpdateData();
this->SetDirty();
}
}
/** Update the window on a regular interval. */
IntervalTimer update_interval = {std::chrono::milliseconds(100), [this](auto) {
this->UpdateData();
this->SetDirty();
}};
void UpdateData()
{
double gl_rate = _pf_data[PFE_GAMELOOP].GetRate();
bool have_script = false;
this->rate_gameloop.SetRate(gl_rate, _pf_data[PFE_GAMELOOP].expected_rate);
this->speed_gameloop.SetRate(gl_rate / _pf_data[PFE_GAMELOOP].expected_rate, 1.0);
if (this->small) return; // in small mode, this is everything needed
this->rate_drawing.SetRate(_pf_data[PFE_DRAWING].GetRate(), _settings_client.gui.refresh_rate);
int new_active = 0;
for (PerformanceElement e = PFE_FIRST; e < PFE_MAX; e++) {
this->times_shortterm[e].SetTime(_pf_data[e].GetAverageDurationMilliseconds(8), MILLISECONDS_PER_TICK);
this->times_longterm[e].SetTime(_pf_data[e].GetAverageDurationMilliseconds(NUM_FRAMERATE_POINTS), MILLISECONDS_PER_TICK);
if (_pf_data[e].num_valid > 0) {
new_active++;
if (e == PFE_GAMESCRIPT || e >= PFE_AI0) have_script = true;
}
}
if (this->showing_memory != have_script) {
NWidgetStacked *plane = this->GetWidget(WID_FRW_SEL_MEMORY);
plane->SetDisplayedPlane(have_script ? 0 : SZSP_VERTICAL);
this->showing_memory = have_script;
}
if (new_active != this->num_active) {
this->num_active = new_active;
Scrollbar *sb = this->GetScrollbar(WID_FRW_SCROLLBAR);
sb->SetCount(this->num_active);
sb->SetCapacity(std::min(this->num_displayed, this->num_active));
this->ReInit();
}
}
void SetStringParameters(int widget) const override
{
switch (widget) {
case WID_FRW_CAPTION:
/* When the window is shaded, the caption shows game loop rate and speed factor */
if (!this->small) break;
SetDParam(0, this->rate_gameloop.strid);
this->rate_gameloop.InsertDParams(1);
this->speed_gameloop.InsertDParams(3);
break;
case WID_FRW_RATE_GAMELOOP:
SetDParam(0, this->rate_gameloop.strid);
this->rate_gameloop.InsertDParams(1);
break;
case WID_FRW_RATE_DRAWING:
SetDParam(0, this->rate_drawing.strid);
this->rate_drawing.InsertDParams(1);
break;
case WID_FRW_RATE_FACTOR:
this->speed_gameloop.InsertDParams(0);
break;
case WID_FRW_INFO_DATA_POINTS:
SetDParam(0, NUM_FRAMERATE_POINTS);
break;
}
}
void UpdateWidgetSize(int widget, Dimension *size, [[maybe_unused]] const Dimension &padding, [[maybe_unused]] Dimension *fill, [[maybe_unused]] Dimension *resize) override
{
switch (widget) {
case WID_FRW_RATE_GAMELOOP:
SetDParam(0, STR_FRAMERATE_FPS_GOOD);
SetDParam(1, 999999);
SetDParam(2, 2);
*size = GetStringBoundingBox(STR_FRAMERATE_RATE_GAMELOOP);
break;
case WID_FRW_RATE_DRAWING:
SetDParam(0, STR_FRAMERATE_FPS_GOOD);
SetDParam(1, 999999);
SetDParam(2, 2);
*size = GetStringBoundingBox(STR_FRAMERATE_RATE_BLITTER);
break;
case WID_FRW_RATE_FACTOR:
SetDParam(0, 999999);
SetDParam(1, 2);
*size = GetStringBoundingBox(STR_FRAMERATE_SPEED_FACTOR);
break;
case WID_FRW_TIMES_NAMES: {
size->width = 0;
size->height = FONT_HEIGHT_NORMAL + WidgetDimensions::scaled.vsep_normal + MIN_ELEMENTS * FONT_HEIGHT_NORMAL;
resize->width = 0;
resize->height = FONT_HEIGHT_NORMAL;
for (PerformanceElement e : DISPLAY_ORDER_PFE) {
if (_pf_data[e].num_valid == 0) continue;
Dimension line_size;
if (e < PFE_AI0) {
line_size = GetStringBoundingBox(STR_FRAMERATE_GAMELOOP + e);
} else {
SetDParam(0, e - PFE_AI0 + 1);
SetDParamStr(1, GetAIName(e - PFE_AI0));
line_size = GetStringBoundingBox(STR_FRAMERATE_AI);
}
size->width = std::max(size->width, line_size.width);
}
break;
}
case WID_FRW_TIMES_CURRENT:
case WID_FRW_TIMES_AVERAGE:
case WID_FRW_ALLOCSIZE: {
*size = GetStringBoundingBox(STR_FRAMERATE_CURRENT + (widget - WID_FRW_TIMES_CURRENT));
SetDParam(0, 999999);
SetDParam(1, 2);
Dimension item_size = GetStringBoundingBox(STR_FRAMERATE_MS_GOOD);
size->width = std::max(size->width, item_size.width);
size->height += FONT_HEIGHT_NORMAL * MIN_ELEMENTS + WidgetDimensions::scaled.vsep_normal;
resize->width = 0;
resize->height = FONT_HEIGHT_NORMAL;
break;
}
}
}
/** Render a column of formatted average durations */
void DrawElementTimesColumn(const Rect &r, StringID heading_str, const CachedDecimal *values) const
{
const Scrollbar *sb = this->GetScrollbar(WID_FRW_SCROLLBAR);
uint16_t skip = sb->GetPosition();
int drawable = this->num_displayed;
int y = r.top;
DrawString(r.left, r.right, y, heading_str, TC_FROMSTRING, SA_CENTER, true);
y += FONT_HEIGHT_NORMAL + WidgetDimensions::scaled.vsep_normal;
for (PerformanceElement e : DISPLAY_ORDER_PFE) {
if (_pf_data[e].num_valid == 0) continue;
if (skip > 0) {
skip--;
} else {
values[e].InsertDParams(0);
DrawString(r.left, r.right, y, values[e].strid, TC_FROMSTRING, SA_RIGHT);
y += FONT_HEIGHT_NORMAL;
drawable--;
if (drawable == 0) break;
}
}
}
void DrawElementAllocationsColumn(const Rect &r) const
{
const Scrollbar *sb = this->GetScrollbar(WID_FRW_SCROLLBAR);
uint16_t skip = sb->GetPosition();
int drawable = this->num_displayed;
int y = r.top;
DrawString(r.left, r.right, y, STR_FRAMERATE_MEMORYUSE, TC_FROMSTRING, SA_CENTER, true);
y += FONT_HEIGHT_NORMAL + WidgetDimensions::scaled.vsep_normal;
for (PerformanceElement e : DISPLAY_ORDER_PFE) {
if (_pf_data[e].num_valid == 0) continue;
if (skip > 0) {
skip--;
} else if (e == PFE_GAMESCRIPT || e >= PFE_AI0) {
if (e == PFE_GAMESCRIPT) {
SetDParam(0, Game::GetInstance()->GetAllocatedMemory());
} else {
SetDParam(0, Company::Get(e - PFE_AI0)->ai_instance->GetAllocatedMemory());
}
DrawString(r.left, r.right, y, STR_FRAMERATE_BYTES_GOOD, TC_FROMSTRING, SA_RIGHT);
y += FONT_HEIGHT_NORMAL;
drawable--;
if (drawable == 0) break;
} else {
/* skip non-script */
y += FONT_HEIGHT_NORMAL;
drawable--;
if (drawable == 0) break;
}
}
}
void DrawWidget(const Rect &r, int widget) const override
{
switch (widget) {
case WID_FRW_TIMES_NAMES: {
/* Render a column of titles for performance element names */
const Scrollbar *sb = this->GetScrollbar(WID_FRW_SCROLLBAR);
uint16_t skip = sb->GetPosition();
int drawable = this->num_displayed;
int y = r.top + FONT_HEIGHT_NORMAL + WidgetDimensions::scaled.vsep_normal; // first line contains headings in the value columns
for (PerformanceElement e : DISPLAY_ORDER_PFE) {
if (_pf_data[e].num_valid == 0) continue;
if (skip > 0) {
skip--;
} else {
if (e < PFE_AI0) {
DrawString(r.left, r.right, y, STR_FRAMERATE_GAMELOOP + e, TC_FROMSTRING, SA_LEFT);
} else {
SetDParam(0, e - PFE_AI0 + 1);
SetDParamStr(1, GetAIName(e - PFE_AI0));
DrawString(r.left, r.right, y, STR_FRAMERATE_AI, TC_FROMSTRING, SA_LEFT);
}
y += FONT_HEIGHT_NORMAL;
drawable--;
if (drawable == 0) break;
}
}
break;
}
case WID_FRW_TIMES_CURRENT:
/* Render short-term average values */
DrawElementTimesColumn(r, STR_FRAMERATE_CURRENT, this->times_shortterm);
break;
case WID_FRW_TIMES_AVERAGE:
/* Render averages of all recorded values */
DrawElementTimesColumn(r, STR_FRAMERATE_AVERAGE, this->times_longterm);
break;
case WID_FRW_ALLOCSIZE:
DrawElementAllocationsColumn(r);
break;
}
}
void OnClick([[maybe_unused]] Point pt, int widget, [[maybe_unused]] int click_count) override
{
switch (widget) {
case WID_FRW_TIMES_NAMES:
case WID_FRW_TIMES_CURRENT:
case WID_FRW_TIMES_AVERAGE: {
/* Open time graph windows when clicking detail measurement lines */
const Scrollbar *sb = this->GetScrollbar(WID_FRW_SCROLLBAR);
int line = sb->GetScrolledRowFromWidget(pt.y, this, widget, WidgetDimensions::scaled.vsep_normal + FONT_HEIGHT_NORMAL);
if (line != INT_MAX) {
line++;
/* Find the visible line that was clicked */
for (PerformanceElement e : DISPLAY_ORDER_PFE) {
if (_pf_data[e].num_valid > 0) line--;
if (line == 0) {
ShowFrametimeGraphWindow(e);
break;
}
}
}
break;
}
}
}
void OnResize() override
{
auto *wid = this->GetWidget(WID_FRW_TIMES_NAMES);
this->num_displayed = (wid->current_y - wid->min_y - WidgetDimensions::scaled.vsep_normal) / FONT_HEIGHT_NORMAL - 1; // subtract 1 for headings
this->GetScrollbar(WID_FRW_SCROLLBAR)->SetCapacity(this->num_displayed);
}
};
static WindowDesc _framerate_display_desc(
WDP_AUTO, "framerate_display", 0, 0,
WC_FRAMERATE_DISPLAY, WC_NONE,
0,
std::begin(_framerate_window_widgets), std::end(_framerate_window_widgets)
);
/** @hideinitializer */
static const NWidgetPart _frametime_graph_window_widgets[] = {
NWidget(NWID_HORIZONTAL),
NWidget(WWT_CLOSEBOX, COLOUR_GREY),
NWidget(WWT_CAPTION, COLOUR_GREY, WID_FGW_CAPTION), SetDataTip(STR_JUST_STRING2, STR_TOOLTIP_WINDOW_TITLE_DRAG_THIS), SetTextStyle(TC_WHITE),
NWidget(WWT_STICKYBOX, COLOUR_GREY),
EndContainer(),
NWidget(WWT_PANEL, COLOUR_GREY),
NWidget(NWID_VERTICAL), SetPadding(6),
NWidget(WWT_EMPTY, COLOUR_GREY, WID_FGW_GRAPH),
EndContainer(),
EndContainer(),
};
struct FrametimeGraphWindow : Window {
int vertical_scale; ///< number of TIMESTAMP_PRECISION units vertically
int horizontal_scale; ///< number of half-second units horizontally
PerformanceElement element; ///< what element this window renders graph for
Dimension graph_size; ///< size of the main graph area (excluding axis labels)
FrametimeGraphWindow(WindowDesc *desc, WindowNumber number) : Window(desc)
{
this->element = (PerformanceElement)number;
this->horizontal_scale = 4;
this->vertical_scale = TIMESTAMP_PRECISION / 10;
this->InitNested(number);
this->UpdateScale();
}
void SetStringParameters(int widget) const override
{
switch (widget) {
case WID_FGW_CAPTION:
if (this->element < PFE_AI0) {
SetDParam(0, STR_FRAMETIME_CAPTION_GAMELOOP + this->element);
} else {
SetDParam(0, STR_FRAMETIME_CAPTION_AI);
SetDParam(1, this->element - PFE_AI0 + 1);
SetDParamStr(2, GetAIName(this->element - PFE_AI0));
}
break;
}
}
void UpdateWidgetSize(int widget, Dimension *size, [[maybe_unused]] const Dimension &padding, [[maybe_unused]] Dimension *fill, [[maybe_unused]] Dimension *resize) override
{
if (widget == WID_FGW_GRAPH) {
SetDParam(0, 100);
Dimension size_ms_label = GetStringBoundingBox(STR_FRAMERATE_GRAPH_MILLISECONDS);
SetDParam(0, 100);
Dimension size_s_label = GetStringBoundingBox(STR_FRAMERATE_GRAPH_SECONDS);
/* Size graph in height to fit at least 10 vertical labels with space between, or at least 100 pixels */
graph_size.height = std::max(100u, 10 * (size_ms_label.height + 1));
/* Always 2:1 graph area */
graph_size.width = 2 * graph_size.height;
*size = graph_size;
size->width += size_ms_label.width + 2;
size->height += size_s_label.height + 2;
}
}
void SelectHorizontalScale(TimingMeasurement range)
{
/* Determine horizontal scale based on period covered by 60 points
* (slightly less than 2 seconds at full game speed) */
struct ScaleDef { TimingMeasurement range; int scale; };
static const ScaleDef hscales[] = {
{ 120, 60 },
{ 10, 20 },
{ 5, 10 },
{ 3, 4 },
{ 1, 2 },
};
for (const ScaleDef *sc = hscales; sc < hscales + lengthof(hscales); sc++) {
if (range < sc->range) this->horizontal_scale = sc->scale;
}
}
void SelectVerticalScale(TimingMeasurement range)
{
/* Determine vertical scale based on peak value (within the horizontal scale + a bit) */
static const TimingMeasurement vscales[] = {
TIMESTAMP_PRECISION * 100,
TIMESTAMP_PRECISION * 10,
TIMESTAMP_PRECISION * 5,
TIMESTAMP_PRECISION,
TIMESTAMP_PRECISION / 2,
TIMESTAMP_PRECISION / 5,
TIMESTAMP_PRECISION / 10,
TIMESTAMP_PRECISION / 50,
TIMESTAMP_PRECISION / 200,
};
for (const TimingMeasurement *sc = vscales; sc < vscales + lengthof(vscales); sc++) {
if (range < *sc) this->vertical_scale = (int)*sc;
}
}
/** Recalculate the graph scaling factors based on current recorded data */
void UpdateScale()
{
const TimingMeasurement *durations = _pf_data[this->element].durations;
const TimingMeasurement *timestamps = _pf_data[this->element].timestamps;
int num_valid = _pf_data[this->element].num_valid;
int point = _pf_data[this->element].prev_index;
TimingMeasurement lastts = timestamps[point];
TimingMeasurement time_sum = 0;
TimingMeasurement peak_value = 0;
int count = 0;
/* Sensible default for when too few measurements are available */
this->horizontal_scale = 4;
for (int i = 1; i < num_valid; i++) {
point--;
if (point < 0) point = NUM_FRAMERATE_POINTS - 1;
TimingMeasurement value = durations[point];
if (value == PerformanceData::INVALID_DURATION) {
/* Skip gaps in data by pretending time is continuous across them */
lastts = timestamps[point];
continue;
}
if (value > peak_value) peak_value = value;
count++;
/* Accumulate period of time covered by data */
time_sum += lastts - timestamps[point];
lastts = timestamps[point];
/* Enough data to select a range and get decent data density */
if (count == 60) this->SelectHorizontalScale(time_sum / TIMESTAMP_PRECISION);
/* End when enough points have been collected and the horizontal scale has been exceeded */
if (count >= 60 && time_sum >= (this->horizontal_scale + 2) * TIMESTAMP_PRECISION / 2) break;
}
this->SelectVerticalScale(peak_value);
}
/** Update the scaling on a regular interval. */
IntervalTimer update_interval = {std::chrono::milliseconds(500), [this](auto) {
this->UpdateScale();
}};
void OnRealtimeTick([[maybe_unused]] uint delta_ms) override
{
this->SetDirty();
}
/** Scale and interpolate a value from a source range into a destination range */
template
static inline T Scinterlate(T dst_min, T dst_max, T src_min, T src_max, T value)
{
T dst_diff = dst_max - dst_min;
T src_diff = src_max - src_min;
return (value - src_min) * dst_diff / src_diff + dst_min;
}
void DrawWidget(const Rect &r, int widget) const override
{
if (widget == WID_FGW_GRAPH) {
const TimingMeasurement *durations = _pf_data[this->element].durations;
const TimingMeasurement *timestamps = _pf_data[this->element].timestamps;
int point = _pf_data[this->element].prev_index;
const int x_zero = r.right - (int)this->graph_size.width;
const int x_max = r.right;
const int y_zero = r.top + (int)this->graph_size.height;
const int y_max = r.top;
const int c_grid = PC_DARK_GREY;
const int c_lines = PC_BLACK;
const int c_peak = PC_DARK_RED;
const TimingMeasurement draw_horz_scale = (TimingMeasurement)this->horizontal_scale * TIMESTAMP_PRECISION / 2;
const TimingMeasurement draw_vert_scale = (TimingMeasurement)this->vertical_scale;
/* Number of \c horizontal_scale units in each horizontal division */
const uint horz_div_scl = (this->horizontal_scale <= 20) ? 1 : 10;
/* Number of divisions of the horizontal axis */
const uint horz_divisions = this->horizontal_scale / horz_div_scl;
/* Number of divisions of the vertical axis */
const uint vert_divisions = 10;
/* Draw division lines and labels for the vertical axis */
for (uint division = 0; division < vert_divisions; division++) {
int y = Scinterlate(y_zero, y_max, 0, (int)vert_divisions, (int)division);
GfxDrawLine(x_zero, y, x_max, y, c_grid);
if (division % 2 == 0) {
if ((TimingMeasurement)this->vertical_scale > TIMESTAMP_PRECISION) {
SetDParam(0, this->vertical_scale * division / 10 / TIMESTAMP_PRECISION);
DrawString(r.left, x_zero - 2, y - FONT_HEIGHT_SMALL, STR_FRAMERATE_GRAPH_SECONDS, TC_GREY, SA_RIGHT | SA_FORCE, false, FS_SMALL);
} else {
SetDParam(0, this->vertical_scale * division / 10 * 1000 / TIMESTAMP_PRECISION);
DrawString(r.left, x_zero - 2, y - FONT_HEIGHT_SMALL, STR_FRAMERATE_GRAPH_MILLISECONDS, TC_GREY, SA_RIGHT | SA_FORCE, false, FS_SMALL);
}
}
}
/* Draw division lines and labels for the horizontal axis */
for (uint division = horz_divisions; division > 0; division--) {
int x = Scinterlate(x_zero, x_max, 0, (int)horz_divisions, (int)horz_divisions - (int)division);
GfxDrawLine(x, y_max, x, y_zero, c_grid);
if (division % 2 == 0) {
SetDParam(0, division * horz_div_scl / 2);
DrawString(x, x_max, y_zero + 2, STR_FRAMERATE_GRAPH_SECONDS, TC_GREY, SA_LEFT | SA_FORCE, false, FS_SMALL);
}
}
/* Position of last rendered data point */
Point lastpoint = {
x_max,
(int)Scinterlate(y_zero, y_max, 0, this->vertical_scale, durations[point])
};
/* Timestamp of last rendered data point */
TimingMeasurement lastts = timestamps[point];
TimingMeasurement peak_value = 0;
Point peak_point = { 0, 0 };
TimingMeasurement value_sum = 0;
TimingMeasurement time_sum = 0;
int points_drawn = 0;
for (int i = 1; i < NUM_FRAMERATE_POINTS; i++) {
point--;
if (point < 0) point = NUM_FRAMERATE_POINTS - 1;
TimingMeasurement value = durations[point];
if (value == PerformanceData::INVALID_DURATION) {
/* Skip gaps in measurements, pretend the data points on each side are continuous */
lastts = timestamps[point];
continue;
}
/* Use total time period covered for value along horizontal axis */
time_sum += lastts - timestamps[point];
lastts = timestamps[point];
/* Stop if past the width of the graph */
if (time_sum > draw_horz_scale) break;
/* Draw line from previous point to new point */
Point newpoint = {
(int)Scinterlate(x_zero, x_max, 0, (int64_t)draw_horz_scale, (int64_t)draw_horz_scale - (int64_t)time_sum),
(int)Scinterlate(y_zero, y_max, 0, (int64_t)draw_vert_scale, (int64_t)value)
};
if (newpoint.x > lastpoint.x) continue; // don't draw backwards
GfxDrawLine(lastpoint.x, lastpoint.y, newpoint.x, newpoint.y, c_lines);
lastpoint = newpoint;
/* Record peak and average value across graphed data */
value_sum += value;
points_drawn++;
if (value > peak_value) {
peak_value = value;
peak_point = newpoint;
}
}
/* If the peak value is significantly larger than the average, mark and label it */
if (points_drawn > 0 && peak_value > TIMESTAMP_PRECISION / 100 && 2 * peak_value > 3 * value_sum / points_drawn) {
TextColour tc_peak = (TextColour)(TC_IS_PALETTE_COLOUR | c_peak);
GfxFillRect(peak_point.x - 1, peak_point.y - 1, peak_point.x + 1, peak_point.y + 1, c_peak);
SetDParam(0, peak_value * 1000 / TIMESTAMP_PRECISION);
int label_y = std::max(y_max, peak_point.y - FONT_HEIGHT_SMALL);
if (peak_point.x - x_zero > (int)this->graph_size.width / 2) {
DrawString(x_zero, peak_point.x - 2, label_y, STR_FRAMERATE_GRAPH_MILLISECONDS, tc_peak, SA_RIGHT | SA_FORCE, false, FS_SMALL);
} else {
DrawString(peak_point.x + 2, x_max, label_y, STR_FRAMERATE_GRAPH_MILLISECONDS, tc_peak, SA_LEFT | SA_FORCE, false, FS_SMALL);
}
}
}
}
};
static WindowDesc _frametime_graph_window_desc(
WDP_AUTO, "frametime_graph", 140, 90,
WC_FRAMETIME_GRAPH, WC_NONE,
0,
std::begin(_frametime_graph_window_widgets), std::end(_frametime_graph_window_widgets)
);
/** Open the general framerate window */
void ShowFramerateWindow()
{
AllocateWindowDescFront(&_framerate_display_desc, 0);
}
/** Open a graph window for a performance element */
void ShowFrametimeGraphWindow(PerformanceElement elem)
{
if (elem < PFE_FIRST || elem >= PFE_MAX) return; // maybe warn?
AllocateWindowDescFront(&_frametime_graph_window_desc, elem, true);
}
/** Print performance statistics to game console */
void ConPrintFramerate()
{
const int count1 = NUM_FRAMERATE_POINTS / 8;
const int count2 = NUM_FRAMERATE_POINTS / 4;
const int count3 = NUM_FRAMERATE_POINTS / 1;
IConsolePrint(TC_SILVER, "Based on num. data points: {} {} {}", count1, count2, count3);
static const char *MEASUREMENT_NAMES[PFE_MAX] = {
"Game loop",
" GL station ticks",
" GL train ticks",
" GL road vehicle ticks",
" GL ship ticks",
" GL aircraft ticks",
" GL landscape ticks",
" GL link graph delays",
"Drawing",
" Viewport drawing",
"Video output",
"Sound mixing",
"AI/GS scripts total",
"Game script",
};
std::string ai_name_buf;
static const PerformanceElement rate_elements[] = { PFE_GAMELOOP, PFE_DRAWING, PFE_VIDEO };
bool printed_anything = false;
for (const PerformanceElement *e = rate_elements; e < rate_elements + lengthof(rate_elements); e++) {
auto &pf = _pf_data[*e];
if (pf.num_valid == 0) continue;
IConsolePrint(TC_GREEN, "{} rate: {:.2f}fps (expected: {:.2f}fps)",
MEASUREMENT_NAMES[*e],
pf.GetRate(),
pf.expected_rate);
printed_anything = true;
}
for (PerformanceElement e = PFE_FIRST; e < PFE_MAX; e++) {
auto &pf = _pf_data[e];
if (pf.num_valid == 0) continue;
std::string_view name;
if (e < PFE_AI0) {
name = MEASUREMENT_NAMES[e];
} else {
ai_name_buf = fmt::format("AI {} {}", e - PFE_AI0 + 1, GetAIName(e - PFE_AI0));
name = ai_name_buf;
}
IConsolePrint(TC_LIGHT_BLUE, "{} times: {:.2f}ms {:.2f}ms {:.2f}ms",
name,
pf.GetAverageDurationMilliseconds(count1),
pf.GetAverageDurationMilliseconds(count2),
pf.GetAverageDurationMilliseconds(count3));
printed_anything = true;
}
if (!printed_anything) {
IConsolePrint(CC_ERROR, "No performance measurements have been taken yet.");
}
}
/**
* This drains the PFE_SOUND measurement data queue into _pf_data.
* PFE_SOUND measurements are made by the mixer thread and so cannot be stored
* into _pf_data directly, because this would not be thread safe and would violate
* the invariants of the FPS and frame graph windows.
* @see PerformanceMeasurement::~PerformanceMeasurement()
*/
void ProcessPendingPerformanceMeasurements()
{
if (_sound_perf_pending.load(std::memory_order_acquire)) {
std::lock_guard lk(_sound_perf_lock);
for (size_t i = 0; i < _sound_perf_measurements.size(); i += 2) {
_pf_data[PFE_SOUND].Add(_sound_perf_measurements[i], _sound_perf_measurements[i + 1]);
}
_sound_perf_measurements.clear();
_sound_perf_pending.store(false, std::memory_order_relaxed);
}
}