/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file landscape.cpp Functions related to the landscape (slopes etc.). */ /** @defgroup SnowLineGroup Snowline functions and data structures */ #include "stdafx.h" #include "heightmap.h" #include "clear_map.h" #include "spritecache.h" #include "viewport_func.h" #include "command_func.h" #include "landscape.h" #include "void_map.h" #include "tgp.h" #include "genworld.h" #include "fios.h" #include "date_func.h" #include "water.h" #include "effectvehicle_func.h" #include "landscape_type.h" #include "animated_tile_func.h" #include "core/random_func.hpp" #include "object_base.h" #include "company_func.h" #include "pathfinder/npf/aystar.h" #include "saveload/saveload.h" #include "framerate_type.h" #include "landscape_cmd.h" #include "terraform_cmd.h" #include "station_func.h" #include #include #include #include "table/strings.h" #include "table/sprites.h" #include "safeguards.h" extern const TileTypeProcs _tile_type_clear_procs, _tile_type_rail_procs, _tile_type_road_procs, _tile_type_town_procs, _tile_type_trees_procs, _tile_type_station_procs, _tile_type_water_procs, _tile_type_void_procs, _tile_type_industry_procs, _tile_type_tunnelbridge_procs, _tile_type_object_procs; /** * Tile callback functions for each type of tile. * @ingroup TileCallbackGroup * @see TileType */ const TileTypeProcs * const _tile_type_procs[16] = { &_tile_type_clear_procs, ///< Callback functions for MP_CLEAR tiles &_tile_type_rail_procs, ///< Callback functions for MP_RAILWAY tiles &_tile_type_road_procs, ///< Callback functions for MP_ROAD tiles &_tile_type_town_procs, ///< Callback functions for MP_HOUSE tiles &_tile_type_trees_procs, ///< Callback functions for MP_TREES tiles &_tile_type_station_procs, ///< Callback functions for MP_STATION tiles &_tile_type_water_procs, ///< Callback functions for MP_WATER tiles &_tile_type_void_procs, ///< Callback functions for MP_VOID tiles &_tile_type_industry_procs, ///< Callback functions for MP_INDUSTRY tiles &_tile_type_tunnelbridge_procs, ///< Callback functions for MP_TUNNELBRIDGE tiles &_tile_type_object_procs, ///< Callback functions for MP_OBJECT tiles }; /** landscape slope => sprite */ extern const byte _slope_to_sprite_offset[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 17, 0, 15, 18, 0, }; /** * Description of the snow line throughout the year. * * If it is \c nullptr, a static snowline height is used, as set by \c _settings_game.game_creation.snow_line_height. * Otherwise it points to a table loaded from a newGRF file that describes the variable snowline. * @ingroup SnowLineGroup * @see GetSnowLine() GameCreationSettings */ static SnowLine *_snow_line = nullptr; /** * Map 2D viewport or smallmap coordinate to 3D world or tile coordinate. * Function takes into account height of tiles and foundations. * * @param x X viewport 2D coordinate. * @param y Y viewport 2D coordinate. * @param clamp_to_map Clamp the coordinate outside of the map to the closest, non-void tile within the map. * @param[out] clamped Whether coordinates were clamped. * @return 3D world coordinate of point visible at the given screen coordinate (3D perspective). * * @note Inverse of #RemapCoords2 function. Smaller values may get rounded. * @see InverseRemapCoords */ Point InverseRemapCoords2(int x, int y, bool clamp_to_map, bool *clamped) { if (clamped != nullptr) *clamped = false; // Not clamping yet. /* Initial x/y world coordinate is like if the landscape * was completely flat on height 0. */ Point pt = InverseRemapCoords(x, y); const uint min_coord = _settings_game.construction.freeform_edges ? TILE_SIZE : 0; const uint max_x = Map::MaxX() * TILE_SIZE - 1; const uint max_y = Map::MaxY() * TILE_SIZE - 1; if (clamp_to_map) { /* Bring the coordinates near to a valid range. At the top we allow a number * of extra tiles. This is mostly due to the tiles on the north side of * the map possibly being drawn higher due to the extra height levels. */ int extra_tiles = CeilDiv(_settings_game.construction.map_height_limit * TILE_HEIGHT, TILE_PIXELS); Point old_pt = pt; pt.x = Clamp(pt.x, -extra_tiles * TILE_SIZE, max_x); pt.y = Clamp(pt.y, -extra_tiles * TILE_SIZE, max_y); if (clamped != nullptr) *clamped = (pt.x != old_pt.x) || (pt.y != old_pt.y); } /* Now find the Z-world coordinate by fix point iteration. * This is a bit tricky because the tile height is non-continuous at foundations. * The clicked point should be approached from the back, otherwise there are regions that are not clickable. * (FOUNDATION_HALFTILE_LOWER on SLOPE_STEEP_S hides north halftile completely) * So give it a z-malus of 4 in the first iterations. */ int z = 0; if (clamp_to_map) { for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, 4) - 4, min_coord, max_x), Clamp(pt.y + std::max(z, 4) - 4, min_coord, max_y)) / 2; for (int m = 3; m > 0; m--) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, m) - m, min_coord, max_x), Clamp(pt.y + std::max(z, m) - m, min_coord, max_y)) / 2; for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + z, min_coord, max_x), Clamp(pt.y + z, min_coord, max_y)) / 2; } else { for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, 4) - 4, pt.y + std::max(z, 4) - 4) / 2; for (int m = 3; m > 0; m--) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, m) - m, pt.y + std::max(z, m) - m) / 2; for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + z, pt.y + z ) / 2; } pt.x += z; pt.y += z; if (clamp_to_map) { Point old_pt = pt; pt.x = Clamp(pt.x, min_coord, max_x); pt.y = Clamp(pt.y, min_coord, max_y); if (clamped != nullptr) *clamped = *clamped || (pt.x != old_pt.x) || (pt.y != old_pt.y); } return pt; } /** * Applies a foundation to a slope. * * @pre Foundation and slope must be valid combined. * @param f The #Foundation. * @param s The #Slope to modify. * @return Increment to the tile Z coordinate. */ uint ApplyFoundationToSlope(Foundation f, Slope *s) { if (!IsFoundation(f)) return 0; if (IsLeveledFoundation(f)) { uint dz = 1 + (IsSteepSlope(*s) ? 1 : 0); *s = SLOPE_FLAT; return dz; } if (f != FOUNDATION_STEEP_BOTH && IsNonContinuousFoundation(f)) { *s = HalftileSlope(*s, GetHalftileFoundationCorner(f)); return 0; } if (IsSpecialRailFoundation(f)) { *s = SlopeWithThreeCornersRaised(OppositeCorner(GetRailFoundationCorner(f))); return 0; } uint dz = IsSteepSlope(*s) ? 1 : 0; Corner highest_corner = GetHighestSlopeCorner(*s); switch (f) { case FOUNDATION_INCLINED_X: *s = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? SLOPE_SW : SLOPE_NE); break; case FOUNDATION_INCLINED_Y: *s = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? SLOPE_SE : SLOPE_NW); break; case FOUNDATION_STEEP_LOWER: *s = SlopeWithOneCornerRaised(highest_corner); break; case FOUNDATION_STEEP_BOTH: *s = HalftileSlope(SlopeWithOneCornerRaised(highest_corner), highest_corner); break; default: NOT_REACHED(); } return dz; } /** * Determines height at given coordinate of a slope * @param x x coordinate * @param y y coordinate * @param corners slope to examine * @return height of given point of given slope */ uint GetPartialPixelZ(int x, int y, Slope corners) { if (IsHalftileSlope(corners)) { switch (GetHalftileSlopeCorner(corners)) { case CORNER_W: if (x - y >= 0) return GetSlopeMaxPixelZ(corners); break; case CORNER_S: if (x - (y ^ 0xF) >= 0) return GetSlopeMaxPixelZ(corners); break; case CORNER_E: if (y - x >= 0) return GetSlopeMaxPixelZ(corners); break; case CORNER_N: if ((y ^ 0xF) - x >= 0) return GetSlopeMaxPixelZ(corners); break; default: NOT_REACHED(); } } int z = 0; switch (RemoveHalftileSlope(corners)) { case SLOPE_W: if (x - y >= 0) { z = (x - y) >> 1; } break; case SLOPE_S: y ^= 0xF; if ((x - y) >= 0) { z = (x - y) >> 1; } break; case SLOPE_SW: z = (x >> 1) + 1; break; case SLOPE_E: if (y - x >= 0) { z = (y - x) >> 1; } break; case SLOPE_EW: case SLOPE_NS: case SLOPE_ELEVATED: z = 4; break; case SLOPE_SE: z = (y >> 1) + 1; break; case SLOPE_WSE: z = 8; y ^= 0xF; if (x - y < 0) { z += (x - y) >> 1; } break; case SLOPE_N: y ^= 0xF; if (y - x >= 0) { z = (y - x) >> 1; } break; case SLOPE_NW: z = (y ^ 0xF) >> 1; break; case SLOPE_NWS: z = 8; if (x - y < 0) { z += (x - y) >> 1; } break; case SLOPE_NE: z = (x ^ 0xF) >> 1; break; case SLOPE_ENW: z = 8; y ^= 0xF; if (y - x < 0) { z += (y - x) >> 1; } break; case SLOPE_SEN: z = 8; if (y - x < 0) { z += (y - x) >> 1; } break; case SLOPE_STEEP_S: z = 1 + ((x + y) >> 1); break; case SLOPE_STEEP_W: z = 1 + ((x + (y ^ 0xF)) >> 1); break; case SLOPE_STEEP_N: z = 1 + (((x ^ 0xF) + (y ^ 0xF)) >> 1); break; case SLOPE_STEEP_E: z = 1 + (((x ^ 0xF) + y) >> 1); break; default: break; } return z; } /** * Return world \c Z coordinate of a given point of a tile. Normally this is the * Z of the ground/foundation at the given location, but in some cases the * ground/foundation can differ from the Z coordinate that the (ground) vehicle * passing over it would take. For example when entering a tunnel or bridge. * * @param x World X coordinate in tile "units". * @param y World Y coordinate in tile "units". * @param ground_vehicle Whether to get the Z coordinate of the ground vehicle, or the ground. * @return World Z coordinate at tile ground (vehicle) level, including slopes and foundations. */ int GetSlopePixelZ(int x, int y, bool ground_vehicle) { TileIndex tile = TileVirtXY(x, y); return _tile_type_procs[GetTileType(tile)]->get_slope_z_proc(tile, x, y, ground_vehicle); } /** * Return world \c z coordinate of a given point of a tile, * also for tiles outside the map (virtual "black" tiles). * * @param x World X coordinate in tile "units", may be outside the map. * @param y World Y coordinate in tile "units", may be outside the map. * @return World Z coordinate at tile ground level, including slopes and foundations. */ int GetSlopePixelZOutsideMap(int x, int y) { if (IsInsideBS(x, 0, Map::SizeX() * TILE_SIZE) && IsInsideBS(y, 0, Map::SizeY() * TILE_SIZE)) { return GetSlopePixelZ(x, y, false); } else { return _tile_type_procs[MP_VOID]->get_slope_z_proc(INVALID_TILE, x, y, false); } } /** * Determine the Z height of a corner relative to TileZ. * * @pre The slope must not be a halftile slope. * * @param tileh The slope. * @param corner The corner. * @return Z position of corner relative to TileZ. */ int GetSlopeZInCorner(Slope tileh, Corner corner) { assert(!IsHalftileSlope(tileh)); return ((tileh & SlopeWithOneCornerRaised(corner)) != 0 ? 1 : 0) + (tileh == SteepSlope(corner) ? 1 : 0); } /** * Determine the Z height of the corners of a specific tile edge * * @note If a tile has a non-continuous halftile foundation, a corner can have different heights wrt. its edges. * * @pre z1 and z2 must be initialized (typ. with TileZ). The corner heights just get added. * * @param tileh The slope of the tile. * @param edge The edge of interest. * @param z1 Gets incremented by the height of the first corner of the edge. (near corner wrt. the camera) * @param z2 Gets incremented by the height of the second corner of the edge. (far corner wrt. the camera) */ void GetSlopePixelZOnEdge(Slope tileh, DiagDirection edge, int *z1, int *z2) { static const Slope corners[4][4] = { /* corner | steep slope * z1 z2 | z1 z2 */ {SLOPE_E, SLOPE_N, SLOPE_STEEP_E, SLOPE_STEEP_N}, // DIAGDIR_NE, z1 = E, z2 = N {SLOPE_S, SLOPE_E, SLOPE_STEEP_S, SLOPE_STEEP_E}, // DIAGDIR_SE, z1 = S, z2 = E {SLOPE_S, SLOPE_W, SLOPE_STEEP_S, SLOPE_STEEP_W}, // DIAGDIR_SW, z1 = S, z2 = W {SLOPE_W, SLOPE_N, SLOPE_STEEP_W, SLOPE_STEEP_N}, // DIAGDIR_NW, z1 = W, z2 = N }; int halftile_test = (IsHalftileSlope(tileh) ? SlopeWithOneCornerRaised(GetHalftileSlopeCorner(tileh)) : 0); if (halftile_test == corners[edge][0]) *z2 += TILE_HEIGHT; // The slope is non-continuous in z2. z2 is on the upper side. if (halftile_test == corners[edge][1]) *z1 += TILE_HEIGHT; // The slope is non-continuous in z1. z1 is on the upper side. if ((tileh & corners[edge][0]) != 0) *z1 += TILE_HEIGHT; // z1 is raised if ((tileh & corners[edge][1]) != 0) *z2 += TILE_HEIGHT; // z2 is raised if (RemoveHalftileSlope(tileh) == corners[edge][2]) *z1 += TILE_HEIGHT; // z1 is highest corner of a steep slope if (RemoveHalftileSlope(tileh) == corners[edge][3]) *z2 += TILE_HEIGHT; // z2 is highest corner of a steep slope } /** * Get slope of a tile on top of a (possible) foundation * If a tile does not have a foundation, the function returns the same as GetTileSlope. * * @param tile The tile of interest. * @param z returns the z of the foundation slope. (Can be nullptr, if not needed) * @return The slope on top of the foundation. */ Slope GetFoundationSlope(TileIndex tile, int *z) { Slope tileh = GetTileSlope(tile, z); Foundation f = _tile_type_procs[GetTileType(tile)]->get_foundation_proc(tile, tileh); uint z_inc = ApplyFoundationToSlope(f, &tileh); if (z != nullptr) *z += z_inc; return tileh; } bool HasFoundationNW(TileIndex tile, Slope slope_here, uint z_here) { int z; int z_W_here = z_here; int z_N_here = z_here; GetSlopePixelZOnEdge(slope_here, DIAGDIR_NW, &z_W_here, &z_N_here); Slope slope = GetFoundationPixelSlope(TILE_ADDXY(tile, 0, -1), &z); int z_W = z; int z_N = z; GetSlopePixelZOnEdge(slope, DIAGDIR_SE, &z_W, &z_N); return (z_N_here > z_N) || (z_W_here > z_W); } bool HasFoundationNE(TileIndex tile, Slope slope_here, uint z_here) { int z; int z_E_here = z_here; int z_N_here = z_here; GetSlopePixelZOnEdge(slope_here, DIAGDIR_NE, &z_E_here, &z_N_here); Slope slope = GetFoundationPixelSlope(TILE_ADDXY(tile, -1, 0), &z); int z_E = z; int z_N = z; GetSlopePixelZOnEdge(slope, DIAGDIR_SW, &z_E, &z_N); return (z_N_here > z_N) || (z_E_here > z_E); } /** * Draw foundation \a f at tile \a ti. Updates \a ti. * @param ti Tile to draw foundation on * @param f Foundation to draw */ void DrawFoundation(TileInfo *ti, Foundation f) { if (!IsFoundation(f)) return; /* Two part foundations must be drawn separately */ assert(f != FOUNDATION_STEEP_BOTH); uint sprite_block = 0; int z; Slope slope = GetFoundationPixelSlope(ti->tile, &z); /* Select the needed block of foundations sprites * Block 0: Walls at NW and NE edge * Block 1: Wall at NE edge * Block 2: Wall at NW edge * Block 3: No walls at NW or NE edge */ if (!HasFoundationNW(ti->tile, slope, z)) sprite_block += 1; if (!HasFoundationNE(ti->tile, slope, z)) sprite_block += 2; /* Use the original slope sprites if NW and NE borders should be visible */ SpriteID leveled_base = (sprite_block == 0 ? (int)SPR_FOUNDATION_BASE : (SPR_SLOPES_VIRTUAL_BASE + sprite_block * SPR_TRKFOUND_BLOCK_SIZE)); SpriteID inclined_base = SPR_SLOPES_VIRTUAL_BASE + SPR_SLOPES_INCLINED_OFFSET + sprite_block * SPR_TRKFOUND_BLOCK_SIZE; SpriteID halftile_base = SPR_HALFTILE_FOUNDATION_BASE + sprite_block * SPR_HALFTILE_BLOCK_SIZE; if (IsSteepSlope(ti->tileh)) { if (!IsNonContinuousFoundation(f)) { /* Lower part of foundation */ AddSortableSpriteToDraw( leveled_base + (ti->tileh & ~SLOPE_STEEP), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z ); } Corner highest_corner = GetHighestSlopeCorner(ti->tileh); ti->z += ApplyPixelFoundationToSlope(f, &ti->tileh); if (IsInclinedFoundation(f)) { /* inclined foundation */ byte inclined = highest_corner * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0); AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y, f == FOUNDATION_INCLINED_X ? TILE_SIZE : 1, f == FOUNDATION_INCLINED_Y ? TILE_SIZE : 1, TILE_HEIGHT, ti->z ); OffsetGroundSprite(0, 0); } else if (IsLeveledFoundation(f)) { AddSortableSpriteToDraw(leveled_base + SlopeWithOneCornerRaised(highest_corner), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z - TILE_HEIGHT); OffsetGroundSprite(0, -(int)TILE_HEIGHT); } else if (f == FOUNDATION_STEEP_LOWER) { /* one corner raised */ OffsetGroundSprite(0, -(int)TILE_HEIGHT); } else { /* halftile foundation */ int x_bb = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? TILE_SIZE / 2 : 0); int y_bb = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? TILE_SIZE / 2 : 0); AddSortableSpriteToDraw(halftile_base + highest_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z + TILE_HEIGHT); /* Reposition ground sprite back to original position after bounding box change above. This is similar to * RemapCoords() but without zoom scaling. */ Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb}; OffsetGroundSprite(-pt.x, -pt.y); } } else { if (IsLeveledFoundation(f)) { /* leveled foundation */ AddSortableSpriteToDraw(leveled_base + ti->tileh, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z); OffsetGroundSprite(0, -(int)TILE_HEIGHT); } else if (IsNonContinuousFoundation(f)) { /* halftile foundation */ Corner halftile_corner = GetHalftileFoundationCorner(f); int x_bb = (((halftile_corner == CORNER_W) || (halftile_corner == CORNER_S)) ? TILE_SIZE / 2 : 0); int y_bb = (((halftile_corner == CORNER_S) || (halftile_corner == CORNER_E)) ? TILE_SIZE / 2 : 0); AddSortableSpriteToDraw(halftile_base + halftile_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z); /* Reposition ground sprite back to original position after bounding box change above. This is similar to * RemapCoords() but without zoom scaling. */ Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb}; OffsetGroundSprite(-pt.x, -pt.y); } else if (IsSpecialRailFoundation(f)) { /* anti-zig-zag foundation */ SpriteID spr; if (ti->tileh == SLOPE_NS || ti->tileh == SLOPE_EW) { /* half of leveled foundation under track corner */ spr = leveled_base + SlopeWithThreeCornersRaised(GetRailFoundationCorner(f)); } else { /* tile-slope = sloped along X/Y, foundation-slope = three corners raised */ spr = inclined_base + 2 * GetRailFoundationCorner(f) + ((ti->tileh == SLOPE_SW || ti->tileh == SLOPE_NE) ? 1 : 0); } AddSortableSpriteToDraw(spr, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z); OffsetGroundSprite(0, 0); } else { /* inclined foundation */ byte inclined = GetHighestSlopeCorner(ti->tileh) * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0); AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y, f == FOUNDATION_INCLINED_X ? TILE_SIZE : 1, f == FOUNDATION_INCLINED_Y ? TILE_SIZE : 1, TILE_HEIGHT, ti->z ); OffsetGroundSprite(0, 0); } ti->z += ApplyPixelFoundationToSlope(f, &ti->tileh); } } void DoClearSquare(TileIndex tile) { /* If the tile can have animation and we clear it, delete it from the animated tile list. */ if (_tile_type_procs[GetTileType(tile)]->animate_tile_proc != nullptr) DeleteAnimatedTile(tile); bool remove = IsDockingTile(tile); MakeClear(tile, CLEAR_GRASS, _generating_world ? 3 : 0); MarkTileDirtyByTile(tile); if (remove) RemoveDockingTile(tile); } /** * Returns information about trackdirs and signal states. * If there is any trackbit at 'side', return all trackdirbits. * For TRANSPORT_ROAD, return no trackbits if there is no roadbit (of given subtype) at given side. * @param tile tile to get info about * @param mode transport type * @param sub_mode for TRANSPORT_ROAD, roadtypes to check * @param side side we are entering from, INVALID_DIAGDIR to return all trackbits * @return trackdirbits and other info depending on 'mode' */ TrackStatus GetTileTrackStatus(TileIndex tile, TransportType mode, uint sub_mode, DiagDirection side) { return _tile_type_procs[GetTileType(tile)]->get_tile_track_status_proc(tile, mode, sub_mode, side); } /** * Change the owner of a tile * @param tile Tile to change * @param old_owner Current owner of the tile * @param new_owner New owner of the tile */ void ChangeTileOwner(TileIndex tile, Owner old_owner, Owner new_owner) { _tile_type_procs[GetTileType(tile)]->change_tile_owner_proc(tile, old_owner, new_owner); } void GetTileDesc(TileIndex tile, TileDesc *td) { _tile_type_procs[GetTileType(tile)]->get_tile_desc_proc(tile, td); } /** * Has a snow line table already been loaded. * @return true if the table has been loaded already. * @ingroup SnowLineGroup */ bool IsSnowLineSet() { return _snow_line != nullptr; } /** * Set a variable snow line, as loaded from a newgrf file. * @param table the 12 * 32 byte table containing the snowline for each day * @ingroup SnowLineGroup */ void SetSnowLine(byte table[SNOW_LINE_MONTHS][SNOW_LINE_DAYS]) { _snow_line = CallocT(1); _snow_line->lowest_value = 0xFF; memcpy(_snow_line->table, table, sizeof(_snow_line->table)); for (uint i = 0; i < SNOW_LINE_MONTHS; i++) { for (uint j = 0; j < SNOW_LINE_DAYS; j++) { _snow_line->highest_value = std::max(_snow_line->highest_value, table[i][j]); _snow_line->lowest_value = std::min(_snow_line->lowest_value, table[i][j]); } } } /** * Get the current snow line, either variable or static. * @return the snow line height. * @ingroup SnowLineGroup */ byte GetSnowLine() { if (_snow_line == nullptr) return _settings_game.game_creation.snow_line_height; YearMonthDay ymd; ConvertDateToYMD(_date, &ymd); return _snow_line->table[ymd.month][ymd.day]; } /** * Get the highest possible snow line height, either variable or static. * @return the highest snow line height. * @ingroup SnowLineGroup */ byte HighestSnowLine() { return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->highest_value; } /** * Get the lowest possible snow line height, either variable or static. * @return the lowest snow line height. * @ingroup SnowLineGroup */ byte LowestSnowLine() { return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->lowest_value; } /** * Clear the variable snow line table and free the memory. * @ingroup SnowLineGroup */ void ClearSnowLine() { free(_snow_line); _snow_line = nullptr; } /** * Clear a piece of landscape * @param flags of operation to conduct * @param tile tile to clear * @return the cost of this operation or an error */ CommandCost CmdLandscapeClear(DoCommandFlag flags, TileIndex tile) { CommandCost cost(EXPENSES_CONSTRUCTION); bool do_clear = false; /* Test for stuff which results in water when cleared. Then add the cost to also clear the water. */ if ((flags & DC_FORCE_CLEAR_TILE) && HasTileWaterClass(tile) && IsTileOnWater(tile) && !IsWaterTile(tile) && !IsCoastTile(tile)) { if ((flags & DC_AUTO) && GetWaterClass(tile) == WATER_CLASS_CANAL) return_cmd_error(STR_ERROR_MUST_DEMOLISH_CANAL_FIRST); do_clear = true; cost.AddCost(GetWaterClass(tile) == WATER_CLASS_CANAL ? _price[PR_CLEAR_CANAL] : _price[PR_CLEAR_WATER]); } Company *c = (flags & (DC_AUTO | DC_BANKRUPT)) ? nullptr : Company::GetIfValid(_current_company); if (c != nullptr && (int)GB(c->clear_limit, 16, 16) < 1) { return_cmd_error(STR_ERROR_CLEARING_LIMIT_REACHED); } const ClearedObjectArea *coa = FindClearedObject(tile); /* If this tile was the first tile which caused object destruction, always * pass it on to the tile_type_proc. That way multiple test runs and the exec run stay consistent. */ if (coa != nullptr && coa->first_tile != tile) { /* If this tile belongs to an object which was already cleared via another tile, pretend it has been * already removed. * However, we need to check stuff, which is not the same for all object tiles. (e.g. being on water or not) */ /* If a object is removed, it leaves either bare land or water. */ if ((flags & DC_NO_WATER) && HasTileWaterClass(tile) && IsTileOnWater(tile)) { return_cmd_error(STR_ERROR_CAN_T_BUILD_ON_WATER); } } else { cost.AddCost(_tile_type_procs[GetTileType(tile)]->clear_tile_proc(tile, flags)); } if (flags & DC_EXEC) { if (c != nullptr) c->clear_limit -= 1 << 16; if (do_clear) DoClearSquare(tile); } return cost; } /** * Clear a big piece of landscape * @param flags of operation to conduct * @param tile end tile of area dragging * @param start_tile start tile of area dragging * @param diagonal Whether to use the Orthogonal (false) or Diagonal (true) iterator. * @return the cost of this operation or an error */ std::tuple CmdClearArea(DoCommandFlag flags, TileIndex tile, TileIndex start_tile, bool diagonal) { if (start_tile >= Map::Size()) return { CMD_ERROR, 0 }; Money money = GetAvailableMoneyForCommand(); CommandCost cost(EXPENSES_CONSTRUCTION); CommandCost last_error = CMD_ERROR; bool had_success = false; const Company *c = (flags & (DC_AUTO | DC_BANKRUPT)) ? nullptr : Company::GetIfValid(_current_company); int limit = (c == nullptr ? INT32_MAX : GB(c->clear_limit, 16, 16)); std::unique_ptr iter = TileIterator::Create(tile, start_tile, diagonal); for (; *iter != INVALID_TILE; ++(*iter)) { TileIndex t = *iter; CommandCost ret = Command::Do(flags & ~DC_EXEC, t); if (ret.Failed()) { last_error = ret; /* We may not clear more tiles. */ if (c != nullptr && GB(c->clear_limit, 16, 16) < 1) break; continue; } had_success = true; if (flags & DC_EXEC) { money -= ret.GetCost(); if (ret.GetCost() > 0 && money < 0) { return { cost, ret.GetCost() }; } Command::Do(flags, t); /* draw explosion animation... * Disable explosions when game is paused. Looks silly and blocks the view. */ if ((t == tile || t == start_tile) && _pause_mode == PM_UNPAUSED) { /* big explosion in two corners, or small explosion for single tiles */ CreateEffectVehicleAbove(TileX(t) * TILE_SIZE + TILE_SIZE / 2, TileY(t) * TILE_SIZE + TILE_SIZE / 2, 2, TileX(tile) == TileX(start_tile) && TileY(tile) == TileY(start_tile) ? EV_EXPLOSION_SMALL : EV_EXPLOSION_LARGE ); } } else { /* When we're at the clearing limit we better bail (unneed) testing as well. */ if (ret.GetCost() != 0 && --limit <= 0) break; } cost.AddCost(ret); } return { had_success ? cost : last_error, 0 }; } TileIndex _cur_tileloop_tile; /** * Gradually iterate over all tiles on the map, calling their TileLoopProcs once every 256 ticks. */ void RunTileLoop() { PerformanceAccumulator framerate(PFE_GL_LANDSCAPE); /* The pseudorandom sequence of tiles is generated using a Galois linear feedback * shift register (LFSR). This allows a deterministic pseudorandom ordering, but * still with minimal state and fast iteration. */ /* Maximal length LFSR feedback terms, from 12-bit (for 64x64 maps) to 24-bit (for 4096x4096 maps). * Extracted from http://www.ece.cmu.edu/~koopman/lfsr/ */ static const uint32 feedbacks[] = { 0xD8F, 0x1296, 0x2496, 0x4357, 0x8679, 0x1030E, 0x206CD, 0x403FE, 0x807B8, 0x1004B2, 0x2006A8, 0x4004B2, 0x800B87 }; static_assert(lengthof(feedbacks) == 2 * MAX_MAP_SIZE_BITS - 2 * MIN_MAP_SIZE_BITS + 1); const uint32 feedback = feedbacks[Map::LogX() + Map::LogY() - 2 * MIN_MAP_SIZE_BITS]; /* We update every tile every 256 ticks, so divide the map size by 2^8 = 256 */ uint count = 1 << (Map::LogX() + Map::LogY() - 8); TileIndex tile = _cur_tileloop_tile; /* The LFSR cannot have a zeroed state. */ assert(tile != 0); /* Manually update tile 0 every 256 ticks - the LFSR never iterates over it itself. */ if (_tick_counter % 256 == 0) { _tile_type_procs[GetTileType(0)]->tile_loop_proc(0); count--; } while (count--) { _tile_type_procs[GetTileType(tile)]->tile_loop_proc(tile); /* Get the next tile in sequence using a Galois LFSR. */ tile = (tile >> 1) ^ (-(int32)(tile & 1) & feedback); } _cur_tileloop_tile = tile; } void InitializeLandscape() { for (uint y = _settings_game.construction.freeform_edges ? 1 : 0; y < Map::MaxY(); y++) { for (uint x = _settings_game.construction.freeform_edges ? 1 : 0; x < Map::MaxX(); x++) { MakeClear(TileXY(x, y), CLEAR_GRASS, 3); SetTileHeight(TileXY(x, y), 0); SetTropicZone(TileXY(x, y), TROPICZONE_NORMAL); ClearBridgeMiddle(TileXY(x, y)); } } for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, Map::MaxY())); for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(Map::MaxX(), y)); } static const byte _genterrain_tbl_1[5] = { 10, 22, 33, 37, 4 }; static const byte _genterrain_tbl_2[5] = { 0, 0, 0, 0, 33 }; static void GenerateTerrain(int type, uint flag) { uint32 r = Random(); /* Choose one of the templates from the graphics file. */ const Sprite *templ = GetSprite((((r >> 24) * _genterrain_tbl_1[type]) >> 8) + _genterrain_tbl_2[type] + SPR_MAPGEN_BEGIN, ST_MAPGEN); if (templ == nullptr) usererror("Map generator sprites could not be loaded"); /* Chose a random location to apply the template to. */ uint x = r & Map::MaxX(); uint y = (r >> Map::LogX()) & Map::MaxY(); /* Make sure the template is not too close to the upper edges; bottom edges are checked later. */ uint edge_distance = 1 + (_settings_game.construction.freeform_edges ? 1 : 0); if (x <= edge_distance || y <= edge_distance) return; DiagDirection direction = (DiagDirection)GB(r, 22, 2); uint w = templ->width; uint h = templ->height; if (DiagDirToAxis(direction) == AXIS_Y) Swap(w, h); const byte *p = templ->data; if ((flag & 4) != 0) { /* This is only executed in secondary/tertiary loops to generate the terrain for arctic and tropic. * It prevents the templates to be applied to certain parts of the map based on the flags, thus * creating regions with different elevations/topography. */ uint xw = x * Map::SizeY(); uint yw = y * Map::SizeX(); uint bias = (Map::SizeX() + Map::SizeY()) * 16; switch (flag & 3) { default: NOT_REACHED(); case 0: if (xw + yw > Map::Size() - bias) return; break; case 1: if (yw < xw + bias) return; break; case 2: if (xw + yw < Map::Size() + bias) return; break; case 3: if (xw < yw + bias) return; break; } } /* Ensure the template does not overflow at the bottom edges of the map; upper edges were checked before. */ if (x + w >= Map::MaxX()) return; if (y + h >= Map::MaxY()) return; TileIndex tile = TileXY(x, y); /* Get the template and overlay in a particular direction over the map's height from the given * origin point (tile), and update the map's height everywhere where the height from the template * is higher than the height of the map. In other words, this only raises the tile heights. */ switch (direction) { default: NOT_REACHED(); case DIAGDIR_NE: do { TileIndex tile_cur = tile; for (uint w_cur = w; w_cur != 0; --w_cur) { if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4)); p++; tile_cur++; } tile += TileDiffXY(0, 1); } while (--h != 0); break; case DIAGDIR_SE: do { TileIndex tile_cur = tile; for (uint h_cur = h; h_cur != 0; --h_cur) { if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4)); p++; tile_cur += TileDiffXY(0, 1); } tile += TileDiffXY(1, 0); } while (--w != 0); break; case DIAGDIR_SW: tile += TileDiffXY(w - 1, 0); do { TileIndex tile_cur = tile; for (uint w_cur = w; w_cur != 0; --w_cur) { if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4)); p++; tile_cur--; } tile += TileDiffXY(0, 1); } while (--h != 0); break; case DIAGDIR_NW: tile += TileDiffXY(0, h - 1); do { TileIndex tile_cur = tile; for (uint h_cur = h; h_cur != 0; --h_cur) { if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4)); p++; tile_cur -= TileDiffXY(0, 1); } tile += TileDiffXY(1, 0); } while (--w != 0); break; } } #include "table/genland.h" static void CreateDesertOrRainForest(uint desert_tropic_line) { TileIndex update_freq = Map::Size() / 4; const TileIndexDiffC *data; for (TileIndex tile = 0; tile != Map::Size(); ++tile) { if ((tile % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE); if (!IsValidTile(tile)) continue; for (data = _make_desert_or_rainforest_data; data != endof(_make_desert_or_rainforest_data); ++data) { TileIndex t = AddTileIndexDiffCWrap(tile, *data); if (t != INVALID_TILE && (TileHeight(t) >= desert_tropic_line || IsTileType(t, MP_WATER))) break; } if (data == endof(_make_desert_or_rainforest_data)) { SetTropicZone(tile, TROPICZONE_DESERT); } } for (uint i = 0; i != 256; i++) { if ((i % 64) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE); RunTileLoop(); } for (TileIndex tile = 0; tile != Map::Size(); ++tile) { if ((tile % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE); if (!IsValidTile(tile)) continue; for (data = _make_desert_or_rainforest_data; data != endof(_make_desert_or_rainforest_data); ++data) { TileIndex t = AddTileIndexDiffCWrap(tile, *data); if (t != INVALID_TILE && IsTileType(t, MP_CLEAR) && IsClearGround(t, CLEAR_DESERT)) break; } if (data == endof(_make_desert_or_rainforest_data)) { SetTropicZone(tile, TROPICZONE_RAINFOREST); } } } /** * Find the spring of a river. * @param tile The tile to consider for being the spring. * @param user_data Ignored data. * @return True iff it is suitable as a spring. */ static bool FindSpring(TileIndex tile, void *user_data) { int referenceHeight; if (!IsTileFlat(tile, &referenceHeight) || IsWaterTile(tile)) return false; /* In the tropics rivers start in the rainforest. */ if (_settings_game.game_creation.landscape == LT_TROPIC && GetTropicZone(tile) != TROPICZONE_RAINFOREST) return false; /* Are there enough higher tiles to warrant a 'spring'? */ uint num = 0; for (int dx = -1; dx <= 1; dx++) { for (int dy = -1; dy <= 1; dy++) { TileIndex t = TileAddWrap(tile, dx, dy); if (t != INVALID_TILE && GetTileMaxZ(t) > referenceHeight) num++; } } if (num < 4) return false; /* Are we near the top of a hill? */ for (int dx = -16; dx <= 16; dx++) { for (int dy = -16; dy <= 16; dy++) { TileIndex t = TileAddWrap(tile, dx, dy); if (t != INVALID_TILE && GetTileMaxZ(t) > referenceHeight + 2) return false; } } return true; } /** * Make a connected lake; fill all tiles in the circular tile search that are connected. * @param tile The tile to consider for lake making. * @param user_data The height of the lake. * @return Always false, so it continues searching. */ static bool MakeLake(TileIndex tile, void *user_data) { uint height = *(uint*)user_data; if (!IsValidTile(tile) || TileHeight(tile) != height || !IsTileFlat(tile)) return false; if (_settings_game.game_creation.landscape == LT_TROPIC && GetTropicZone(tile) == TROPICZONE_DESERT) return false; for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) { TileIndex t2 = tile + TileOffsByDiagDir(d); if (IsWaterTile(t2)) { MakeRiverAndModifyDesertZoneAround(tile); return false; } } return false; } /** * Widen a river by expanding into adjacent tiles via circular tile search. * @param tile The tile to try expanding the river into. * @param data The tile to try surrounding the river around. * @return Always false, so it continues searching. */ static bool RiverMakeWider(TileIndex tile, void *data) { /* Don't expand into void tiles. */ if (!IsValidTile(tile)) return false; /* If the tile is already sea or river, don't expand. */ if (IsWaterTile(tile)) return false; /* If the tile is at height 0 after terraforming but the ocean hasn't flooded yet, don't build river. */ if (GetTileMaxZ(tile) == 0) return false; TileIndex origin_tile = *(TileIndex *)data; Slope cur_slope = GetTileSlope(tile); Slope desired_slope = GetTileSlope(origin_tile); // Initialize matching the origin tile as a shortcut if no terraforming is needed. /* Never flow uphill. */ if (GetTileMaxZ(tile) > GetTileMaxZ(origin_tile)) return false; /* If the new tile can't hold a river tile, try terraforming. */ if (!IsTileFlat(tile) && !IsInclinedSlope(cur_slope)) { /* Don't try to terraform steep slopes. */ if (IsSteepSlope(cur_slope)) return false; bool flat_river_found = false; bool sloped_river_found = false; /* There are two common possibilities: * 1. River flat, adjacent tile has one corner lowered. * 2. River descending, adjacent tile has either one or three corners raised. */ /* First, determine the desired slope based on adjacent river tiles. This doesn't necessarily match the origin tile for the CircularTileSearch. */ for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) { TileIndex other_tile = TileAddByDiagDir(tile, d); Slope other_slope = GetTileSlope(other_tile); /* Only consider river tiles. */ if (IsWaterTile(other_tile) && IsRiver(other_tile)) { /* If the adjacent river tile flows downhill, we need to check where we are relative to the slope. */ if (IsInclinedSlope(other_slope) && GetTileMaxZ(tile) == GetTileMaxZ(other_tile)) { /* Check for a parallel slope. If we don't find one, we're above or below the slope instead. */ if (GetInclinedSlopeDirection(other_slope) == ChangeDiagDir(d, DIAGDIRDIFF_90RIGHT) || GetInclinedSlopeDirection(other_slope) == ChangeDiagDir(d, DIAGDIRDIFF_90LEFT)) { desired_slope = other_slope; sloped_river_found = true; break; } } /* If we find an adjacent river tile, remember it. We'll terraform to match it later if we don't find a slope. */ if (IsTileFlat(other_tile)) flat_river_found = true; } } /* We didn't find either an inclined or flat river, so we're climbing the wrong slope. Bail out. */ if (!sloped_river_found && !flat_river_found) return false; /* We didn't find an inclined river, but there is a flat river. */ if (!sloped_river_found && flat_river_found) desired_slope = SLOPE_FLAT; /* Now that we know the desired slope, it's time to terraform! */ /* If the river is flat and the adjacent tile has one corner lowered, we want to raise it. */ if (desired_slope == SLOPE_FLAT && IsSlopeWithThreeCornersRaised(cur_slope)) { /* Make sure we're not affecting an existing river slope tile. */ for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) { TileIndex other_tile = TileAddByDiagDir(tile, d); if (IsInclinedSlope(GetTileSlope(other_tile)) && IsWaterTile(other_tile)) return false; } Command::Do(DC_EXEC | DC_AUTO, tile, ComplementSlope(cur_slope), true); /* If the river is descending and the adjacent tile has either one or three corners raised, we want to make it match the slope. */ } else if (IsInclinedSlope(desired_slope)) { /* Don't break existing flat river tiles by terraforming under them. */ DiagDirection river_direction = ReverseDiagDir(GetInclinedSlopeDirection(desired_slope)); for (DiagDirDiff d = DIAGDIRDIFF_BEGIN; d < DIAGDIRDIFF_END; d++) { /* We don't care about downstream or upstream tiles, just the riverbanks. */ if (d == DIAGDIRDIFF_SAME || d == DIAGDIRDIFF_REVERSE) continue; TileIndex other_tile = (TileAddByDiagDir(tile, ChangeDiagDir(river_direction, d))); if (IsWaterTile(other_tile) && IsRiver(other_tile) && IsTileFlat(other_tile)) return false; } /* Get the corners which are different between the current and desired slope. */ Slope to_change = cur_slope ^ desired_slope; /* Lower unwanted corners first. If only one corner is raised, no corners need lowering. */ if (!IsSlopeWithOneCornerRaised(cur_slope)) { to_change = to_change & ComplementSlope(desired_slope); Command::Do(DC_EXEC | DC_AUTO, tile, to_change, false); } /* Now check the match and raise any corners needed. */ cur_slope = GetTileSlope(tile); if (cur_slope != desired_slope && IsSlopeWithOneCornerRaised(cur_slope)) { to_change = cur_slope ^ desired_slope; Command::Do(DC_EXEC | DC_AUTO, tile, to_change, true); } } /* Update cur_slope after possibly terraforming. */ cur_slope = GetTileSlope(tile); } /* Sloped rivers need water both upstream and downstream. */ if (IsInclinedSlope(cur_slope)) { DiagDirection slope_direction = GetInclinedSlopeDirection(cur_slope); TileIndex upstream_tile = TileAddByDiagDir(tile, slope_direction); TileIndex downstream_tile = TileAddByDiagDir(tile, ReverseDiagDir(slope_direction)); /* Don't look outside the map. */ if (!IsValidTile(upstream_tile) || !IsValidTile(downstream_tile)) return false; /* Downstream might be new ocean created by our terraforming, and it hasn't flooded yet. */ bool downstream_is_ocean = GetTileZ(downstream_tile) == 0 && (GetTileSlope(downstream_tile) == SLOPE_FLAT || IsSlopeWithOneCornerRaised(GetTileSlope(downstream_tile))); /* If downstream is dry, flat, and not ocean, try making it a river tile. */ if (!IsWaterTile(downstream_tile) && !downstream_is_ocean) { /* If the tile upstream isn't flat, don't bother. */ if (GetTileSlope(downstream_tile) != SLOPE_FLAT) return false; MakeRiverAndModifyDesertZoneAround(downstream_tile); } /* If upstream is dry and flat, try making it a river tile. */ if (!IsWaterTile(upstream_tile)) { /* If the tile upstream isn't flat, don't bother. */ if (GetTileSlope(upstream_tile) != SLOPE_FLAT) return false; MakeRiverAndModifyDesertZoneAround(upstream_tile); } } /* If the tile slope matches the desired slope, add a river tile. */ if (cur_slope == desired_slope) { MakeRiverAndModifyDesertZoneAround(tile); } /* Always return false to keep searching. */ return false; } /** * Check whether a river at begin could (logically) flow down to end. * @param begin The origin of the flow. * @param end The destination of the flow. * @return True iff the water can be flowing down. */ static bool FlowsDown(TileIndex begin, TileIndex end) { assert(DistanceManhattan(begin, end) == 1); int heightBegin; int heightEnd; Slope slopeBegin = GetTileSlope(begin, &heightBegin); Slope slopeEnd = GetTileSlope(end, &heightEnd); return heightEnd <= heightBegin && /* Slope either is inclined or flat; rivers don't support other slopes. */ (slopeEnd == SLOPE_FLAT || IsInclinedSlope(slopeEnd)) && /* Slope continues, then it must be lower... or either end must be flat. */ ((slopeEnd == slopeBegin && heightEnd < heightBegin) || slopeEnd == SLOPE_FLAT || slopeBegin == SLOPE_FLAT); } /** Parameters for river generation to pass as AyStar user data. */ struct River_UserData { TileIndex spring; ///< The current spring during river generation. bool main_river; ///< Whether the current river is a big river that others flow into. }; /* AyStar callback for checking whether we reached our destination. */ static int32 River_EndNodeCheck(const AyStar *aystar, const OpenListNode *current) { return current->path.node.tile == *(TileIndex*)aystar->user_target ? AYSTAR_FOUND_END_NODE : AYSTAR_DONE; } /* AyStar callback for getting the cost of the current node. */ static int32 River_CalculateG(AyStar *aystar, AyStarNode *current, OpenListNode *parent) { return 1 + RandomRange(_settings_game.game_creation.river_route_random); } /* AyStar callback for getting the estimated cost to the destination. */ static int32 River_CalculateH(AyStar *aystar, AyStarNode *current, OpenListNode *parent) { return DistanceManhattan(*(TileIndex*)aystar->user_target, current->tile); } /* AyStar callback for getting the neighbouring nodes of the given node. */ static void River_GetNeighbours(AyStar *aystar, OpenListNode *current) { TileIndex tile = current->path.node.tile; aystar->num_neighbours = 0; for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) { TileIndex t2 = tile + TileOffsByDiagDir(d); if (IsValidTile(t2) && FlowsDown(tile, t2)) { aystar->neighbours[aystar->num_neighbours].tile = t2; aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR; aystar->num_neighbours++; } } } /* AyStar callback when an route has been found. */ static void River_FoundEndNode(AyStar *aystar, OpenListNode *current) { River_UserData *data = (River_UserData *)aystar->user_data; /* First, build the river without worrying about its width. */ uint cur_pos = 0; for (PathNode *path = ¤t->path; path != nullptr; path = path->parent, cur_pos++) { TileIndex tile = path->node.tile; if (!IsWaterTile(tile)) { MakeRiverAndModifyDesertZoneAround(tile); } } /* If the river is a main river, go back along the path to widen it. * Don't make wide rivers if we're using the original landscape generator. */ if (_settings_game.game_creation.land_generator != LG_ORIGINAL && data->main_river) { const uint long_river_length = _settings_game.game_creation.min_river_length * 4; uint current_river_length; uint radius; cur_pos = 0; for (PathNode *path = ¤t->path; path != nullptr; path = path->parent, cur_pos++) { TileIndex tile = path->node.tile; /* Check if we should widen river depending on how far we are away from the source. */ current_river_length = DistanceManhattan(data->spring, tile); radius = std::min(3u, (current_river_length / (long_river_length / 3u)) + 1u); if (radius > 1) CircularTileSearch(&tile, radius, RiverMakeWider, (void *)&path->node.tile); } } } static const uint RIVER_HASH_SIZE = 8; ///< The number of bits the hash for river finding should have. /** * Simple hash function for river tiles to be used by AyStar. * @param tile The tile to hash. * @param dir The unused direction. * @return The hash for the tile. */ static uint River_Hash(uint tile, uint dir) { return GB(TileHash(TileX(tile), TileY(tile)), 0, RIVER_HASH_SIZE); } /** * Actually build the river between the begin and end tiles using AyStar. * @param begin The begin of the river. * @param end The end of the river. * @param spring The springing point of the river. * @param main_river Whether the current river is a big river that others flow into. */ static void BuildRiver(TileIndex begin, TileIndex end, TileIndex spring, bool main_river) { River_UserData user_data = { spring, main_river }; AyStar finder = {}; finder.CalculateG = River_CalculateG; finder.CalculateH = River_CalculateH; finder.GetNeighbours = River_GetNeighbours; finder.EndNodeCheck = River_EndNodeCheck; finder.FoundEndNode = River_FoundEndNode; finder.user_target = &end; finder.user_data = &user_data; finder.Init(River_Hash, 1 << RIVER_HASH_SIZE); AyStarNode start; start.tile = begin; start.direction = INVALID_TRACKDIR; finder.AddStartNode(&start, 0); finder.Main(); finder.Free(); } /** * Try to flow the river down from a given begin. * @param spring The springing point of the river. * @param begin The begin point we are looking from; somewhere down hill from the spring. * @param min_river_length The minimum length for the river. * @return First element: True iff a river could/has been built, otherwise false; second element: River ends at sea. */ static std::tuple FlowRiver(TileIndex spring, TileIndex begin, uint min_river_length) { # define SET_MARK(x) marks.insert(x) # define IS_MARKED(x) (marks.find(x) != marks.end()) uint height = TileHeight(begin); if (IsWaterTile(begin)) { return { DistanceManhattan(spring, begin) > min_river_length, GetTileZ(begin) == 0 }; } std::set marks; SET_MARK(begin); /* Breadth first search for the closest tile we can flow down to. */ std::list queue; queue.push_back(begin); bool found = false; uint count = 0; // Number of tiles considered; to be used for lake location guessing. TileIndex end; do { end = queue.front(); queue.pop_front(); uint height2 = TileHeight(end); if (IsTileFlat(end) && (height2 < height || (height2 == height && IsWaterTile(end)))) { found = true; break; } for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) { TileIndex t2 = end + TileOffsByDiagDir(d); if (IsValidTile(t2) && !IS_MARKED(t2) && FlowsDown(end, t2)) { SET_MARK(t2); count++; queue.push_back(t2); } } } while (!queue.empty()); bool main_river = false; if (found) { /* Flow further down hill. */ std::tie(found, main_river) = FlowRiver(spring, end, min_river_length); } else if (count > 32) { /* Maybe we can make a lake. Find the Nth of the considered tiles. */ TileIndex lakeCenter = 0; int i = RandomRange(count - 1) + 1; std::set::const_iterator cit = marks.begin(); while (--i) cit++; lakeCenter = *cit; if (IsValidTile(lakeCenter) && /* A river, or lake, can only be built on flat slopes. */ IsTileFlat(lakeCenter) && /* We want the lake to be built at the height of the river. */ TileHeight(begin) == TileHeight(lakeCenter) && /* We don't want the lake at the entry of the valley. */ lakeCenter != begin && /* We don't want lakes in the desert. */ (_settings_game.game_creation.landscape != LT_TROPIC || GetTropicZone(lakeCenter) != TROPICZONE_DESERT) && /* We only want a lake if the river is long enough. */ DistanceManhattan(spring, lakeCenter) > min_river_length) { end = lakeCenter; MakeRiverAndModifyDesertZoneAround(lakeCenter); uint range = RandomRange(8) + 3; CircularTileSearch(&lakeCenter, range, MakeLake, &height); /* Call the search a second time so artefacts from going circular in one direction get (mostly) hidden. */ lakeCenter = end; CircularTileSearch(&lakeCenter, range, MakeLake, &height); found = true; } } marks.clear(); if (found) BuildRiver(begin, end, spring, main_river); return { found, main_river }; } /** * Actually (try to) create some rivers. */ static void CreateRivers() { int amount = _settings_game.game_creation.amount_of_rivers; if (amount == 0) return; uint wells = Map::ScaleBySize(4 << _settings_game.game_creation.amount_of_rivers); const uint num_short_rivers = wells - std::max(1u, wells / 10); SetGeneratingWorldProgress(GWP_RIVER, wells + 256 / 64); // Include the tile loop calls below. /* Try to create long rivers. */ for (; wells > num_short_rivers; wells--) { IncreaseGeneratingWorldProgress(GWP_RIVER); for (int tries = 0; tries < 512; tries++) { TileIndex t = RandomTile(); if (!CircularTileSearch(&t, 8, FindSpring, nullptr)) continue; if (std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length * 4))) break; } } /* Try to create short rivers. */ for (; wells != 0; wells--) { IncreaseGeneratingWorldProgress(GWP_RIVER); for (int tries = 0; tries < 128; tries++) { TileIndex t = RandomTile(); if (!CircularTileSearch(&t, 8, FindSpring, nullptr)) continue; if (std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length))) break; } } /* Widening rivers may have left some tiles requiring to be watered. */ ConvertGroundTilesIntoWaterTiles(); /* Run tile loop to update the ground density. */ for (uint i = 0; i != 256; i++) { if (i % 64 == 0) IncreaseGeneratingWorldProgress(GWP_RIVER); RunTileLoop(); } } /** * Calculate what height would be needed to cover N% of the landmass. * * The function allows both snow and desert/tropic line to be calculated. It * tries to find the closests height which covers N% of the landmass; it can * be below or above it. * * Tropic has a mechanism where water and tropic tiles in mountains grow * inside the desert. To better approximate the requested coverage, this is * taken into account via an edge histogram, which tells how many neighbouring * tiles are lower than the tiles of that height. The multiplier indicates how * severe this has to be taken into account. * * @param coverage A value between 0 and 100 indicating a percentage of landmass that should be covered. * @param edge_multiplier How much effect neighbouring tiles that are of a lower height level have on the score. * @return The estimated best height to use to cover N% of the landmass. */ static uint CalculateCoverageLine(uint coverage, uint edge_multiplier) { const DiagDirection neighbour_dir[] = { DIAGDIR_NE, DIAGDIR_SE, DIAGDIR_SW, DIAGDIR_NW, }; /* Histogram of how many tiles per height level exist. */ std::array histogram = {}; /* Histogram of how many neighbour tiles are lower than the tiles of the height level. */ std::array edge_histogram = {}; /* Build a histogram of the map height. */ for (TileIndex tile = 0; tile < Map::Size(); tile++) { uint h = TileHeight(tile); histogram[h]++; if (edge_multiplier != 0) { /* Check if any of our neighbours is below us. */ for (auto dir : neighbour_dir) { TileIndex neighbour_tile = AddTileIndexDiffCWrap(tile, TileIndexDiffCByDiagDir(dir)); if (IsValidTile(neighbour_tile) && TileHeight(neighbour_tile) < h) { edge_histogram[h]++; } } } } /* The amount of land we have is the map size minus the first (sea) layer. */ uint land_tiles = Map::Size() - histogram[0]; int best_score = land_tiles; /* Our goal is the coverage amount of the land-mass. */ int goal_tiles = land_tiles * coverage / 100; /* We scan from top to bottom. */ uint h = MAX_TILE_HEIGHT; uint best_h = h; int current_tiles = 0; for (; h > 0; h--) { current_tiles += histogram[h]; int current_score = goal_tiles - current_tiles; /* Tropic grows from water and mountains into the desert. This is a * great visual, but it also means we* need to take into account how * much less desert tiles are being created if we are on this * height-level. We estimate this based on how many neighbouring * tiles are below us for a given length, assuming that is where * tropic is growing from. */ if (edge_multiplier != 0 && h > 1) { /* From water tropic tiles grow for a few tiles land inward. */ current_score -= edge_histogram[1] * edge_multiplier; /* Tropic tiles grow into the desert for a few tiles. */ current_score -= edge_histogram[h] * edge_multiplier; } if (std::abs(current_score) < std::abs(best_score)) { best_score = current_score; best_h = h; } /* Always scan all height-levels, as h == 1 might give a better * score than any before. This is true for example with 0% desert * coverage. */ } return best_h; } /** * Calculate the line from which snow begins. */ static void CalculateSnowLine() { /* We do not have snow sprites on coastal tiles, so never allow "1" as height. */ _settings_game.game_creation.snow_line_height = std::max(CalculateCoverageLine(_settings_game.game_creation.snow_coverage, 0), 2u); } /** * Calculate the line (in height) between desert and tropic. * @return The height of the line between desert and tropic. */ static uint8 CalculateDesertLine() { /* CalculateCoverageLine() runs from top to bottom, so we need to invert the coverage. */ return CalculateCoverageLine(100 - _settings_game.game_creation.desert_coverage, 4); } void GenerateLandscape(byte mode) { /** Number of steps of landscape generation */ enum GenLandscapeSteps { GLS_HEIGHTMAP = 3, ///< Loading a heightmap GLS_TERRAGENESIS = 5, ///< Terragenesis generator GLS_ORIGINAL = 2, ///< Original generator GLS_TROPIC = 12, ///< Extra steps needed for tropic landscape GLS_OTHER = 0, ///< Extra steps for other landscapes }; uint steps = (_settings_game.game_creation.landscape == LT_TROPIC) ? GLS_TROPIC : GLS_OTHER; if (mode == GWM_HEIGHTMAP) { SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_HEIGHTMAP); LoadHeightmap(_file_to_saveload.detail_ftype, _file_to_saveload.name.c_str()); IncreaseGeneratingWorldProgress(GWP_LANDSCAPE); } else if (_settings_game.game_creation.land_generator == LG_TERRAGENESIS) { SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_TERRAGENESIS); GenerateTerrainPerlin(); } else { SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_ORIGINAL); if (_settings_game.construction.freeform_edges) { for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, 0)); for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(0, y)); } switch (_settings_game.game_creation.landscape) { case LT_ARCTIC: { uint32 r = Random(); for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 950); i != 0; --i) { GenerateTerrain(2, 0); } uint flag = GB(r, 7, 2) | 4; for (uint i = Map::ScaleBySize(GB(r, 9, 7) + 450); i != 0; --i) { GenerateTerrain(4, flag); } break; } case LT_TROPIC: { uint32 r = Random(); for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 170); i != 0; --i) { GenerateTerrain(0, 0); } uint flag = GB(r, 7, 2) | 4; for (uint i = Map::ScaleBySize(GB(r, 9, 8) + 1700); i != 0; --i) { GenerateTerrain(0, flag); } flag ^= 2; for (uint i = Map::ScaleBySize(GB(r, 17, 7) + 410); i != 0; --i) { GenerateTerrain(3, flag); } break; } default: { uint32 r = Random(); assert(_settings_game.difficulty.quantity_sea_lakes != CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY); uint i = Map::ScaleBySize(GB(r, 0, 7) + (3 - _settings_game.difficulty.quantity_sea_lakes) * 256 + 100); for (; i != 0; --i) { /* Make sure we do not overflow. */ GenerateTerrain(Clamp(_settings_game.difficulty.terrain_type, 0, 3), 0); } break; } } } /* Do not call IncreaseGeneratingWorldProgress() before FixSlopes(), * it allows screen redraw. Drawing of broken slopes crashes the game */ FixSlopes(); MarkWholeScreenDirty(); IncreaseGeneratingWorldProgress(GWP_LANDSCAPE); ConvertGroundTilesIntoWaterTiles(); MarkWholeScreenDirty(); IncreaseGeneratingWorldProgress(GWP_LANDSCAPE); switch (_settings_game.game_creation.landscape) { case LT_ARCTIC: CalculateSnowLine(); break; case LT_TROPIC: { uint desert_tropic_line = CalculateDesertLine(); CreateDesertOrRainForest(desert_tropic_line); break; } default: break; } CreateRivers(); } void OnTick_Town(); void OnTick_Trees(); void OnTick_Station(); void OnTick_Industry(); void OnTick_Companies(); void OnTick_LinkGraph(); void CallLandscapeTick() { { PerformanceAccumulator framerate(PFE_GL_LANDSCAPE); OnTick_Town(); OnTick_Trees(); OnTick_Station(); OnTick_Industry(); } OnTick_Companies(); OnTick_LinkGraph(); }