/* $Id$ */ #include "../stdafx.h" #include "../openttd.h" #include "../variables.h" #include "../command.h" #include "../network.h" #include "ai.h" #include "default/default.h" /** * Dequeues commands put in the queue via AI_PutCommandInQueue. */ void AI_DequeueCommands(byte player) { AICommand *com, *entry_com; entry_com = _ai_player[player].queue; /* It happens that DoCommandP issues a new DoCommandAI which adds a new command * to this very same queue (don't argue about this, if it currently doesn't * happen I can tell you it will happen with AIScript -- TrueLight). If we * do not make the queue NULL, that commands will be dequeued immediatly. * Therefor we safe the entry-point to entry_com, and make the queue NULL, so * the new queue can be safely built up. */ _ai_player[player].queue = NULL; _ai_player[player].queue_tail = NULL; /* Dequeue all commands */ while ((com = entry_com) != NULL) { _current_player = player; /* Copy the DP back in place */ memcpy(_decode_parameters, com->dp, sizeof(com->dp)); DoCommandP(com->tile, com->p1, com->p2, NULL, com->procc); /* Free item */ entry_com = com->next; free(com); } } /** * Needed for SP; we need to delay DoCommand with 1 tick, because else events * will make infinite loops (AIScript). */ void AI_PutCommandInQueue(byte player, uint tile, uint32 p1, uint32 p2, uint procc) { AICommand *com; if (_ai_player[player].queue_tail == NULL) { /* There is no item in the queue yet, create the queue */ _ai_player[player].queue = malloc(sizeof(AICommand)); _ai_player[player].queue_tail = _ai_player[player].queue; } else { /* Add an item at the end */ _ai_player[player].queue_tail->next = malloc(sizeof(AICommand)); _ai_player[player].queue_tail = _ai_player[player].queue_tail->next; } /* This is our new item */ com = _ai_player[player].queue_tail; /* Assign the info */ com->tile = tile; com->p1 = p1; com->p2 = p2; com->procc = procc; com->next = NULL; /* Copy the decode_parameters */ memcpy(com->dp, _decode_parameters, sizeof(com->dp)); } /** * Executes a raw DoCommand for the AI. */ int32 AI_DoCommand(uint tile, uint32 p1, uint32 p2, uint32 flags, uint procc) { PlayerID old_lp; int32 res = 0; /* If you enable DC_EXEC with DC_QUERY_COST you are a really strange * person.. should we check for those funny jokes? */ /* First, do a test-run to see if we can do this */ res = DoCommandByTile(tile, p1, p2, flags & ~DC_EXEC, procc); /* The command failed, or you didn't want to execute, or you are quering, return */ if ((CmdFailed(res)) || !(flags & DC_EXEC) || (flags & DC_QUERY_COST)) return res; /* If we did a DC_EXEC, and the command did not return an error, execute it over the network */ if (flags & DC_AUTO) procc |= CMD_AUTO; if (flags & DC_NO_WATER) procc |= CMD_NO_WATER; /* NetworkSend_Command needs _local_player to be set correctly, so adjust it, and put it back right after the function */ old_lp = _local_player; _local_player = _current_player; /* Send the command */ if (_networking) /* Network is easy, send it to his handler */ NetworkSend_Command(tile, p1, p2, procc, NULL); else /* If we execute BuildCommands directly in SP, we have a big problem with events * so we need to delay is for 1 tick */ AI_PutCommandInQueue(_current_player, tile, p1, p2, procc); /* Set _local_player back */ _local_player = old_lp; return res; } /** * Run 1 tick of the AI. Don't overdo it, keep it realistic. */ static void AI_RunTick(PlayerID player) { extern void AiNewDoGameLoop(Player *p); Player *p = GetPlayer(player); _current_player = player; if (_patches.ainew_active) { AiNewDoGameLoop(p); } else { /* Enable all kind of cheats the old AI needs in order to operate correctly... */ _is_old_ai_player = true; AiDoGameLoop(p); _is_old_ai_player = false; } } /** * The gameloop for AIs. * Handles one tick for all the AIs. */ void AI_RunGameLoop(void) { /* Don't do anything if ai is disabled */ if (!_ai.enabled) return; /* Don't do anything if we are a network-client * (too bad when a client joins, he thinks the AIs are real, so it wants to control * them.. this avoids that, while loading a network game in singleplayer, does make * the AIs to continue ;)) */ if (_networking && !_network_server && !_ai.network_client) return; /* New tick */ _ai.tick++; /* Make sure the AI follows the difficulty rule.. */ assert(_opt.diff.competitor_speed <= 4); if ((_ai.tick & ((1 << (4 - _opt.diff.competitor_speed)) - 1)) != 0) return; /* Check for AI-client (so joining a network with an AI) */ if (_ai.network_client && _ai_player[_ai.network_playas].active) { /* Run the script */ AI_DequeueCommands(_ai.network_playas); AI_RunTick(_ai.network_playas); } else if (!_networking || _network_server) { /* Check if we want to run AIs (server or SP only) */ Player *p; FOR_ALL_PLAYERS(p) { if (p->is_active && p->is_ai) { /* This should always be true, else something went wrong... */ assert(_ai_player[p->index].active); /* Run the script */ AI_DequeueCommands(p->index); AI_RunTick(p->index); } } } _current_player = OWNER_NONE; } /** * A new AI sees the day of light. You can do here what ever you think is needed. */ void AI_StartNewAI(PlayerID player) { /* Called if a new AI is booted */ _ai_player[player].active = true; } /** * This AI player died. Give it some chance to make a final puf. */ void AI_PlayerDied(PlayerID player) { if (_ai.network_client && _ai.network_playas == player) _ai.network_playas = OWNER_SPECTATOR; /* Called if this AI died */ _ai_player[player].active = false; } /** * Initialize some AI-related stuff. */ void AI_Initialize(void) { bool ai_network_client = _ai.network_client; memset(&_ai, 0, sizeof(_ai)); memset(&_ai_player, 0, sizeof(_ai_player)); _ai.network_client = ai_network_client; _ai.network_playas = OWNER_SPECTATOR; _ai.enabled = true; } /** * Deinitializer for AI-related stuff. */ void AI_Uninitialize(void) { Player* p; FOR_ALL_PLAYERS(p) { if (p->is_active && p->is_ai) AI_PlayerDied(p->index); } }