/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see .
*/
/** @file water_regions.cpp Handles dividing the water in the map into square regions to assist pathfinding. */
#include "stdafx.h"
#include "map_func.h"
#include "water_regions.h"
#include "map_func.h"
#include "tilearea_type.h"
#include "track_func.h"
#include "transport_type.h"
#include "landscape.h"
#include "tunnelbridge_map.h"
#include "follow_track.hpp"
#include "ship.h"
using TWaterRegionTraversabilityBits = uint16_t;
constexpr TWaterRegionPatchLabel FIRST_REGION_LABEL = 1;
constexpr TWaterRegionPatchLabel INVALID_WATER_REGION_PATCH = 0;
static_assert(sizeof(TWaterRegionTraversabilityBits) * 8 == WATER_REGION_EDGE_LENGTH);
static inline TrackBits GetWaterTracks(TileIndex tile) { return TrackStatusToTrackBits(GetTileTrackStatus(tile, TRANSPORT_WATER, 0)); }
static inline bool IsAqueductTile(TileIndex tile) { return IsBridgeTile(tile) && GetTunnelBridgeTransportType(tile) == TRANSPORT_WATER; }
static inline int GetWaterRegionX(TileIndex tile) { return TileX(tile) / WATER_REGION_EDGE_LENGTH; }
static inline int GetWaterRegionY(TileIndex tile) { return TileY(tile) / WATER_REGION_EDGE_LENGTH; }
static inline int GetWaterRegionMapSizeX() { return Map::SizeX() / WATER_REGION_EDGE_LENGTH; }
static inline int GetWaterRegionMapSizeY() { return Map::SizeY() / WATER_REGION_EDGE_LENGTH; }
static inline TWaterRegionIndex GetWaterRegionIndex(int region_x, int region_y) { return GetWaterRegionMapSizeX() * region_y + region_x; }
static inline TWaterRegionIndex GetWaterRegionIndex(TileIndex tile) { return GetWaterRegionIndex(GetWaterRegionX(tile), GetWaterRegionY(tile)); }
/**
* Represents a square section of the map of a fixed size. Within this square individual unconnected patches of water are
* identified using a Connected Component Labeling (CCL) algorithm. Note that all information stored in this class applies
* only to tiles within the square section, there is no knowledge about the rest of the map. This makes it easy to invalidate
* and update a water region if any changes are made to it, such as construction or terraforming.
*/
class WaterRegion
{
private:
std::array edge_traversability_bits{};
bool has_cross_region_aqueducts = false;
TWaterRegionPatchLabel number_of_patches = 0; // 0 = no water, 1 = one single patch of water, etc...
const OrthogonalTileArea tile_area;
std::array tile_patch_labels{};
bool initialized = false;
/**
* Returns the local index of the tile within the region. The N corner represents 0,
* the x direction is positive in the SW direction, and Y is positive in the SE direction.
* @param tile Tile within the water region.
* @returns The local index.
*/
inline int GetLocalIndex(TileIndex tile) const
{
assert(this->tile_area.Contains(tile));
return (TileX(tile) - TileX(this->tile_area.tile)) + WATER_REGION_EDGE_LENGTH * (TileY(tile) - TileY(this->tile_area.tile));
}
public:
WaterRegion(int region_x, int region_y)
: tile_area(TileXY(region_x * WATER_REGION_EDGE_LENGTH, region_y * WATER_REGION_EDGE_LENGTH), WATER_REGION_EDGE_LENGTH, WATER_REGION_EDGE_LENGTH)
{}
OrthogonalTileIterator begin() const { return this->tile_area.begin(); }
OrthogonalTileIterator end() const { return this->tile_area.end(); }
bool IsInitialized() const { return this->initialized; }
void Invalidate() { this->initialized = false; }
/**
* Returns a set of bits indicating whether an edge tile on a particular side is traversable or not. These
* values can be used to determine whether a ship can enter/leave the region through a particular edge tile.
* @see GetLocalIndex() for a description of the coordinate system used.
* @param side Which side of the region we want to know the edge traversability of.
* @returns A value holding the edge traversability bits.
*/
TWaterRegionTraversabilityBits GetEdgeTraversabilityBits(DiagDirection side) const { return edge_traversability_bits[side]; }
/**
* @returns The amount of individual water patches present within the water region. A value of
* 0 means there is no water present in the water region at all.
*/
int NumberOfPatches() const { return this->number_of_patches; }
/**
* @returns Whether the water region contains aqueducts that cross the region boundaries.
*/
bool HasCrossRegionAqueducts() const { return this->has_cross_region_aqueducts; }
/**
* Returns the patch label that was assigned to the tile.
* @param tile The tile of which we want to retrieve the label.
* @returns The label assigned to the tile.
*/
TWaterRegionPatchLabel GetLabel(TileIndex tile) const
{
assert(this->tile_area.Contains(tile));
return this->tile_patch_labels[GetLocalIndex(tile)];
}
/**
* Performs the connected component labeling and other data gathering.
* @see WaterRegion
*/
void ForceUpdate()
{
this->has_cross_region_aqueducts = false;
this->tile_patch_labels.fill(INVALID_WATER_REGION_PATCH);
for (const TileIndex tile : this->tile_area) {
if (IsAqueductTile(tile)) {
const TileIndex other_aqueduct_end = GetOtherBridgeEnd(tile);
if (!tile_area.Contains(other_aqueduct_end)) {
this->has_cross_region_aqueducts = true;
break;
}
}
}
TWaterRegionPatchLabel current_label = 1;
TWaterRegionPatchLabel highest_assigned_label = 0;
/* Perform connected component labeling. This uses a flooding algorithm that expands until no
* additional tiles can be added. Only tiles inside the water region are considered. */
for (const TileIndex start_tile : tile_area) {
static std::vector tiles_to_check;
tiles_to_check.clear();
tiles_to_check.push_back(start_tile);
bool increase_label = false;
while (!tiles_to_check.empty()) {
const TileIndex tile = tiles_to_check.back();
tiles_to_check.pop_back();
const TrackdirBits valid_dirs = TrackBitsToTrackdirBits(GetWaterTracks(tile));
if (valid_dirs == TRACKDIR_BIT_NONE) continue;
if (this->tile_patch_labels[GetLocalIndex(tile)] != INVALID_WATER_REGION_PATCH) continue;
this->tile_patch_labels[GetLocalIndex(tile)] = current_label;
highest_assigned_label = current_label;
increase_label = true;
for (const Trackdir dir : SetTrackdirBitIterator(valid_dirs)) {
/* By using a TrackFollower we "play by the same rules" as the actual ship pathfinder */
CFollowTrackWater ft;
if (ft.Follow(tile, dir) && this->tile_area.Contains(ft.m_new_tile)) tiles_to_check.push_back(ft.m_new_tile);
}
}
if (increase_label) current_label++;
}
this->number_of_patches = highest_assigned_label;
this->initialized = true;
/* Calculate the traversability (whether the tile can be entered / exited) for all edges. Note that
* we always follow the same X and Y scanning direction, this is important for comparisons later on! */
this->edge_traversability_bits.fill(0);
const int top_x = TileX(tile_area.tile);
const int top_y = TileY(tile_area.tile);
for (int i = 0; i < WATER_REGION_EDGE_LENGTH; ++i) {
if (GetWaterTracks(TileXY(top_x + i, top_y)) & TRACK_BIT_3WAY_NW) SetBit(this->edge_traversability_bits[DIAGDIR_NW], i); // NW edge
if (GetWaterTracks(TileXY(top_x + i, top_y + WATER_REGION_EDGE_LENGTH - 1)) & TRACK_BIT_3WAY_SE) SetBit(this->edge_traversability_bits[DIAGDIR_SE], i); // SE edge
if (GetWaterTracks(TileXY(top_x, top_y + i)) & TRACK_BIT_3WAY_NE) SetBit(this->edge_traversability_bits[DIAGDIR_NE], i); // NE edge
if (GetWaterTracks(TileXY(top_x + WATER_REGION_EDGE_LENGTH - 1, top_y + i)) & TRACK_BIT_3WAY_SW) SetBit(this->edge_traversability_bits[DIAGDIR_SW], i); // SW edge
}
}
/**
* Updates the patch labels and other data, but only if the region is not yet initialized.
*/
inline void UpdateIfNotInitialized()
{
if (!this->initialized) ForceUpdate();
}
};
std::vector _water_regions;
TileIndex GetTileIndexFromLocalCoordinate(int region_x, int region_y, int local_x, int local_y)
{
assert(local_x >= 0 && local_x < WATER_REGION_EDGE_LENGTH);
assert(local_y >= 0 && local_y < WATER_REGION_EDGE_LENGTH);
return TileXY(WATER_REGION_EDGE_LENGTH * region_x + local_x, WATER_REGION_EDGE_LENGTH * region_y + local_y);
}
TileIndex GetEdgeTileCoordinate(int region_x, int region_y, DiagDirection side, int x_or_y)
{
assert(x_or_y >= 0 && x_or_y < WATER_REGION_EDGE_LENGTH);
switch (side) {
case DIAGDIR_NE: return GetTileIndexFromLocalCoordinate(region_x, region_y, 0, x_or_y);
case DIAGDIR_SW: return GetTileIndexFromLocalCoordinate(region_x, region_y, WATER_REGION_EDGE_LENGTH - 1, x_or_y);
case DIAGDIR_NW: return GetTileIndexFromLocalCoordinate(region_x, region_y, x_or_y, 0);
case DIAGDIR_SE: return GetTileIndexFromLocalCoordinate(region_x, region_y, x_or_y, WATER_REGION_EDGE_LENGTH - 1);
default: NOT_REACHED();
}
}
WaterRegion &GetUpdatedWaterRegion(uint16_t region_x, uint16_t region_y)
{
WaterRegion &result = _water_regions[GetWaterRegionIndex(region_x, region_y)];
result.UpdateIfNotInitialized();
return result;
}
WaterRegion &GetUpdatedWaterRegion(TileIndex tile)
{
WaterRegion &result = _water_regions[GetWaterRegionIndex(tile)];
result.UpdateIfNotInitialized();
return result;
}
/**
* Returns the index of the water region
* @param water_region The Water region to return the index for
*/
TWaterRegionIndex GetWaterRegionIndex(const WaterRegionDesc &water_region)
{
return GetWaterRegionIndex(water_region.x, water_region.y);
}
/**
* Returns the center tile of a particular water region.
* @param water_region The water region to find the center tile for.
* @returns The center tile of the water region.
*/
TileIndex GetWaterRegionCenterTile(const WaterRegionDesc &water_region)
{
return TileXY(water_region.x * WATER_REGION_EDGE_LENGTH + (WATER_REGION_EDGE_LENGTH / 2), water_region.y * WATER_REGION_EDGE_LENGTH + (WATER_REGION_EDGE_LENGTH / 2));
}
/**
* Returns basic water region information for the provided tile.
* @param tile The tile for which the information will be calculated.
*/
WaterRegionDesc GetWaterRegionInfo(TileIndex tile)
{
return WaterRegionDesc{ GetWaterRegionX(tile), GetWaterRegionY(tile) };
}
/**
* Returns basic water region patch information for the provided tile.
* @param tile The tile for which the information will be calculated.
*/
WaterRegionPatchDesc GetWaterRegionPatchInfo(TileIndex tile)
{
WaterRegion ®ion = GetUpdatedWaterRegion(tile);
return WaterRegionPatchDesc{ GetWaterRegionX(tile), GetWaterRegionY(tile), region.GetLabel(tile)};
}
/**
* Marks the water region that tile is part of as invalid.
* @param tile Tile within the water region that we wish to invalidate.
*/
void InvalidateWaterRegion(TileIndex tile)
{
const int index = GetWaterRegionIndex(tile);
if (index > static_cast(_water_regions.size())) return;
_water_regions[index].Invalidate();
}
/**
* Calls the provided callback function for all water region patches
* accessible from one particular side of the starting patch.
* @param water_region_patch Water patch within the water region to start searching from
* @param side Side of the water region to look for neigboring patches of water
* @param callback The function that will be called for each neighbor that is found
*/
static inline void VisitAdjacentWaterRegionPatchNeighbors(const WaterRegionPatchDesc &water_region_patch, DiagDirection side, TVisitWaterRegionPatchCallBack &func)
{
const WaterRegion ¤t_region = GetUpdatedWaterRegion(water_region_patch.x, water_region_patch.y);
const TileIndexDiffC offset = TileIndexDiffCByDiagDir(side);
const int nx = water_region_patch.x + offset.x;
const int ny = water_region_patch.y + offset.y;
if (nx < 0 || ny < 0 || nx >= GetWaterRegionMapSizeX() || ny >= GetWaterRegionMapSizeY()) return;
const WaterRegion &neighboring_region = GetUpdatedWaterRegion(nx, ny);
const DiagDirection opposite_side = ReverseDiagDir(side);
/* Indicates via which local x or y coordinates (depends on the "side" parameter) we can cross over into the adjacent region. */
const TWaterRegionTraversabilityBits traversability_bits = current_region.GetEdgeTraversabilityBits(side)
& neighboring_region.GetEdgeTraversabilityBits(opposite_side);
if (traversability_bits == 0) return;
if (current_region.NumberOfPatches() == 1 && neighboring_region.NumberOfPatches() == 1) {
func(WaterRegionPatchDesc{ nx, ny, FIRST_REGION_LABEL }); // No further checks needed because we know there is just one patch for both adjacent regions
return;
}
/* Multiple water patches can be reached from the current patch. Check each edge tile individually. */
static std::vector unique_labels; // static and vector-instead-of-map for performance reasons
unique_labels.clear();
for (int x_or_y = 0; x_or_y < WATER_REGION_EDGE_LENGTH; ++x_or_y) {
if (!HasBit(traversability_bits, x_or_y)) continue;
const TileIndex current_edge_tile = GetEdgeTileCoordinate(water_region_patch.x, water_region_patch.y, side, x_or_y);
const TWaterRegionPatchLabel current_label = current_region.GetLabel(current_edge_tile);
if (current_label != water_region_patch.label) continue;
const TileIndex neighbor_edge_tile = GetEdgeTileCoordinate(nx, ny, opposite_side, x_or_y);
const TWaterRegionPatchLabel neighbor_label = neighboring_region.GetLabel(neighbor_edge_tile);
if (std::find(unique_labels.begin(), unique_labels.end(), neighbor_label) == unique_labels.end()) unique_labels.push_back(neighbor_label);
}
for (TWaterRegionPatchLabel unique_label : unique_labels) func(WaterRegionPatchDesc{ nx, ny, unique_label });
}
/**
* Calls the provided callback function on all accessible water region patches in
* each cardinal direction, plus any others that are reachable via aqueducts.
* @param water_region_patch Water patch within the water region to start searching from
* @param callback The function that will be called for each accessible water patch that is found
*/
void VisitWaterRegionPatchNeighbors(const WaterRegionPatchDesc &water_region_patch, TVisitWaterRegionPatchCallBack &callback)
{
const WaterRegion ¤t_region = GetUpdatedWaterRegion(water_region_patch.x, water_region_patch.y);
/* Visit adjacent water region patches in each cardinal direction */
for (DiagDirection side = DIAGDIR_BEGIN; side < DIAGDIR_END; side++) VisitAdjacentWaterRegionPatchNeighbors(water_region_patch, side, callback);
/* Visit neigboring water patches accessible via cross-region aqueducts */
if (current_region.HasCrossRegionAqueducts()) {
for (const TileIndex tile : current_region) {
if (GetWaterRegionPatchInfo(tile) == water_region_patch && IsAqueductTile(tile)) {
const TileIndex other_end_tile = GetOtherBridgeEnd(tile);
if (GetWaterRegionIndex(tile) != GetWaterRegionIndex(other_end_tile)) callback(GetWaterRegionPatchInfo(other_end_tile));
}
}
}
}
std::vector GetWaterRegionSaveLoadInfo()
{
std::vector result;
for (WaterRegion ®ion : _water_regions) result.push_back({ region.IsInitialized() });
return result;
}
void LoadWaterRegions(const std::vector &save_load_info)
{
_water_regions.clear();
_water_regions.reserve(save_load_info.size());
TWaterRegionIndex index = 0;
for (const auto &loaded_region_info : save_load_info) {
const int region_x = index % GetWaterRegionMapSizeX();
const int region_y = index / GetWaterRegionMapSizeX();
WaterRegion ®ion = _water_regions.emplace_back(region_x, region_y);
if (loaded_region_info.initialized) region.ForceUpdate();
index++;
}
}
/**
* Initializes all water regions. All water tiles will be scanned and interconnected water patches within regions will be identified.
*/
void InitializeWaterRegions()
{
_water_regions.clear();
_water_regions.reserve(static_cast(GetWaterRegionMapSizeX()) * GetWaterRegionMapSizeY());
for (int region_y = 0; region_y < GetWaterRegionMapSizeY(); region_y++) {
for (int region_x = 0; region_x < GetWaterRegionMapSizeX(); region_x++) {
_water_regions.emplace_back(region_x, region_y).ForceUpdate();
}
}
}