/* $Id$ */ /** * A Rail Pathfinder. */ class Rail { _aystar_class = import("graph.aystar", "", 4); _max_cost = null; ///< The maximum cost for a route. _cost_tile = null; ///< The cost for a single tile. _cost_diagonal_tile = null; ///< The cost for a diagonal tile. _cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes. _cost_slope = null; ///< The extra cost if a rail tile is sloped. _cost_bridge_per_tile = null; ///< The cost per tile of a new bridge, this is added to _cost_tile. _cost_tunnel_per_tile = null; ///< The cost per tile of a new tunnel, this is added to _cost_tile. _cost_coast = null; ///< The extra cost for a coast tile. _pathfinder = null; ///< A reference to the used AyStar object. _max_bridge_length = null; ///< The maximum length of a bridge that will be build. _max_tunnel_length = null; ///< The maximum length of a tunnel that will be build. cost = null; ///< Used to change the costs. _running = null; _goals = null; constructor() { this._max_cost = 10000000; this._cost_tile = 100; this._cost_diagonal_tile = 70; this._cost_turn = 50; this._cost_slope = 100; this._cost_bridge_per_tile = 150; this._cost_tunnel_per_tile = 120; this._cost_coast = 20; this._max_bridge_length = 6; this._max_tunnel_length = 6; this._pathfinder = this._aystar_class(this._Cost, this._Estimate, this._Neighbours, this._CheckDirection, this, this, this, this); this.cost = this.Cost(this); this._running = false; } /** * Initialize a path search between sources and goals. * @param sources The source tiles. * @param goals The target tiles. * @param ignored_tiles An array of tiles that cannot occur in the final path. * @see AyStar::InitializePath() */ function InitializePath(sources, goals, ignored_tiles = []) { local nsources = []; foreach (node in sources) { local path = this._pathfinder.Path(null, node[1], 0xFF, this._Cost, this); path = this._pathfinder.Path(path, node[0], 0xFF, this._Cost, this); nsources.push(path); } this._goals = goals; this._pathfinder.InitializePath(nsources, goals, ignored_tiles); } /** * Try to find the path as indicated with InitializePath with the lowest cost. * @param iterations After how many iterations it should abort for a moment. * This value should either be -1 for infinite, or > 0. Any other value * aborts immediatly and will never find a path. * @return A route if one was found, or false if the amount of iterations was * reached, or null if no path was found. * You can call this function over and over as long as it returns false, * which is an indication it is not yet done looking for a route. * @see AyStar::FindPath() */ function FindPath(iterations); }; class Rail.Cost { _main = null; function _set(idx, val) { if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder."); switch (idx) { case "max_cost": this._main._max_cost = val; break; case "tile": this._main._cost_tile = val; break; case "diagonal_tile": this._cost_diagonal_tile = val; break; case "turn": this._main._cost_turn = val; break; case "slope": this._main._cost_slope = val; break; case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break; case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break; case "coast": this._main._cost_coast = val; break; case "max_bridge_length": this._main._max_bridge_length = val; break; case "max_tunnel_length": this._main._max_tunnel_length = val; break; default: throw("the index '" + idx + "' does not exist"); } return val; } function _get(idx) { switch (idx) { case "max_cost": return this._main._max_cost; case "tile": return this._main._cost_tile; case "diagonal_tile": return this._cost_diagonal_tile; case "turn": return this._main._cost_turn; case "slope": return this._main._cost_slope; case "bridge_per_tile": return this._main._cost_bridge_per_tile; case "tunnel_per_tile": return this._main._cost_tunnel_per_tile; case "coast": return this._main._cost_coast; case "max_bridge_length": return this._main._max_bridge_length; case "max_tunnel_length": return this._main._max_tunnel_length; default: throw("the index '" + idx + "' does not exist"); } } constructor(main) { this._main = main; } }; function Rail::FindPath(iterations) { local test_mode = AITestMode(); local ret = this._pathfinder.FindPath(iterations); this._running = (ret == false) ? true : false; if (!this._running && ret != null) { foreach (goal in this._goals) { if (goal[0] == ret.GetTile()) { return this._pathfinder.Path(ret, goal[1], 0, this._Cost, this); } } } return ret; } function Rail::_GetBridgeNumSlopes(end_a, end_b) { local slopes = 0; local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b); local slope = AITile.GetSlope(end_a); if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { slopes++; } local slope = AITile.GetSlope(end_b); direction = -direction; if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { slopes++; } return slopes; } function Rail::_nonzero(a, b) { return a != 0 ? a : b; } function Rail::_Cost(path, new_tile, new_direction, self) { /* path == null means this is the first node of a path, so the cost is 0. */ if (path == null) return 0; local prev_tile = path.GetTile(); /* If the new tile is a bridge / tunnel tile, check whether we came from the other * end of the bridge / tunnel or if we just entered the bridge / tunnel. */ if (AIBridge.IsBridgeTile(new_tile)) { if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) { local cost = path.GetCost() + self._cost_tile; if (path.GetParent() != null && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost += self._cost_turn; return cost; } return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope; } if (AITunnel.IsTunnelTile(new_tile)) { if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) { local cost = path.GetCost() + self._cost_tile; if (path.GetParent() != null && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost += self._cost_turn; return cost; } return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile; } /* If the two tiles are more then 1 tile apart, the pathfinder wants a bridge or tunnel * to be build. It isn't an existing bridge / tunnel, as that case is already handled. */ if (AIMap.DistanceManhattan(new_tile, prev_tile) > 1) { /* Check if we should build a bridge or a tunnel. */ local cost = path.GetCost(); if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) { cost += AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_tunnel_per_tile); } else { cost += AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_bridge_per_tile) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope; } if (path.GetParent() != null && path.GetParent().GetParent() != null && path.GetParent().GetParent().GetTile() - path.GetParent().GetTile() != max(AIMap.GetTileX(prev_tile) - AIMap.GetTileX(new_tile), AIMap.GetTileY(prev_tile) - AIMap.GetTileY(new_tile)) / AIMap.DistanceManhattan(new_tile, prev_tile)) { cost += self._cost_turn; } return cost; } /* Check for a turn. We do this by substracting the TileID of the current * node from the TileID of the previous node and comparing that to the * difference between the tile before the previous node and the node before * that. */ local cost = self._cost_tile; if (path.GetParent() != null && AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile) == 1 && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost = self._cost_diagonal_tile; if (path.GetParent() != null && path.GetParent().GetParent() != null && AIMap.DistanceManhattan(new_tile, path.GetParent().GetParent().GetTile()) == 3 && path.GetParent().GetParent().GetTile() - path.GetParent().GetTile() != prev_tile - new_tile) { cost += self._cost_turn; } /* Check if the new tile is a coast tile. */ if (AITile.IsCoastTile(new_tile)) { cost += self._cost_coast; } /* Check if the last tile was sloped. */ if (path.GetParent() != null && !AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) && self._IsSlopedRail(path.GetParent().GetTile(), prev_tile, new_tile)) { cost += self._cost_slope; } /* We don't use already existing rail, so the following code is unused. It * assigns if no rail exists along the route. */ /* if (path.GetParent() != null && !AIRail.AreTilesConnected(path.GetParent().GetTile(), prev_tile, new_tile)) { cost += self._cost_no_existing_rail; } */ return path.GetCost() + cost; } function Rail::_Estimate(cur_tile, cur_direction, goal_tiles, self) { local min_cost = self._max_cost; /* As estimate we multiply the lowest possible cost for a single tile with * with the minimum number of tiles we need to traverse. */ foreach (tile in goal_tiles) { local dx = abs(AIMap.GetTileX(cur_tile) - AIMap.GetTileX(tile[0])); local dy = abs(AIMap.GetTileY(cur_tile) - AIMap.GetTileY(tile[0])); min_cost = min(min_cost, min(dx, dy) * self._cost_diagonal_tile * 2 + (max(dx, dy) - min(dx, dy)) * self._cost_tile); } return min_cost; } function Rail::_Neighbours(path, cur_node, self) { if (AITile.HasTransportType(cur_node, AITile.TRANSPORT_RAIL)) return []; /* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */ if (path.GetCost() >= self._max_cost) return []; local tiles = []; local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1), AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)]; /* Check if the current tile is part of a bridge or tunnel. */ if (AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) { /* We don't use existing rails, so neither existing bridges / tunnels. */ } else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) { local other_end = path.GetParent().GetTile(); local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); foreach (offset in offsets) { if (AIRail.BuildRail(cur_node, next_tile, next_tile + offset)) { tiles.push([next_tile, self._GetDirection(other_end, cur_node, next_tile, true)]); } } } else { /* Check all tiles adjacent to the current tile. */ foreach (offset in offsets) { local next_tile = cur_node + offset; /* Don't turn back */ if (path.GetParent() != null && next_tile == path.GetParent().GetTile()) continue; /* Disallow 90 degree turns */ if (path.GetParent() != null && path.GetParent().GetParent() != null && next_tile - cur_node == path.GetParent().GetParent().GetTile() - path.GetParent().GetTile()) continue; /* We add them to the to the neighbours-list if we can build a rail to * them and no rail exists there. */ if ((path.GetParent() == null || AIRail.BuildRail(path.GetParent().GetTile(), cur_node, next_tile))) { if (path.GetParent() != null) { tiles.push([next_tile, self._GetDirection(path.GetParent().GetTile(), cur_node, next_tile, false)]); } else { tiles.push([next_tile, self._GetDirection(null, cur_node, next_tile, false)]); } } } if (path.GetParent() != null && path.GetParent().GetParent() != null) { local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetParent().GetTile(), path.GetParent().GetTile(), cur_node, true)); foreach (tile in bridges) { tiles.push(tile); } } } return tiles; } function Rail::_CheckDirection(tile, existing_direction, new_direction, self) { return false; } function Rail::_dir(from, to) { if (from - to == 1) return 0; if (from - to == -1) return 1; if (from - to == AIMap.GetMapSizeX()) return 2; if (from - to == -AIMap.GetMapSizeX()) return 3; throw("Shouldn't come here in _dir"); } function Rail::_GetDirection(pre_from, from, to, is_bridge) { if (is_bridge) { if (from - to == 1) return 1; if (from - to == -1) return 2; if (from - to == AIMap.GetMapSizeX()) return 4; if (from - to == -AIMap.GetMapSizeX()) return 8; } return 1 << (4 + (pre_from == null ? 0 : 4 * this._dir(pre_from, from)) + this._dir(from, to)); } /** * Get a list of all bridges and tunnels that can be build from the * current tile. Bridges will only be build starting on non-flat tiles * for performance reasons. Tunnels will only be build if no terraforming * is needed on both ends. */ function Rail::_GetTunnelsBridges(last_node, cur_node, bridge_dir) { local slope = AITile.GetSlope(cur_node); if (slope == AITile.SLOPE_FLAT && AITile.IsBuildable(cur_node + (cur_node - last_node))) return []; local tiles = []; for (local i = 2; i < this._max_bridge_length; i++) { local bridge_list = AIBridgeList_Length(i + 1); local target = cur_node + i * (cur_node - last_node); if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VEHICLE_RAIL, bridge_list.Begin(), cur_node, target)) { tiles.push([target, bridge_dir]); } } if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles; local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node); if (!AIMap.IsValidTile(other_tunnel_end)) return tiles; local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end); local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length; if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VEHICLE_RAIL, cur_node)) { tiles.push([other_tunnel_end, bridge_dir]); } return tiles; } function Rail::_IsSlopedRail(start, middle, end) { local NW = 0; // Set to true if we want to build a rail to / from the north-west local NE = 0; // Set to true if we want to build a rail to / from the north-east local SW = 0; // Set to true if we want to build a rail to / from the south-west local SE = 0; // Set to true if we want to build a rail to / from the south-east if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1; if (middle - 1 == start || middle - 1 == end) NE = 1; if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1; if (middle + 1 == start || middle + 1 == end) SW = 1; /* If there is a turn in the current tile, it can't be sloped. */ if ((NW || SE) && (NE || SW)) return false; local slope = AITile.GetSlope(middle); /* A rail on a steep slope is always sloped. */ if (AITile.IsSteepSlope(slope)) return true; /* If only one corner is raised, the rail is sloped. */ if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true; if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true; if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true; if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true; return false; }