/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file yapf_road.cpp The road pathfinding. */ #include "../../stdafx.h" #include "yapf.hpp" #include "yapf_node_road.hpp" #include "../../roadstop_base.h" #include "../../safeguards.h" template class CYapfCostRoadT { public: typedef typename Types::Tpf Tpf; ///< pathfinder (derived from THIS class) typedef typename Types::TrackFollower TrackFollower; ///< track follower helper typedef typename Types::NodeList::Titem Node; ///< this will be our node type typedef typename Node::Key Key; ///< key to hash tables protected: /** to access inherited path finder */ Tpf& Yapf() { return *static_cast(this); } int SlopeCost(TileIndex tile, TileIndex next_tile, Trackdir trackdir) { /* height of the center of the current tile */ int x1 = TileX(tile) * TILE_SIZE; int y1 = TileY(tile) * TILE_SIZE; int z1 = GetSlopePixelZ(x1 + TILE_SIZE / 2, y1 + TILE_SIZE / 2); /* height of the center of the next tile */ int x2 = TileX(next_tile) * TILE_SIZE; int y2 = TileY(next_tile) * TILE_SIZE; int z2 = GetSlopePixelZ(x2 + TILE_SIZE / 2, y2 + TILE_SIZE / 2); if (z2 - z1 > 1) { /* Slope up */ return Yapf().PfGetSettings().road_slope_penalty; } return 0; } /** return one tile cost */ inline int OneTileCost(TileIndex tile, Trackdir trackdir) { int cost = 0; /* set base cost */ if (IsDiagonalTrackdir(trackdir)) { cost += YAPF_TILE_LENGTH; switch (GetTileType(tile)) { case MP_ROAD: /* Increase the cost for level crossings */ if (IsLevelCrossing(tile)) { cost += Yapf().PfGetSettings().road_crossing_penalty; } break; case MP_STATION: { const RoadStop *rs = RoadStop::GetByTile(tile, GetRoadStopType(tile)); if (IsDriveThroughStopTile(tile)) { /* Increase the cost for drive-through road stops */ cost += Yapf().PfGetSettings().road_stop_penalty; DiagDirection dir = TrackdirToExitdir(trackdir); if (!RoadStop::IsDriveThroughRoadStopContinuation(tile, tile - TileOffsByDiagDir(dir))) { /* When we're the first road stop in a 'queue' of them we increase * cost based on the fill percentage of the whole queue. */ const RoadStop::Entry *entry = rs->GetEntry(dir); cost += entry->GetOccupied() * Yapf().PfGetSettings().road_stop_occupied_penalty / entry->GetLength(); } } else { /* Increase cost for filled road stops */ cost += Yapf().PfGetSettings().road_stop_bay_occupied_penalty * (!rs->IsFreeBay(0) + !rs->IsFreeBay(1)) / 2; } break; } default: break; } } else { /* non-diagonal trackdir */ cost = YAPF_TILE_CORNER_LENGTH + Yapf().PfGetSettings().road_curve_penalty; } return cost; } public: /** * Called by YAPF to calculate the cost from the origin to the given node. * Calculates only the cost of given node, adds it to the parent node cost * and stores the result into Node::m_cost member */ inline bool PfCalcCost(Node &n, const TrackFollower *tf) { int segment_cost = 0; uint tiles = 0; /* start at n.m_key.m_tile / n.m_key.m_td and walk to the end of segment */ TileIndex tile = n.m_key.m_tile; Trackdir trackdir = n.m_key.m_td; for (;;) { /* base tile cost depending on distance between edges */ segment_cost += Yapf().OneTileCost(tile, trackdir); const RoadVehicle *v = Yapf().GetVehicle(); /* we have reached the vehicle's destination - segment should end here to avoid target skipping */ if (Yapf().PfDetectDestinationTile(tile, trackdir)) break; /* stop if we have just entered the depot */ if (IsRoadDepotTile(tile) && trackdir == DiagDirToDiagTrackdir(ReverseDiagDir(GetRoadDepotDirection(tile)))) { /* next time we will reverse and leave the depot */ break; } /* if there are no reachable trackdirs on new tile, we have end of road */ TrackFollower F(Yapf().GetVehicle()); if (!F.Follow(tile, trackdir)) break; /* if there are more trackdirs available & reachable, we are at the end of segment */ if (KillFirstBit(F.m_new_td_bits) != TRACKDIR_BIT_NONE) break; Trackdir new_td = (Trackdir)FindFirstBit2x64(F.m_new_td_bits); /* stop if RV is on simple loop with no junctions */ if (F.m_new_tile == n.m_key.m_tile && new_td == n.m_key.m_td) return false; /* if we skipped some tunnel tiles, add their cost */ segment_cost += F.m_tiles_skipped * YAPF_TILE_LENGTH; tiles += F.m_tiles_skipped + 1; /* add hilly terrain penalty */ segment_cost += Yapf().SlopeCost(tile, F.m_new_tile, trackdir); /* add min/max speed penalties */ int min_speed = 0; int max_veh_speed = v->GetDisplayMaxSpeed(); int max_speed = F.GetSpeedLimit(&min_speed); if (max_speed < max_veh_speed) segment_cost += 1 * (max_veh_speed - max_speed); if (min_speed > max_veh_speed) segment_cost += 10 * (min_speed - max_veh_speed); /* move to the next tile */ tile = F.m_new_tile; trackdir = new_td; if (tiles > MAX_MAP_SIZE) break; } /* save end of segment back to the node */ n.m_segment_last_tile = tile; n.m_segment_last_td = trackdir; /* save also tile cost */ int parent_cost = (n.m_parent != NULL) ? n.m_parent->m_cost : 0; n.m_cost = parent_cost + segment_cost; return true; } }; template class CYapfDestinationAnyDepotRoadT { public: typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class) typedef typename Types::TrackFollower TrackFollower; typedef typename Types::NodeList::Titem Node; ///< this will be our node type typedef typename Node::Key Key; ///< key to hash tables /** to access inherited path finder */ Tpf& Yapf() { return *static_cast(this); } /** Called by YAPF to detect if node ends in the desired destination */ inline bool PfDetectDestination(Node &n) { return IsRoadDepotTile(n.m_segment_last_tile); } inline bool PfDetectDestinationTile(TileIndex tile, Trackdir trackdir) { return IsRoadDepotTile(tile); } /** * Called by YAPF to calculate cost estimate. Calculates distance to the destination * adds it to the actual cost from origin and stores the sum to the Node::m_estimate */ inline bool PfCalcEstimate(Node &n) { n.m_estimate = n.m_cost; return true; } }; template class CYapfDestinationTileRoadT { public: typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class) typedef typename Types::TrackFollower TrackFollower; typedef typename Types::NodeList::Titem Node; ///< this will be our node type typedef typename Node::Key Key; ///< key to hash tables protected: TileIndex m_destTile; TrackdirBits m_destTrackdirs; StationID m_dest_station; bool m_bus; bool m_non_artic; public: void SetDestination(const RoadVehicle *v) { if (v->current_order.IsType(OT_GOTO_STATION)) { m_dest_station = v->current_order.GetDestination(); m_bus = v->IsBus(); m_destTile = CalcClosestStationTile(m_dest_station, v->tile, m_bus ? STATION_BUS : STATION_TRUCK); m_non_artic = !v->HasArticulatedPart(); m_destTrackdirs = INVALID_TRACKDIR_BIT; } else { m_dest_station = INVALID_STATION; m_destTile = v->dest_tile; m_destTrackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(v->dest_tile, TRANSPORT_ROAD, v->compatible_roadtypes)); } } protected: /** to access inherited path finder */ Tpf& Yapf() { return *static_cast(this); } public: /** Called by YAPF to detect if node ends in the desired destination */ inline bool PfDetectDestination(Node &n) { return PfDetectDestinationTile(n.m_segment_last_tile, n.m_segment_last_td); } inline bool PfDetectDestinationTile(TileIndex tile, Trackdir trackdir) { if (m_dest_station != INVALID_STATION) { return IsTileType(tile, MP_STATION) && GetStationIndex(tile) == m_dest_station && (m_bus ? IsBusStop(tile) : IsTruckStop(tile)) && (m_non_artic || IsDriveThroughStopTile(tile)); } return tile == m_destTile && ((m_destTrackdirs & TrackdirToTrackdirBits(trackdir)) != TRACKDIR_BIT_NONE); } /** * Called by YAPF to calculate cost estimate. Calculates distance to the destination * adds it to the actual cost from origin and stores the sum to the Node::m_estimate */ inline bool PfCalcEstimate(Node &n) { static const int dg_dir_to_x_offs[] = {-1, 0, 1, 0}; static const int dg_dir_to_y_offs[] = {0, 1, 0, -1}; if (PfDetectDestination(n)) { n.m_estimate = n.m_cost; return true; } TileIndex tile = n.m_segment_last_tile; DiagDirection exitdir = TrackdirToExitdir(n.m_segment_last_td); int x1 = 2 * TileX(tile) + dg_dir_to_x_offs[(int)exitdir]; int y1 = 2 * TileY(tile) + dg_dir_to_y_offs[(int)exitdir]; int x2 = 2 * TileX(m_destTile); int y2 = 2 * TileY(m_destTile); int dx = abs(x1 - x2); int dy = abs(y1 - y2); int dmin = min(dx, dy); int dxy = abs(dx - dy); int d = dmin * YAPF_TILE_CORNER_LENGTH + (dxy - 1) * (YAPF_TILE_LENGTH / 2); n.m_estimate = n.m_cost + d; assert(n.m_estimate >= n.m_parent->m_estimate); return true; } }; template class CYapfFollowRoadT { public: typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class) typedef typename Types::TrackFollower TrackFollower; typedef typename Types::NodeList::Titem Node; ///< this will be our node type typedef typename Node::Key Key; ///< key to hash tables protected: /** to access inherited path finder */ inline Tpf& Yapf() { return *static_cast(this); } public: /** * Called by YAPF to move from the given node to the next tile. For each * reachable trackdir on the new tile creates new node, initializes it * and adds it to the open list by calling Yapf().AddNewNode(n) */ inline void PfFollowNode(Node &old_node) { TrackFollower F(Yapf().GetVehicle()); if (F.Follow(old_node.m_segment_last_tile, old_node.m_segment_last_td)) { Yapf().AddMultipleNodes(&old_node, F); } } /** return debug report character to identify the transportation type */ inline char TransportTypeChar() const { return 'r'; } static Trackdir stChooseRoadTrack(const RoadVehicle *v, TileIndex tile, DiagDirection enterdir, bool &path_found) { Tpf pf; return pf.ChooseRoadTrack(v, tile, enterdir, path_found); } inline Trackdir ChooseRoadTrack(const RoadVehicle *v, TileIndex tile, DiagDirection enterdir, bool &path_found) { /* Handle special case - when next tile is destination tile. * However, when going to a station the (initial) destination * tile might not be a station, but a junction, in which case * this method forces the vehicle to jump in circles. */ if (tile == v->dest_tile && !v->current_order.IsType(OT_GOTO_STATION)) { /* choose diagonal trackdir reachable from enterdir */ return DiagDirToDiagTrackdir(enterdir); } /* our source tile will be the next vehicle tile (should be the given one) */ TileIndex src_tile = tile; /* get available trackdirs on the start tile */ TrackdirBits src_trackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(tile, TRANSPORT_ROAD, v->compatible_roadtypes)); /* select reachable trackdirs only */ src_trackdirs &= DiagdirReachesTrackdirs(enterdir); /* set origin and destination nodes */ Yapf().SetOrigin(src_tile, src_trackdirs); Yapf().SetDestination(v); /* find the best path */ path_found = Yapf().FindPath(v); /* if path not found - return INVALID_TRACKDIR */ Trackdir next_trackdir = INVALID_TRACKDIR; Node *pNode = Yapf().GetBestNode(); if (pNode != NULL) { /* path was found or at least suggested * walk through the path back to its origin */ while (pNode->m_parent != NULL) { pNode = pNode->m_parent; } /* return trackdir from the best origin node (one of start nodes) */ Node &best_next_node = *pNode; assert(best_next_node.GetTile() == tile); next_trackdir = best_next_node.GetTrackdir(); } return next_trackdir; } static uint stDistanceToTile(const RoadVehicle *v, TileIndex tile) { Tpf pf; return pf.DistanceToTile(v, tile); } inline uint DistanceToTile(const RoadVehicle *v, TileIndex dst_tile) { /* handle special case - when current tile is the destination tile */ if (dst_tile == v->tile) { /* distance is zero in this case */ return 0; } if (!SetOriginFromVehiclePos(v)) return UINT_MAX; /* get available trackdirs on the destination tile */ Yapf().SetDestination(v); /* if path not found - return distance = UINT_MAX */ uint dist = UINT_MAX; /* find the best path */ if (!Yapf().FindPath(v)) return dist; Node *pNode = Yapf().GetBestNode(); if (pNode != NULL) { /* path was found * get the path cost estimate */ dist = pNode->GetCostEstimate(); } return dist; } /** Return true if the valid origin (tile/trackdir) was set from the current vehicle position. */ inline bool SetOriginFromVehiclePos(const RoadVehicle *v) { /* set origin (tile, trackdir) */ TileIndex src_tile = v->tile; Trackdir src_td = v->GetVehicleTrackdir(); if ((TrackStatusToTrackdirBits(GetTileTrackStatus(src_tile, TRANSPORT_ROAD, v->compatible_roadtypes)) & TrackdirToTrackdirBits(src_td)) == 0) { /* sometimes the roadveh is not on the road (it resides on non-existing track) * how should we handle that situation? */ return false; } Yapf().SetOrigin(src_tile, TrackdirToTrackdirBits(src_td)); return true; } static FindDepotData stFindNearestDepot(const RoadVehicle *v, TileIndex tile, Trackdir td, int max_distance) { Tpf pf; return pf.FindNearestDepot(v, tile, td, max_distance); } /** * Find the best depot for a road vehicle. * @param v Vehicle * @param tile Tile of the vehicle. * @param td Trackdir of the vehicle. * @param max_distance max length (penalty) for paths. * @todo max_distance not used by YAPF for road vehicles. * It can be removed or copy the SetMaxCost() strategy * applied in YAPF for rail. The best depot can be at * a distance greater than max_distance. */ inline FindDepotData FindNearestDepot(const RoadVehicle *v, TileIndex tile, Trackdir td, int max_distance) { /* Set origin. */ Yapf().SetOrigin(tile, TrackdirToTrackdirBits(td)); /* Find the best path and return if no depot is found. */ if (!Yapf().FindPath(v)) return FindDepotData(); /* Return the cost of the best path and its depot. */ Node *n = Yapf().GetBestNode(); return FindDepotData(n->m_segment_last_tile, n->m_cost); } }; template class Tdestination> struct CYapfRoad_TypesT { typedef CYapfRoad_TypesT Types; typedef Tpf_ Tpf; typedef CFollowTrackRoad TrackFollower; typedef Tnode_list NodeList; typedef RoadVehicle VehicleType; typedef CYapfBaseT PfBase; typedef CYapfFollowRoadT PfFollow; typedef CYapfOriginTileT PfOrigin; typedef Tdestination PfDestination; typedef CYapfSegmentCostCacheNoneT PfCache; typedef CYapfCostRoadT PfCost; }; struct CYapfRoad1 : CYapfT > {}; struct CYapfRoad2 : CYapfT > {}; struct CYapfRoadAnyDepot1 : CYapfT > {}; struct CYapfRoadAnyDepot2 : CYapfT > {}; Trackdir YapfRoadVehicleChooseTrack(const RoadVehicle *v, TileIndex tile, DiagDirection enterdir, TrackdirBits trackdirs, bool &path_found) { /* default is YAPF type 2 */ typedef Trackdir (*PfnChooseRoadTrack)(const RoadVehicle*, TileIndex, DiagDirection, bool &path_found); PfnChooseRoadTrack pfnChooseRoadTrack = &CYapfRoad2::stChooseRoadTrack; // default: ExitDir, allow 90-deg /* check if non-default YAPF type should be used */ if (_settings_game.pf.yapf.disable_node_optimization) { pfnChooseRoadTrack = &CYapfRoad1::stChooseRoadTrack; // Trackdir, allow 90-deg } Trackdir td_ret = pfnChooseRoadTrack(v, tile, enterdir, path_found); return (td_ret != INVALID_TRACKDIR) ? td_ret : (Trackdir)FindFirstBit2x64(trackdirs); } FindDepotData YapfRoadVehicleFindNearestDepot(const RoadVehicle *v, int max_distance) { TileIndex tile = v->tile; Trackdir trackdir = v->GetVehicleTrackdir(); if ((TrackStatusToTrackdirBits(GetTileTrackStatus(tile, TRANSPORT_ROAD, v->compatible_roadtypes)) & TrackdirToTrackdirBits(trackdir)) == 0) { return FindDepotData(); } /* default is YAPF type 2 */ typedef FindDepotData (*PfnFindNearestDepot)(const RoadVehicle*, TileIndex, Trackdir, int); PfnFindNearestDepot pfnFindNearestDepot = &CYapfRoadAnyDepot2::stFindNearestDepot; /* check if non-default YAPF type should be used */ if (_settings_game.pf.yapf.disable_node_optimization) { pfnFindNearestDepot = &CYapfRoadAnyDepot1::stFindNearestDepot; // Trackdir, allow 90-deg } return pfnFindNearestDepot(v, tile, trackdir, max_distance); }