Files @ r28773:0150d0acc334
Branch filter:

Location: cpp/openttd-patchpack/source/src/landscape.cpp

Rubidium
Change: Remove saving of digit group and decimal separator configurations from the savegame
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file landscape.cpp Functions related to the landscape (slopes etc.). */

/** @defgroup SnowLineGroup Snowline functions and data structures */

#include "stdafx.h"
#include "heightmap.h"
#include "clear_map.h"
#include "spritecache.h"
#include "viewport_func.h"
#include "command_func.h"
#include "landscape.h"
#include "void_map.h"
#include "tgp.h"
#include "genworld.h"
#include "fios.h"
#include "error_func.h"
#include "timer/timer_game_calendar.h"
#include "timer/timer_game_tick.h"
#include "water.h"
#include "effectvehicle_func.h"
#include "landscape_type.h"
#include "animated_tile_func.h"
#include "core/random_func.hpp"
#include "object_base.h"
#include "company_func.h"
#include "pathfinder/npf/aystar.h"
#include "saveload/saveload.h"
#include "framerate_type.h"
#include "landscape_cmd.h"
#include "terraform_cmd.h"
#include "station_func.h"
#include "pathfinder/water_regions.h"

#include "table/strings.h"
#include "table/sprites.h"

#include "safeguards.h"

extern const TileTypeProcs
	_tile_type_clear_procs,
	_tile_type_rail_procs,
	_tile_type_road_procs,
	_tile_type_town_procs,
	_tile_type_trees_procs,
	_tile_type_station_procs,
	_tile_type_water_procs,
	_tile_type_void_procs,
	_tile_type_industry_procs,
	_tile_type_tunnelbridge_procs,
	_tile_type_object_procs;

/**
 * Tile callback functions for each type of tile.
 * @ingroup TileCallbackGroup
 * @see TileType
 */
const TileTypeProcs * const _tile_type_procs[16] = {
	&_tile_type_clear_procs,        ///< Callback functions for MP_CLEAR tiles
	&_tile_type_rail_procs,         ///< Callback functions for MP_RAILWAY tiles
	&_tile_type_road_procs,         ///< Callback functions for MP_ROAD tiles
	&_tile_type_town_procs,         ///< Callback functions for MP_HOUSE tiles
	&_tile_type_trees_procs,        ///< Callback functions for MP_TREES tiles
	&_tile_type_station_procs,      ///< Callback functions for MP_STATION tiles
	&_tile_type_water_procs,        ///< Callback functions for MP_WATER tiles
	&_tile_type_void_procs,         ///< Callback functions for MP_VOID tiles
	&_tile_type_industry_procs,     ///< Callback functions for MP_INDUSTRY tiles
	&_tile_type_tunnelbridge_procs, ///< Callback functions for MP_TUNNELBRIDGE tiles
	&_tile_type_object_procs,       ///< Callback functions for MP_OBJECT tiles
};

/** landscape slope => sprite */
extern const byte _slope_to_sprite_offset[32] = {
	0, 1, 2, 3, 4, 5, 6,  7, 8, 9, 10, 11, 12, 13, 14, 0,
	0, 0, 0, 0, 0, 0, 0, 16, 0, 0,  0, 17,  0, 15, 18, 0,
};

/**
 * Description of the snow line throughout the year.
 *
 * If it is \c nullptr, a static snowline height is used, as set by \c _settings_game.game_creation.snow_line_height.
 * Otherwise it points to a table loaded from a newGRF file that describes the variable snowline.
 * @ingroup SnowLineGroup
 * @see GetSnowLine() GameCreationSettings
 */
static SnowLine *_snow_line = nullptr;

/**
 * Map 2D viewport or smallmap coordinate to 3D world or tile coordinate.
 * Function takes into account height of tiles and foundations.
 *
 * @param x X viewport 2D coordinate.
 * @param y Y viewport 2D coordinate.
 * @param clamp_to_map Clamp the coordinate outside of the map to the closest, non-void tile within the map.
 * @param[out] clamped Whether coordinates were clamped.
 * @return 3D world coordinate of point visible at the given screen coordinate (3D perspective).
 *
 * @note Inverse of #RemapCoords2 function. Smaller values may get rounded.
 * @see InverseRemapCoords
 */
Point InverseRemapCoords2(int x, int y, bool clamp_to_map, bool *clamped)
{
	if (clamped != nullptr) *clamped = false; // Not clamping yet.

	/* Initial x/y world coordinate is like if the landscape
	 * was completely flat on height 0. */
	Point pt = InverseRemapCoords(x, y);

	const uint min_coord = _settings_game.construction.freeform_edges ? TILE_SIZE : 0;
	const uint max_x = Map::MaxX() * TILE_SIZE - 1;
	const uint max_y = Map::MaxY() * TILE_SIZE - 1;

	if (clamp_to_map) {
		/* Bring the coordinates near to a valid range. At the top we allow a number
		 * of extra tiles. This is mostly due to the tiles on the north side of
		 * the map possibly being drawn higher due to the extra height levels. */
		int extra_tiles = CeilDiv(_settings_game.construction.map_height_limit * TILE_HEIGHT, TILE_PIXELS);
		Point old_pt = pt;
		pt.x = Clamp(pt.x, -extra_tiles * TILE_SIZE, max_x);
		pt.y = Clamp(pt.y, -extra_tiles * TILE_SIZE, max_y);
		if (clamped != nullptr) *clamped = (pt.x != old_pt.x) || (pt.y != old_pt.y);
	}

	/* Now find the Z-world coordinate by fix point iteration.
	 * This is a bit tricky because the tile height is non-continuous at foundations.
	 * The clicked point should be approached from the back, otherwise there are regions that are not clickable.
	 * (FOUNDATION_HALFTILE_LOWER on SLOPE_STEEP_S hides north halftile completely)
	 * So give it a z-malus of 4 in the first iterations. */
	int z = 0;
	if (clamp_to_map) {
		for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, 4) - 4, min_coord, max_x), Clamp(pt.y + std::max(z, 4) - 4, min_coord, max_y)) / 2;
		for (int m = 3; m > 0; m--) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, m) - m, min_coord, max_x), Clamp(pt.y + std::max(z, m) - m, min_coord, max_y)) / 2;
		for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + z,             min_coord, max_x), Clamp(pt.y + z,             min_coord, max_y)) / 2;
	} else {
		for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, 4) - 4, pt.y + std::max(z, 4) - 4) / 2;
		for (int m = 3; m > 0; m--) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, m) - m, pt.y + std::max(z, m) - m) / 2;
		for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + z,             pt.y + z            ) / 2;
	}

	pt.x += z;
	pt.y += z;
	if (clamp_to_map) {
		Point old_pt = pt;
		pt.x = Clamp(pt.x, min_coord, max_x);
		pt.y = Clamp(pt.y, min_coord, max_y);
		if (clamped != nullptr) *clamped = *clamped || (pt.x != old_pt.x) || (pt.y != old_pt.y);
	}

	return pt;
}

/**
 * Applies a foundation to a slope.
 *
 * @pre      Foundation and slope must be valid combined.
 * @param f  The #Foundation.
 * @param s  The #Slope to modify.
 * @return   Increment to the tile Z coordinate.
 */
uint ApplyFoundationToSlope(Foundation f, Slope *s)
{
	if (!IsFoundation(f)) return 0;

	if (IsLeveledFoundation(f)) {
		uint dz = 1 + (IsSteepSlope(*s) ? 1 : 0);
		*s = SLOPE_FLAT;
		return dz;
	}

	if (f != FOUNDATION_STEEP_BOTH && IsNonContinuousFoundation(f)) {
		*s = HalftileSlope(*s, GetHalftileFoundationCorner(f));
		return 0;
	}

	if (IsSpecialRailFoundation(f)) {
		*s = SlopeWithThreeCornersRaised(OppositeCorner(GetRailFoundationCorner(f)));
		return 0;
	}

	uint dz = IsSteepSlope(*s) ? 1 : 0;
	Corner highest_corner = GetHighestSlopeCorner(*s);

	switch (f) {
		case FOUNDATION_INCLINED_X:
			*s = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? SLOPE_SW : SLOPE_NE);
			break;

		case FOUNDATION_INCLINED_Y:
			*s = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? SLOPE_SE : SLOPE_NW);
			break;

		case FOUNDATION_STEEP_LOWER:
			*s = SlopeWithOneCornerRaised(highest_corner);
			break;

		case FOUNDATION_STEEP_BOTH:
			*s = HalftileSlope(SlopeWithOneCornerRaised(highest_corner), highest_corner);
			break;

		default: NOT_REACHED();
	}
	return dz;
}


/**
 * Determines height at given coordinate of a slope.
 *
 * At the northern corner (0, 0) the result is always a multiple of TILE_HEIGHT.
 * When the height is a fractional Z, then the height is rounded down. For example,
 * when at the height is 0 at x = 0 and the height is 8 at x = 16 (actually x = 0
 * of the next tile), then height is 0 at x = 1, 1 at x = 2, and 7 at x = 15.
 * @param x x coordinate (value from 0 to 15)
 * @param y y coordinate (value from 0 to 15)
 * @param corners slope to examine
 * @return height of given point of given slope
 */
uint GetPartialPixelZ(int x, int y, Slope corners)
{
	if (IsHalftileSlope(corners)) {
		/* A foundation is placed on half the tile at a specific corner. This means that,
		 * depending on the corner, that one half of the tile is at the maximum height. */
		switch (GetHalftileSlopeCorner(corners)) {
			case CORNER_W:
				if (x > y) return GetSlopeMaxPixelZ(corners);
				break;

			case CORNER_S:
				if (x + y >= (int)TILE_SIZE) return GetSlopeMaxPixelZ(corners);
				break;

			case CORNER_E:
				if (x <= y) return GetSlopeMaxPixelZ(corners);
				break;

			case CORNER_N:
				if (x + y < (int)TILE_SIZE) return GetSlopeMaxPixelZ(corners);
				break;

			default: NOT_REACHED();
		}
	}

	switch (RemoveHalftileSlope(corners)) {
		case SLOPE_FLAT: return 0;

		/* One corner is up.*/
		case SLOPE_N: return x + y <= (int)TILE_SIZE ? (TILE_SIZE - x - y)     >> 1 : 0;
		case SLOPE_E: return y >= x                  ? (1 + y - x)             >> 1 : 0;
		case SLOPE_S: return x + y >= (int)TILE_SIZE ? (1 + x + y - TILE_SIZE) >> 1 : 0;
		case SLOPE_W: return x >= y                  ? (x - y)                 >> 1 : 0;

		/* Two corners next to eachother are up. */
		case SLOPE_NE: return (TILE_SIZE - x) >> 1;
		case SLOPE_SE: return (y + 1) >> 1;
		case SLOPE_SW: return (x + 1) >> 1;
		case SLOPE_NW: return (TILE_SIZE - y) >> 1;

		/* Three corners are up on the same level. */
		case SLOPE_ENW: return x + y >= (int)TILE_SIZE ? TILE_HEIGHT - ((1 + x + y - TILE_SIZE) >> 1) : TILE_HEIGHT;
		case SLOPE_SEN: return y < x                   ? TILE_HEIGHT - ((x - y)                 >> 1) : TILE_HEIGHT;
		case SLOPE_WSE: return x + y <= (int)TILE_SIZE ? TILE_HEIGHT - ((TILE_SIZE - x - y)     >> 1) : TILE_HEIGHT;
		case SLOPE_NWS: return x < y                   ? TILE_HEIGHT - ((1 + y - x)             >> 1) : TILE_HEIGHT;

		/* Two corners at opposite sides are up. */
		case SLOPE_NS: return x + y < (int)TILE_SIZE ? (TILE_SIZE - x - y) >> 1 : (1 + x + y - TILE_SIZE) >> 1;
		case SLOPE_EW: return x >= y ? (x - y) >> 1 : (1 + y - x) >> 1;

		/* Very special cases. */
		case SLOPE_ELEVATED: return TILE_HEIGHT;

		/* Steep slopes. The top is at 2 * TILE_HEIGHT. */
		case SLOPE_STEEP_N: return (TILE_SIZE - x + TILE_SIZE - y) >> 1;
		case SLOPE_STEEP_E: return (TILE_SIZE + 1 + y - x) >> 1;
		case SLOPE_STEEP_S: return (1 + x + y) >> 1;
		case SLOPE_STEEP_W: return (TILE_SIZE + x - y) >> 1;

		default: NOT_REACHED();
	}
}

/**
 * Return world \c Z coordinate of a given point of a tile. Normally this is the
 * Z of the ground/foundation at the given location, but in some cases the
 * ground/foundation can differ from the Z coordinate that the (ground) vehicle
 * passing over it would take. For example when entering a tunnel or bridge.
 *
 * @param x World X coordinate in tile "units".
 * @param y World Y coordinate in tile "units".
 * @param ground_vehicle Whether to get the Z coordinate of the ground vehicle, or the ground.
 * @return World Z coordinate at tile ground (vehicle) level, including slopes and foundations.
 */
int GetSlopePixelZ(int x, int y, bool ground_vehicle)
{
	TileIndex tile = TileVirtXY(x, y);

	return _tile_type_procs[GetTileType(tile)]->get_slope_z_proc(tile, x, y, ground_vehicle);
}

/**
 * Return world \c z coordinate of a given point of a tile,
 * also for tiles outside the map (virtual "black" tiles).
 *
 * @param x World X coordinate in tile "units", may be outside the map.
 * @param y World Y coordinate in tile "units", may be outside the map.
 * @return World Z coordinate at tile ground level, including slopes and foundations.
 */
int GetSlopePixelZOutsideMap(int x, int y)
{
	if (IsInsideBS(x, 0, Map::SizeX() * TILE_SIZE) && IsInsideBS(y, 0, Map::SizeY() * TILE_SIZE)) {
		return GetSlopePixelZ(x, y, false);
	} else {
		return _tile_type_procs[MP_VOID]->get_slope_z_proc(INVALID_TILE, x, y, false);
	}
}

/**
 * Determine the Z height of a corner relative to TileZ.
 *
 * @pre The slope must not be a halftile slope.
 *
 * @param tileh The slope.
 * @param corner The corner.
 * @return Z position of corner relative to TileZ.
 */
int GetSlopeZInCorner(Slope tileh, Corner corner)
{
	assert(!IsHalftileSlope(tileh));
	return ((tileh & SlopeWithOneCornerRaised(corner)) != 0 ? 1 : 0) + (tileh == SteepSlope(corner) ? 1 : 0);
}

/**
 * Determine the Z height of the corners of a specific tile edge
 *
 * @note If a tile has a non-continuous halftile foundation, a corner can have different heights wrt. its edges.
 *
 * @pre z1 and z2 must be initialized (typ. with TileZ). The corner heights just get added.
 *
 * @param tileh The slope of the tile.
 * @param edge The edge of interest.
 * @param z1 Gets incremented by the height of the first corner of the edge. (near corner wrt. the camera)
 * @param z2 Gets incremented by the height of the second corner of the edge. (far corner wrt. the camera)
 */
void GetSlopePixelZOnEdge(Slope tileh, DiagDirection edge, int *z1, int *z2)
{
	static const Slope corners[4][4] = {
		/*    corner     |          steep slope
		 *  z1      z2   |       z1             z2        */
		{SLOPE_E, SLOPE_N, SLOPE_STEEP_E, SLOPE_STEEP_N}, // DIAGDIR_NE, z1 = E, z2 = N
		{SLOPE_S, SLOPE_E, SLOPE_STEEP_S, SLOPE_STEEP_E}, // DIAGDIR_SE, z1 = S, z2 = E
		{SLOPE_S, SLOPE_W, SLOPE_STEEP_S, SLOPE_STEEP_W}, // DIAGDIR_SW, z1 = S, z2 = W
		{SLOPE_W, SLOPE_N, SLOPE_STEEP_W, SLOPE_STEEP_N}, // DIAGDIR_NW, z1 = W, z2 = N
	};

	int halftile_test = (IsHalftileSlope(tileh) ? SlopeWithOneCornerRaised(GetHalftileSlopeCorner(tileh)) : 0);
	if (halftile_test == corners[edge][0]) *z2 += TILE_HEIGHT; // The slope is non-continuous in z2. z2 is on the upper side.
	if (halftile_test == corners[edge][1]) *z1 += TILE_HEIGHT; // The slope is non-continuous in z1. z1 is on the upper side.

	if ((tileh & corners[edge][0]) != 0) *z1 += TILE_HEIGHT; // z1 is raised
	if ((tileh & corners[edge][1]) != 0) *z2 += TILE_HEIGHT; // z2 is raised
	if (RemoveHalftileSlope(tileh) == corners[edge][2]) *z1 += TILE_HEIGHT; // z1 is highest corner of a steep slope
	if (RemoveHalftileSlope(tileh) == corners[edge][3]) *z2 += TILE_HEIGHT; // z2 is highest corner of a steep slope
}

/**
 * Get slope of a tile on top of a (possible) foundation
 * If a tile does not have a foundation, the function returns the same as GetTileSlope.
 *
 * @param tile The tile of interest.
 * @param z returns the z of the foundation slope. (Can be nullptr, if not needed)
 * @return The slope on top of the foundation.
 */
Slope GetFoundationSlope(TileIndex tile, int *z)
{
	Slope tileh = GetTileSlope(tile, z);
	Foundation f = _tile_type_procs[GetTileType(tile)]->get_foundation_proc(tile, tileh);
	uint z_inc = ApplyFoundationToSlope(f, &tileh);
	if (z != nullptr) *z += z_inc;
	return tileh;
}


bool HasFoundationNW(TileIndex tile, Slope slope_here, uint z_here)
{
	int z;

	int z_W_here = z_here;
	int z_N_here = z_here;
	GetSlopePixelZOnEdge(slope_here, DIAGDIR_NW, &z_W_here, &z_N_here);

	Slope slope = GetFoundationPixelSlope(TILE_ADDXY(tile, 0, -1), &z);
	int z_W = z;
	int z_N = z;
	GetSlopePixelZOnEdge(slope, DIAGDIR_SE, &z_W, &z_N);

	return (z_N_here > z_N) || (z_W_here > z_W);
}


bool HasFoundationNE(TileIndex tile, Slope slope_here, uint z_here)
{
	int z;

	int z_E_here = z_here;
	int z_N_here = z_here;
	GetSlopePixelZOnEdge(slope_here, DIAGDIR_NE, &z_E_here, &z_N_here);

	Slope slope = GetFoundationPixelSlope(TILE_ADDXY(tile, -1, 0), &z);
	int z_E = z;
	int z_N = z;
	GetSlopePixelZOnEdge(slope, DIAGDIR_SW, &z_E, &z_N);

	return (z_N_here > z_N) || (z_E_here > z_E);
}

/**
 * Draw foundation \a f at tile \a ti. Updates \a ti.
 * @param ti Tile to draw foundation on
 * @param f  Foundation to draw
 */
void DrawFoundation(TileInfo *ti, Foundation f)
{
	if (!IsFoundation(f)) return;

	/* Two part foundations must be drawn separately */
	assert(f != FOUNDATION_STEEP_BOTH);

	uint sprite_block = 0;
	int z;
	Slope slope = GetFoundationPixelSlope(ti->tile, &z);

	/* Select the needed block of foundations sprites
	 * Block 0: Walls at NW and NE edge
	 * Block 1: Wall  at        NE edge
	 * Block 2: Wall  at NW        edge
	 * Block 3: No walls at NW or NE edge
	 */
	if (!HasFoundationNW(ti->tile, slope, z)) sprite_block += 1;
	if (!HasFoundationNE(ti->tile, slope, z)) sprite_block += 2;

	/* Use the original slope sprites if NW and NE borders should be visible */
	SpriteID leveled_base = (sprite_block == 0 ? (int)SPR_FOUNDATION_BASE : (SPR_SLOPES_VIRTUAL_BASE + sprite_block * SPR_TRKFOUND_BLOCK_SIZE));
	SpriteID inclined_base = SPR_SLOPES_VIRTUAL_BASE + SPR_SLOPES_INCLINED_OFFSET + sprite_block * SPR_TRKFOUND_BLOCK_SIZE;
	SpriteID halftile_base = SPR_HALFTILE_FOUNDATION_BASE + sprite_block * SPR_HALFTILE_BLOCK_SIZE;

	if (IsSteepSlope(ti->tileh)) {
		if (!IsNonContinuousFoundation(f)) {
			/* Lower part of foundation */
			AddSortableSpriteToDraw(
				leveled_base + (ti->tileh & ~SLOPE_STEEP), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z
			);
		}

		Corner highest_corner = GetHighestSlopeCorner(ti->tileh);
		ti->z += ApplyPixelFoundationToSlope(f, &ti->tileh);

		if (IsInclinedFoundation(f)) {
			/* inclined foundation */
			byte inclined = highest_corner * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);

			AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y,
				f == FOUNDATION_INCLINED_X ? TILE_SIZE : 1,
				f == FOUNDATION_INCLINED_Y ? TILE_SIZE : 1,
				TILE_HEIGHT, ti->z
			);
			OffsetGroundSprite(0, 0);
		} else if (IsLeveledFoundation(f)) {
			AddSortableSpriteToDraw(leveled_base + SlopeWithOneCornerRaised(highest_corner), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z - TILE_HEIGHT);
			OffsetGroundSprite(0, -(int)TILE_HEIGHT);
		} else if (f == FOUNDATION_STEEP_LOWER) {
			/* one corner raised */
			OffsetGroundSprite(0, -(int)TILE_HEIGHT);
		} else {
			/* halftile foundation */
			int x_bb = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
			int y_bb = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);

			AddSortableSpriteToDraw(halftile_base + highest_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z + TILE_HEIGHT);
			/* Reposition ground sprite back to original position after bounding box change above. This is similar to
			 * RemapCoords() but without zoom scaling. */
			Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
			OffsetGroundSprite(-pt.x, -pt.y);
		}
	} else {
		if (IsLeveledFoundation(f)) {
			/* leveled foundation */
			AddSortableSpriteToDraw(leveled_base + ti->tileh, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z);
			OffsetGroundSprite(0, -(int)TILE_HEIGHT);
		} else if (IsNonContinuousFoundation(f)) {
			/* halftile foundation */
			Corner halftile_corner = GetHalftileFoundationCorner(f);
			int x_bb = (((halftile_corner == CORNER_W) || (halftile_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
			int y_bb = (((halftile_corner == CORNER_S) || (halftile_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);

			AddSortableSpriteToDraw(halftile_base + halftile_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z);
			/* Reposition ground sprite back to original position after bounding box change above. This is similar to
			 * RemapCoords() but without zoom scaling. */
			Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
			OffsetGroundSprite(-pt.x, -pt.y);
		} else if (IsSpecialRailFoundation(f)) {
			/* anti-zig-zag foundation */
			SpriteID spr;
			if (ti->tileh == SLOPE_NS || ti->tileh == SLOPE_EW) {
				/* half of leveled foundation under track corner */
				spr = leveled_base + SlopeWithThreeCornersRaised(GetRailFoundationCorner(f));
			} else {
				/* tile-slope = sloped along X/Y, foundation-slope = three corners raised */
				spr = inclined_base + 2 * GetRailFoundationCorner(f) + ((ti->tileh == SLOPE_SW || ti->tileh == SLOPE_NE) ? 1 : 0);
			}
			AddSortableSpriteToDraw(spr, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z);
			OffsetGroundSprite(0, 0);
		} else {
			/* inclined foundation */
			byte inclined = GetHighestSlopeCorner(ti->tileh) * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);

			AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y,
				f == FOUNDATION_INCLINED_X ? TILE_SIZE : 1,
				f == FOUNDATION_INCLINED_Y ? TILE_SIZE : 1,
				TILE_HEIGHT, ti->z
			);
			OffsetGroundSprite(0, 0);
		}
		ti->z += ApplyPixelFoundationToSlope(f, &ti->tileh);
	}
}

void DoClearSquare(TileIndex tile)
{
	/* If the tile can have animation and we clear it, delete it from the animated tile list. */
	if (_tile_type_procs[GetTileType(tile)]->animate_tile_proc != nullptr) DeleteAnimatedTile(tile);

	bool remove = IsDockingTile(tile);
	MakeClear(tile, CLEAR_GRASS, _generating_world ? 3 : 0);
	MarkTileDirtyByTile(tile);
	if (remove) RemoveDockingTile(tile);

	InvalidateWaterRegion(tile);
}

/**
 * Returns information about trackdirs and signal states.
 * If there is any trackbit at 'side', return all trackdirbits.
 * For TRANSPORT_ROAD, return no trackbits if there is no roadbit (of given subtype) at given side.
 * @param tile tile to get info about
 * @param mode transport type
 * @param sub_mode for TRANSPORT_ROAD, roadtypes to check
 * @param side side we are entering from, INVALID_DIAGDIR to return all trackbits
 * @return trackdirbits and other info depending on 'mode'
 */
TrackStatus GetTileTrackStatus(TileIndex tile, TransportType mode, uint sub_mode, DiagDirection side)
{
	return _tile_type_procs[GetTileType(tile)]->get_tile_track_status_proc(tile, mode, sub_mode, side);
}

/**
 * Change the owner of a tile
 * @param tile      Tile to change
 * @param old_owner Current owner of the tile
 * @param new_owner New owner of the tile
 */
void ChangeTileOwner(TileIndex tile, Owner old_owner, Owner new_owner)
{
	_tile_type_procs[GetTileType(tile)]->change_tile_owner_proc(tile, old_owner, new_owner);
}

void GetTileDesc(TileIndex tile, TileDesc *td)
{
	_tile_type_procs[GetTileType(tile)]->get_tile_desc_proc(tile, td);
}

/**
 * Has a snow line table already been loaded.
 * @return true if the table has been loaded already.
 * @ingroup SnowLineGroup
 */
bool IsSnowLineSet()
{
	return _snow_line != nullptr;
}

/**
 * Set a variable snow line, as loaded from a newgrf file.
 * @param table the 12 * 32 byte table containing the snowline for each day
 * @ingroup SnowLineGroup
 */
void SetSnowLine(byte table[SNOW_LINE_MONTHS][SNOW_LINE_DAYS])
{
	_snow_line = CallocT<SnowLine>(1);
	_snow_line->lowest_value = 0xFF;
	memcpy(_snow_line->table, table, sizeof(_snow_line->table));

	for (uint i = 0; i < SNOW_LINE_MONTHS; i++) {
		for (uint j = 0; j < SNOW_LINE_DAYS; j++) {
			_snow_line->highest_value = std::max(_snow_line->highest_value, table[i][j]);
			_snow_line->lowest_value = std::min(_snow_line->lowest_value, table[i][j]);
		}
	}
}

/**
 * Get the current snow line, either variable or static.
 * @return the snow line height.
 * @ingroup SnowLineGroup
 */
byte GetSnowLine()
{
	if (_snow_line == nullptr) return _settings_game.game_creation.snow_line_height;

	TimerGameCalendar::YearMonthDay ymd = TimerGameCalendar::ConvertDateToYMD(TimerGameCalendar::date);
	return _snow_line->table[ymd.month][ymd.day];
}

/**
 * Get the highest possible snow line height, either variable or static.
 * @return the highest snow line height.
 * @ingroup SnowLineGroup
 */
byte HighestSnowLine()
{
	return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->highest_value;
}

/**
 * Get the lowest possible snow line height, either variable or static.
 * @return the lowest snow line height.
 * @ingroup SnowLineGroup
 */
byte LowestSnowLine()
{
	return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->lowest_value;
}

/**
 * Clear the variable snow line table and free the memory.
 * @ingroup SnowLineGroup
 */
void ClearSnowLine()
{
	free(_snow_line);
	_snow_line = nullptr;
}

/**
 * Clear a piece of landscape
 * @param flags of operation to conduct
 * @param tile tile to clear
 * @return the cost of this operation or an error
 */
CommandCost CmdLandscapeClear(DoCommandFlag flags, TileIndex tile)
{
	CommandCost cost(EXPENSES_CONSTRUCTION);
	bool do_clear = false;
	/* Test for stuff which results in water when cleared. Then add the cost to also clear the water. */
	if ((flags & DC_FORCE_CLEAR_TILE) && HasTileWaterClass(tile) && IsTileOnWater(tile) && !IsWaterTile(tile) && !IsCoastTile(tile)) {
		if ((flags & DC_AUTO) && GetWaterClass(tile) == WATER_CLASS_CANAL) return_cmd_error(STR_ERROR_MUST_DEMOLISH_CANAL_FIRST);
		do_clear = true;
		cost.AddCost(GetWaterClass(tile) == WATER_CLASS_CANAL ? _price[PR_CLEAR_CANAL] : _price[PR_CLEAR_WATER]);
	}

	Company *c = (flags & (DC_AUTO | DC_BANKRUPT)) ? nullptr : Company::GetIfValid(_current_company);
	if (c != nullptr && (int)GB(c->clear_limit, 16, 16) < 1) {
		return_cmd_error(STR_ERROR_CLEARING_LIMIT_REACHED);
	}

	const ClearedObjectArea *coa = FindClearedObject(tile);

	/* If this tile was the first tile which caused object destruction, always
	 * pass it on to the tile_type_proc. That way multiple test runs and the exec run stay consistent. */
	if (coa != nullptr && coa->first_tile != tile) {
		/* If this tile belongs to an object which was already cleared via another tile, pretend it has been
		 * already removed.
		 * However, we need to check stuff, which is not the same for all object tiles. (e.g. being on water or not) */

		/* If a object is removed, it leaves either bare land or water. */
		if ((flags & DC_NO_WATER) && HasTileWaterClass(tile) && IsTileOnWater(tile)) {
			return_cmd_error(STR_ERROR_CAN_T_BUILD_ON_WATER);
		}
	} else {
		cost.AddCost(_tile_type_procs[GetTileType(tile)]->clear_tile_proc(tile, flags));
	}

	if (flags & DC_EXEC) {
		if (c != nullptr) c->clear_limit -= 1 << 16;
		if (do_clear) DoClearSquare(tile);
	}
	return cost;
}

/**
 * Clear a big piece of landscape
 * @param flags of operation to conduct
 * @param tile end tile of area dragging
 * @param start_tile start tile of area dragging
 * @param diagonal Whether to use the Orthogonal (false) or Diagonal (true) iterator.
 * @return the cost of this operation or an error
 */
std::tuple<CommandCost, Money> CmdClearArea(DoCommandFlag flags, TileIndex tile, TileIndex start_tile, bool diagonal)
{
	if (start_tile >= Map::Size()) return { CMD_ERROR, 0 };

	Money money = GetAvailableMoneyForCommand();
	CommandCost cost(EXPENSES_CONSTRUCTION);
	CommandCost last_error = CMD_ERROR;
	bool had_success = false;

	const Company *c = (flags & (DC_AUTO | DC_BANKRUPT)) ? nullptr : Company::GetIfValid(_current_company);
	int limit = (c == nullptr ? INT32_MAX : GB(c->clear_limit, 16, 16));

	if (tile != start_tile) flags |= DC_FORCE_CLEAR_TILE;

	std::unique_ptr<TileIterator> iter = TileIterator::Create(tile, start_tile, diagonal);
	for (; *iter != INVALID_TILE; ++(*iter)) {
		TileIndex t = *iter;
		CommandCost ret = Command<CMD_LANDSCAPE_CLEAR>::Do(flags & ~DC_EXEC, t);
		if (ret.Failed()) {
			last_error = ret;

			/* We may not clear more tiles. */
			if (c != nullptr && GB(c->clear_limit, 16, 16) < 1) break;
			continue;
		}

		had_success = true;
		if (flags & DC_EXEC) {
			money -= ret.GetCost();
			if (ret.GetCost() > 0 && money < 0) {
				return { cost, ret.GetCost() };
			}
			Command<CMD_LANDSCAPE_CLEAR>::Do(flags, t);

			/* draw explosion animation...
			 * Disable explosions when game is paused. Looks silly and blocks the view. */
			if ((t == tile || t == start_tile) && _pause_mode == PM_UNPAUSED) {
				/* big explosion in two corners, or small explosion for single tiles */
				CreateEffectVehicleAbove(TileX(t) * TILE_SIZE + TILE_SIZE / 2, TileY(t) * TILE_SIZE + TILE_SIZE / 2, 2,
					TileX(tile) == TileX(start_tile) && TileY(tile) == TileY(start_tile) ? EV_EXPLOSION_SMALL : EV_EXPLOSION_LARGE
				);
			}
		} else {
			/* When we're at the clearing limit we better bail (unneed) testing as well. */
			if (ret.GetCost() != 0 && --limit <= 0) break;
		}
		cost.AddCost(ret);
	}

	return { had_success ? cost : last_error, 0 };
}


TileIndex _cur_tileloop_tile;

/**
 * Gradually iterate over all tiles on the map, calling their TileLoopProcs once every 256 ticks.
 */
void RunTileLoop()
{
	PerformanceAccumulator framerate(PFE_GL_LANDSCAPE);

	/* The pseudorandom sequence of tiles is generated using a Galois linear feedback
	 * shift register (LFSR). This allows a deterministic pseudorandom ordering, but
	 * still with minimal state and fast iteration. */

	/* Maximal length LFSR feedback terms, from 12-bit (for 64x64 maps) to 24-bit (for 4096x4096 maps).
	 * Extracted from http://www.ece.cmu.edu/~koopman/lfsr/ */
	static const uint32_t feedbacks[] = {
		0xD8F, 0x1296, 0x2496, 0x4357, 0x8679, 0x1030E, 0x206CD, 0x403FE, 0x807B8, 0x1004B2, 0x2006A8, 0x4004B2, 0x800B87
	};
	static_assert(lengthof(feedbacks) == 2 * MAX_MAP_SIZE_BITS - 2 * MIN_MAP_SIZE_BITS + 1);
	const uint32_t feedback = feedbacks[Map::LogX() + Map::LogY() - 2 * MIN_MAP_SIZE_BITS];

	/* We update every tile every 256 ticks, so divide the map size by 2^8 = 256 */
	uint count = 1 << (Map::LogX() + Map::LogY() - 8);

	TileIndex tile = _cur_tileloop_tile;
	/* The LFSR cannot have a zeroed state. */
	assert(tile != 0);

	/* Manually update tile 0 every 256 ticks - the LFSR never iterates over it itself.  */
	if (TimerGameTick::counter % 256 == 0) {
		_tile_type_procs[GetTileType(0)]->tile_loop_proc(0);
		count--;
	}

	while (count--) {
		_tile_type_procs[GetTileType(tile)]->tile_loop_proc(tile);

		/* Get the next tile in sequence using a Galois LFSR. */
		tile = (tile.base() >> 1) ^ (-(int32_t)(tile.base() & 1) & feedback);
	}

	_cur_tileloop_tile = tile;
}

void InitializeLandscape()
{
	for (uint y = _settings_game.construction.freeform_edges ? 1 : 0; y < Map::MaxY(); y++) {
		for (uint x = _settings_game.construction.freeform_edges ? 1 : 0; x < Map::MaxX(); x++) {
			MakeClear(TileXY(x, y), CLEAR_GRASS, 3);
			SetTileHeight(TileXY(x, y), 0);
			SetTropicZone(TileXY(x, y), TROPICZONE_NORMAL);
			ClearBridgeMiddle(TileXY(x, y));
		}
	}

	for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, Map::MaxY()));
	for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(Map::MaxX(), y));
}

static const byte _genterrain_tbl_1[5] = { 10, 22, 33, 37, 4  };
static const byte _genterrain_tbl_2[5] = {  0,  0,  0,  0, 33 };

static void GenerateTerrain(int type, uint flag)
{
	uint32_t r = Random();

	/* Choose one of the templates from the graphics file. */
	const Sprite *templ = GetSprite((((r >> 24) * _genterrain_tbl_1[type]) >> 8) + _genterrain_tbl_2[type] + SPR_MAPGEN_BEGIN, SpriteType::MapGen);
	if (templ == nullptr) UserError("Map generator sprites could not be loaded");

	/* Chose a random location to apply the template to. */
	uint x = r & Map::MaxX();
	uint y = (r >> Map::LogX()) & Map::MaxY();

	/* Make sure the template is not too close to the upper edges; bottom edges are checked later. */
	uint edge_distance = 1 + (_settings_game.construction.freeform_edges ? 1 : 0);
	if (x <= edge_distance || y <= edge_distance) return;

	DiagDirection direction = (DiagDirection)GB(r, 22, 2);
	uint w = templ->width;
	uint h = templ->height;

	if (DiagDirToAxis(direction) == AXIS_Y) Swap(w, h);

	const byte *p = templ->data;

	if ((flag & 4) != 0) {
		/* This is only executed in secondary/tertiary loops to generate the terrain for arctic and tropic.
		 * It prevents the templates to be applied to certain parts of the map based on the flags, thus
		 * creating regions with different elevations/topography. */
		uint xw = x * Map::SizeY();
		uint yw = y * Map::SizeX();
		uint bias = (Map::SizeX() + Map::SizeY()) * 16;

		switch (flag & 3) {
			default: NOT_REACHED();
			case 0:
				if (xw + yw > Map::Size() - bias) return;
				break;

			case 1:
				if (yw < xw + bias) return;
				break;

			case 2:
				if (xw + yw < Map::Size() + bias) return;
				break;

			case 3:
				if (xw < yw + bias) return;
				break;
		}
	}

	/* Ensure the template does not overflow at the bottom edges of the map; upper edges were checked before. */
	if (x + w >= Map::MaxX()) return;
	if (y + h >= Map::MaxY()) return;

	TileIndex tile = TileXY(x, y);

	/* Get the template and overlay in a particular direction over the map's height from the given
	 * origin point (tile), and update the map's height everywhere where the height from the template
	 * is higher than the height of the map. In other words, this only raises the tile heights. */
	switch (direction) {
		default: NOT_REACHED();
		case DIAGDIR_NE:
			do {
				TileIndex tile_cur = tile;

				for (uint w_cur = w; w_cur != 0; --w_cur) {
					if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
					p++;
					tile_cur++;
				}
				tile += TileDiffXY(0, 1);
			} while (--h != 0);
			break;

		case DIAGDIR_SE:
			do {
				TileIndex tile_cur = tile;

				for (uint h_cur = h; h_cur != 0; --h_cur) {
					if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
					p++;
					tile_cur += TileDiffXY(0, 1);
				}
				tile += TileDiffXY(1, 0);
			} while (--w != 0);
			break;

		case DIAGDIR_SW:
			tile += TileDiffXY(w - 1, 0);
			do {
				TileIndex tile_cur = tile;

				for (uint w_cur = w; w_cur != 0; --w_cur) {
					if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
					p++;
					tile_cur--;
				}
				tile += TileDiffXY(0, 1);
			} while (--h != 0);
			break;

		case DIAGDIR_NW:
			tile += TileDiffXY(0, h - 1);
			do {
				TileIndex tile_cur = tile;

				for (uint h_cur = h; h_cur != 0; --h_cur) {
					if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
					p++;
					tile_cur -= TileDiffXY(0, 1);
				}
				tile += TileDiffXY(1, 0);
			} while (--w != 0);
			break;
	}
}


#include "table/genland.h"

static void CreateDesertOrRainForest(uint desert_tropic_line)
{
	uint update_freq = Map::Size() / 4;
	const TileIndexDiffC *data;

	for (TileIndex tile = 0; tile != Map::Size(); ++tile) {
		if ((tile.base() % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);

		if (!IsValidTile(tile)) continue;

		for (data = _make_desert_or_rainforest_data;
				data != endof(_make_desert_or_rainforest_data); ++data) {
			TileIndex t = AddTileIndexDiffCWrap(tile, *data);
			if (t != INVALID_TILE && (TileHeight(t) >= desert_tropic_line || IsTileType(t, MP_WATER))) break;
		}
		if (data == endof(_make_desert_or_rainforest_data)) {
			SetTropicZone(tile, TROPICZONE_DESERT);
		}
	}

	for (uint i = 0; i != 256; i++) {
		if ((i % 64) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);

		RunTileLoop();
	}

	for (TileIndex tile = 0; tile != Map::Size(); ++tile) {
		if ((tile.base() % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);

		if (!IsValidTile(tile)) continue;

		for (data = _make_desert_or_rainforest_data;
				data != endof(_make_desert_or_rainforest_data); ++data) {
			TileIndex t = AddTileIndexDiffCWrap(tile, *data);
			if (t != INVALID_TILE && IsTileType(t, MP_CLEAR) && IsClearGround(t, CLEAR_DESERT)) break;
		}
		if (data == endof(_make_desert_or_rainforest_data)) {
			SetTropicZone(tile, TROPICZONE_RAINFOREST);
		}
	}
}

/**
 * Find the spring of a river.
 * @param tile The tile to consider for being the spring.
 * @return True iff it is suitable as a spring.
 */
static bool FindSpring(TileIndex tile, void *)
{
	int referenceHeight;
	if (!IsTileFlat(tile, &referenceHeight) || IsWaterTile(tile)) return false;

	/* In the tropics rivers start in the rainforest. */
	if (_settings_game.game_creation.landscape == LT_TROPIC && GetTropicZone(tile) != TROPICZONE_RAINFOREST) return false;

	/* Are there enough higher tiles to warrant a 'spring'? */
	uint num = 0;
	for (int dx = -1; dx <= 1; dx++) {
		for (int dy = -1; dy <= 1; dy++) {
			TileIndex t = TileAddWrap(tile, dx, dy);
			if (t != INVALID_TILE && GetTileMaxZ(t) > referenceHeight) num++;
		}
	}

	if (num < 4) return false;

	/* Are we near the top of a hill? */
	for (int dx = -16; dx <= 16; dx++) {
		for (int dy = -16; dy <= 16; dy++) {
			TileIndex t = TileAddWrap(tile, dx, dy);
			if (t != INVALID_TILE && GetTileMaxZ(t) > referenceHeight + 2) return false;
		}
	}

	return true;
}

/**
 * Make a connected lake; fill all tiles in the circular tile search that are connected.
 * @param tile The tile to consider for lake making.
 * @param user_data The height of the lake.
 * @return Always false, so it continues searching.
 */
static bool MakeLake(TileIndex tile, void *user_data)
{
	uint height = *(uint*)user_data;
	if (!IsValidTile(tile) || TileHeight(tile) != height || !IsTileFlat(tile)) return false;
	if (_settings_game.game_creation.landscape == LT_TROPIC && GetTropicZone(tile) == TROPICZONE_DESERT) return false;

	for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
		TileIndex t2 = tile + TileOffsByDiagDir(d);
		if (IsWaterTile(t2)) {
			MakeRiverAndModifyDesertZoneAround(tile);
			return false;
		}
	}

	return false;
}

/**
 * Widen a river by expanding into adjacent tiles via circular tile search.
 * @param tile The tile to try expanding the river into.
 * @param data The tile to try surrounding the river around.
 * @return Always false, so it continues searching.
 */
static bool RiverMakeWider(TileIndex tile, void *data)
{
	/* Don't expand into void tiles. */
	if (!IsValidTile(tile)) return false;

	/* If the tile is already sea or river, don't expand. */
	if (IsWaterTile(tile)) return false;

	/* If the tile is at height 0 after terraforming but the ocean hasn't flooded yet, don't build river. */
	if (GetTileMaxZ(tile) == 0) return false;

	TileIndex origin_tile = *(TileIndex *)data;
	Slope cur_slope = GetTileSlope(tile);
	Slope desired_slope = GetTileSlope(origin_tile); // Initialize matching the origin tile as a shortcut if no terraforming is needed.

	/* Never flow uphill. */
	if (GetTileMaxZ(tile) > GetTileMaxZ(origin_tile)) return false;

	/* If the new tile can't hold a river tile, try terraforming. */
	if (!IsTileFlat(tile) && !IsInclinedSlope(cur_slope)) {
		/* Don't try to terraform steep slopes. */
		if (IsSteepSlope(cur_slope)) return false;

		bool flat_river_found = false;
		bool sloped_river_found = false;

		/* There are two common possibilities:
		 * 1. River flat, adjacent tile has one corner lowered.
		 * 2. River descending, adjacent tile has either one or three corners raised.
		 */

		/* First, determine the desired slope based on adjacent river tiles. This doesn't necessarily match the origin tile for the CircularTileSearch. */
		for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
			TileIndex other_tile = TileAddByDiagDir(tile, d);
			Slope other_slope = GetTileSlope(other_tile);

			/* Only consider river tiles. */
			if (IsWaterTile(other_tile) && IsRiver(other_tile)) {
				/* If the adjacent river tile flows downhill, we need to check where we are relative to the slope. */
				if (IsInclinedSlope(other_slope) && GetTileMaxZ(tile) == GetTileMaxZ(other_tile)) {
					/* Check for a parallel slope. If we don't find one, we're above or below the slope instead. */
					if (GetInclinedSlopeDirection(other_slope) == ChangeDiagDir(d, DIAGDIRDIFF_90RIGHT) ||
							GetInclinedSlopeDirection(other_slope) == ChangeDiagDir(d, DIAGDIRDIFF_90LEFT)) {
						desired_slope = other_slope;
						sloped_river_found = true;
						break;
					}
				}
				/* If we find an adjacent river tile, remember it. We'll terraform to match it later if we don't find a slope. */
				if (IsTileFlat(other_tile)) flat_river_found = true;
			}
		}
		/* We didn't find either an inclined or flat river, so we're climbing the wrong slope. Bail out. */
		if (!sloped_river_found && !flat_river_found) return false;

		/* We didn't find an inclined river, but there is a flat river. */
		if (!sloped_river_found && flat_river_found) desired_slope = SLOPE_FLAT;

		/* Now that we know the desired slope, it's time to terraform! */

		/* If the river is flat and the adjacent tile has one corner lowered, we want to raise it. */
		if (desired_slope == SLOPE_FLAT && IsSlopeWithThreeCornersRaised(cur_slope)) {
			/* Make sure we're not affecting an existing river slope tile. */
			for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
				TileIndex other_tile = TileAddByDiagDir(tile, d);
				if (IsInclinedSlope(GetTileSlope(other_tile)) && IsWaterTile(other_tile)) return false;
			}
			Command<CMD_TERRAFORM_LAND>::Do(DC_EXEC | DC_AUTO, tile, ComplementSlope(cur_slope), true);

		/* If the river is descending and the adjacent tile has either one or three corners raised, we want to make it match the slope. */
		} else if (IsInclinedSlope(desired_slope)) {
			/* Don't break existing flat river tiles by terraforming under them. */
			DiagDirection river_direction = ReverseDiagDir(GetInclinedSlopeDirection(desired_slope));

			for (DiagDirDiff d = DIAGDIRDIFF_BEGIN; d < DIAGDIRDIFF_END; d++) {
				/* We don't care about downstream or upstream tiles, just the riverbanks. */
				if (d == DIAGDIRDIFF_SAME || d == DIAGDIRDIFF_REVERSE) continue;

				TileIndex other_tile = (TileAddByDiagDir(tile, ChangeDiagDir(river_direction, d)));
				if (IsWaterTile(other_tile) && IsRiver(other_tile) && IsTileFlat(other_tile)) return false;
			}

			/* Get the corners which are different between the current and desired slope. */
			Slope to_change = cur_slope ^ desired_slope;

			/* Lower unwanted corners first. If only one corner is raised, no corners need lowering. */
			if (!IsSlopeWithOneCornerRaised(cur_slope)) {
				to_change = to_change & ComplementSlope(desired_slope);
				Command<CMD_TERRAFORM_LAND>::Do(DC_EXEC | DC_AUTO, tile, to_change, false);
			}

			/* Now check the match and raise any corners needed. */
			cur_slope = GetTileSlope(tile);
			if (cur_slope != desired_slope && IsSlopeWithOneCornerRaised(cur_slope)) {
				to_change = cur_slope ^ desired_slope;
				Command<CMD_TERRAFORM_LAND>::Do(DC_EXEC | DC_AUTO, tile, to_change, true);
			}
		}
		/* Update cur_slope after possibly terraforming. */
		cur_slope = GetTileSlope(tile);
	}

	/* Sloped rivers need water both upstream and downstream. */
	if (IsInclinedSlope(cur_slope)) {
		DiagDirection slope_direction = GetInclinedSlopeDirection(cur_slope);

		TileIndex upstream_tile = TileAddByDiagDir(tile, slope_direction);
		TileIndex downstream_tile = TileAddByDiagDir(tile, ReverseDiagDir(slope_direction));

		/* Don't look outside the map. */
		if (!IsValidTile(upstream_tile) || !IsValidTile(downstream_tile)) return false;

		/* Downstream might be new ocean created by our terraforming, and it hasn't flooded yet. */
		bool downstream_is_ocean = GetTileZ(downstream_tile) == 0 && (GetTileSlope(downstream_tile) == SLOPE_FLAT || IsSlopeWithOneCornerRaised(GetTileSlope(downstream_tile)));

		/* If downstream is dry, flat, and not ocean, try making it a river tile. */
		if (!IsWaterTile(downstream_tile) && !downstream_is_ocean) {
			/* If the tile upstream isn't flat, don't bother. */
			if (GetTileSlope(downstream_tile) != SLOPE_FLAT) return false;

			MakeRiverAndModifyDesertZoneAround(downstream_tile);
		}

		/* If upstream is dry and flat, try making it a river tile. */
		if (!IsWaterTile(upstream_tile)) {
			/* If the tile upstream isn't flat, don't bother. */
			if (GetTileSlope(upstream_tile) != SLOPE_FLAT) return false;

			MakeRiverAndModifyDesertZoneAround(upstream_tile);
		}
	}

	/* If the tile slope matches the desired slope, add a river tile. */
	if (cur_slope == desired_slope) {
		MakeRiverAndModifyDesertZoneAround(tile);
	}

	/* Always return false to keep searching. */
	return false;
}

/**
 * Check whether a river at begin could (logically) flow down to end.
 * @param begin The origin of the flow.
 * @param end The destination of the flow.
 * @return True iff the water can be flowing down.
 */
static bool FlowsDown(TileIndex begin, TileIndex end)
{
	assert(DistanceManhattan(begin, end) == 1);

	int heightBegin;
	int heightEnd;
	Slope slopeBegin = GetTileSlope(begin, &heightBegin);
	Slope slopeEnd   = GetTileSlope(end, &heightEnd);

	return heightEnd <= heightBegin &&
			/* Slope either is inclined or flat; rivers don't support other slopes. */
			(slopeEnd == SLOPE_FLAT || IsInclinedSlope(slopeEnd)) &&
			/* Slope continues, then it must be lower... or either end must be flat. */
			((slopeEnd == slopeBegin && heightEnd < heightBegin) || slopeEnd == SLOPE_FLAT || slopeBegin == SLOPE_FLAT);
}

/** Parameters for river generation to pass as AyStar user data. */
struct River_UserData {
	TileIndex spring; ///< The current spring during river generation.
	bool main_river;  ///< Whether the current river is a big river that others flow into.
};

/* AyStar callback for checking whether we reached our destination. */
static int32_t River_EndNodeCheck(const AyStar *aystar, const OpenListNode *current)
{
	return current->path.node.tile == *(TileIndex*)aystar->user_target ? AYSTAR_FOUND_END_NODE : AYSTAR_DONE;
}

/* AyStar callback for getting the cost of the current node. */
static int32_t River_CalculateG(AyStar *, AyStarNode *, OpenListNode *)
{
	return 1 + RandomRange(_settings_game.game_creation.river_route_random);
}

/* AyStar callback for getting the estimated cost to the destination. */
static int32_t River_CalculateH(AyStar *aystar, AyStarNode *current, OpenListNode *)
{
	return DistanceManhattan(*(TileIndex*)aystar->user_target, current->tile);
}

/* AyStar callback for getting the neighbouring nodes of the given node. */
static void River_GetNeighbours(AyStar *aystar, OpenListNode *current)
{
	TileIndex tile = current->path.node.tile;

	aystar->num_neighbours = 0;
	for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
		TileIndex t2 = tile + TileOffsByDiagDir(d);
		if (IsValidTile(t2) && FlowsDown(tile, t2)) {
			aystar->neighbours[aystar->num_neighbours].tile = t2;
			aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
			aystar->num_neighbours++;
		}
	}
}

/* AyStar callback when an route has been found. */
static void River_FoundEndNode(AyStar *aystar, OpenListNode *current)
{
	River_UserData *data = (River_UserData *)aystar->user_data;

	/* First, build the river without worrying about its width. */
	uint cur_pos = 0;
	for (PathNode *path = &current->path; path != nullptr; path = path->parent, cur_pos++) {
		TileIndex tile = path->node.tile;
		if (!IsWaterTile(tile)) {
			MakeRiverAndModifyDesertZoneAround(tile);
		}
	}

	/* If the river is a main river, go back along the path to widen it.
	 * Don't make wide rivers if we're using the original landscape generator.
	 */
	if (_settings_game.game_creation.land_generator != LG_ORIGINAL && data->main_river) {
		const uint long_river_length = _settings_game.game_creation.min_river_length * 4;
		uint current_river_length;
		uint radius;

		cur_pos = 0;
		for (PathNode *path = &current->path; path != nullptr; path = path->parent, cur_pos++) {
			TileIndex tile = path->node.tile;

			/* Check if we should widen river depending on how far we are away from the source. */
			current_river_length = DistanceManhattan(data->spring, tile);
			radius = std::min(3u, (current_river_length / (long_river_length / 3u)) + 1u);

			if (radius > 1) CircularTileSearch(&tile, radius, RiverMakeWider, (void *)&path->node.tile);
		}
	}
}

static const uint RIVER_HASH_SIZE = 8; ///< The number of bits the hash for river finding should have.

/**
 * Simple hash function for river tiles to be used by AyStar.
 * @param tile The tile to hash.
 * @return The hash for the tile.
 */
static uint River_Hash(TileIndex tile, Trackdir)
{
	return GB(TileHash(TileX(tile), TileY(tile)), 0, RIVER_HASH_SIZE);
}

/**
 * Actually build the river between the begin and end tiles using AyStar.
 * @param begin The begin of the river.
 * @param end The end of the river.
 * @param spring The springing point of the river.
 * @param main_river Whether the current river is a big river that others flow into.
 */
static void BuildRiver(TileIndex begin, TileIndex end, TileIndex spring, bool main_river)
{
	River_UserData user_data = { spring, main_river };

	AyStar finder = {};
	finder.CalculateG = River_CalculateG;
	finder.CalculateH = River_CalculateH;
	finder.GetNeighbours = River_GetNeighbours;
	finder.EndNodeCheck = River_EndNodeCheck;
	finder.FoundEndNode = River_FoundEndNode;
	finder.user_target = &end;
	finder.user_data = &user_data;

	finder.Init(River_Hash, 1 << RIVER_HASH_SIZE);

	AyStarNode start;
	start.tile = begin;
	start.direction = INVALID_TRACKDIR;
	finder.AddStartNode(&start, 0);
	finder.Main();
	finder.Free();
}

/**
 * Try to flow the river down from a given begin.
 * @param spring The springing point of the river.
 * @param begin  The begin point we are looking from; somewhere down hill from the spring.
 * @param min_river_length The minimum length for the river.
 * @return First element: True iff a river could/has been built, otherwise false; second element: River ends at sea.
 */
static std::tuple<bool, bool> FlowRiver(TileIndex spring, TileIndex begin, uint min_river_length)
{
#	define SET_MARK(x) marks.insert(x)
#	define IS_MARKED(x) (marks.find(x) != marks.end())

	uint height = TileHeight(begin);

	if (IsWaterTile(begin)) {
		return { DistanceManhattan(spring, begin) > min_river_length, GetTileZ(begin) == 0 };
	}

	std::set<TileIndex> marks;
	SET_MARK(begin);

	/* Breadth first search for the closest tile we can flow down to. */
	std::list<TileIndex> queue;
	queue.push_back(begin);

	bool found = false;
	uint count = 0; // Number of tiles considered; to be used for lake location guessing.
	TileIndex end;
	do {
		end = queue.front();
		queue.pop_front();

		uint height2 = TileHeight(end);
		if (IsTileFlat(end) && (height2 < height || (height2 == height && IsWaterTile(end)))) {
			found = true;
			break;
		}

		for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
			TileIndex t2 = end + TileOffsByDiagDir(d);
			if (IsValidTile(t2) && !IS_MARKED(t2) && FlowsDown(end, t2)) {
				SET_MARK(t2);
				count++;
				queue.push_back(t2);
			}
		}
	} while (!queue.empty());

	bool main_river = false;
	if (found) {
		/* Flow further down hill. */
		std::tie(found, main_river) = FlowRiver(spring, end, min_river_length);
	} else if (count > 32) {
		/* Maybe we can make a lake. Find the Nth of the considered tiles. */
		std::set<TileIndex>::const_iterator cit = marks.cbegin();
		std::advance(cit, RandomRange(count - 1));
		TileIndex lakeCenter = *cit;

		if (IsValidTile(lakeCenter) &&
				/* A river, or lake, can only be built on flat slopes. */
				IsTileFlat(lakeCenter) &&
				/* We want the lake to be built at the height of the river. */
				TileHeight(begin) == TileHeight(lakeCenter) &&
				/* We don't want the lake at the entry of the valley. */
				lakeCenter != begin &&
				/* We don't want lakes in the desert. */
				(_settings_game.game_creation.landscape != LT_TROPIC || GetTropicZone(lakeCenter) != TROPICZONE_DESERT) &&
				/* We only want a lake if the river is long enough. */
				DistanceManhattan(spring, lakeCenter) > min_river_length) {
			end = lakeCenter;
			MakeRiverAndModifyDesertZoneAround(lakeCenter);
			uint range = RandomRange(8) + 3;
			CircularTileSearch(&lakeCenter, range, MakeLake, &height);
			/* Call the search a second time so artefacts from going circular in one direction get (mostly) hidden. */
			lakeCenter = end;
			CircularTileSearch(&lakeCenter, range, MakeLake, &height);
			found = true;
		}
	}

	marks.clear();
	if (found) BuildRiver(begin, end, spring, main_river);
	return { found, main_river };
}

/**
 * Actually (try to) create some rivers.
 */
static void CreateRivers()
{
	int amount = _settings_game.game_creation.amount_of_rivers;
	if (amount == 0) return;

	uint wells = Map::ScaleBySize(4 << _settings_game.game_creation.amount_of_rivers);
	const uint num_short_rivers = wells - std::max(1u, wells / 10);
	SetGeneratingWorldProgress(GWP_RIVER, wells + 256 / 64); // Include the tile loop calls below.

	/* Try to create long rivers. */
	for (; wells > num_short_rivers; wells--) {
		IncreaseGeneratingWorldProgress(GWP_RIVER);
		for (int tries = 0; tries < 512; tries++) {
			TileIndex t = RandomTile();
			if (!CircularTileSearch(&t, 8, FindSpring, nullptr)) continue;
			if (std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length * 4))) break;
		}
	}

	/* Try to create short rivers. */
	for (; wells != 0; wells--) {
		IncreaseGeneratingWorldProgress(GWP_RIVER);
		for (int tries = 0; tries < 128; tries++) {
			TileIndex t = RandomTile();
			if (!CircularTileSearch(&t, 8, FindSpring, nullptr)) continue;
			if (std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length))) break;
		}
	}

	/* Widening rivers may have left some tiles requiring to be watered. */
	ConvertGroundTilesIntoWaterTiles();

	/* Run tile loop to update the ground density. */
	for (uint i = 0; i != 256; i++) {
		if (i % 64 == 0) IncreaseGeneratingWorldProgress(GWP_RIVER);
		RunTileLoop();
	}
}

/**
 * Calculate what height would be needed to cover N% of the landmass.
 *
 * The function allows both snow and desert/tropic line to be calculated. It
 * tries to find the closests height which covers N% of the landmass; it can
 * be below or above it.
 *
 * Tropic has a mechanism where water and tropic tiles in mountains grow
 * inside the desert. To better approximate the requested coverage, this is
 * taken into account via an edge histogram, which tells how many neighbouring
 * tiles are lower than the tiles of that height. The multiplier indicates how
 * severe this has to be taken into account.
 *
 * @param coverage A value between 0 and 100 indicating a percentage of landmass that should be covered.
 * @param edge_multiplier How much effect neighbouring tiles that are of a lower height level have on the score.
 * @return The estimated best height to use to cover N% of the landmass.
 */
static uint CalculateCoverageLine(uint coverage, uint edge_multiplier)
{
	const DiagDirection neighbour_dir[] = {
		DIAGDIR_NE,
		DIAGDIR_SE,
		DIAGDIR_SW,
		DIAGDIR_NW,
	};

	/* Histogram of how many tiles per height level exist. */
	std::array<int, MAX_TILE_HEIGHT + 1> histogram = {};
	/* Histogram of how many neighbour tiles are lower than the tiles of the height level. */
	std::array<int, MAX_TILE_HEIGHT + 1> edge_histogram = {};

	/* Build a histogram of the map height. */
	for (TileIndex tile = 0; tile < Map::Size(); tile++) {
		uint h = TileHeight(tile);
		histogram[h]++;

		if (edge_multiplier != 0) {
			/* Check if any of our neighbours is below us. */
			for (auto dir : neighbour_dir) {
				TileIndex neighbour_tile = AddTileIndexDiffCWrap(tile, TileIndexDiffCByDiagDir(dir));
				if (IsValidTile(neighbour_tile) && TileHeight(neighbour_tile) < h) {
					edge_histogram[h]++;
				}
			}
		}
	}

	/* The amount of land we have is the map size minus the first (sea) layer. */
	uint land_tiles = Map::Size() - histogram[0];
	int best_score = land_tiles;

	/* Our goal is the coverage amount of the land-mass. */
	int goal_tiles = land_tiles * coverage / 100;

	/* We scan from top to bottom. */
	uint h = MAX_TILE_HEIGHT;
	uint best_h = h;

	int current_tiles = 0;
	for (; h > 0; h--) {
		current_tiles += histogram[h];
		int current_score = goal_tiles - current_tiles;

		/* Tropic grows from water and mountains into the desert. This is a
		 * great visual, but it also means we* need to take into account how
		 * much less desert tiles are being created if we are on this
		 * height-level. We estimate this based on how many neighbouring
		 * tiles are below us for a given length, assuming that is where
		 * tropic is growing from.
		 */
		if (edge_multiplier != 0 && h > 1) {
			/* From water tropic tiles grow for a few tiles land inward. */
			current_score -= edge_histogram[1] * edge_multiplier;
			/* Tropic tiles grow into the desert for a few tiles. */
			current_score -= edge_histogram[h] * edge_multiplier;
		}

		if (std::abs(current_score) < std::abs(best_score)) {
			best_score = current_score;
			best_h = h;
		}

		/* Always scan all height-levels, as h == 1 might give a better
		 * score than any before. This is true for example with 0% desert
		 * coverage. */
	}

	return best_h;
}

/**
 * Calculate the line from which snow begins.
 */
static void CalculateSnowLine()
{
	/* We do not have snow sprites on coastal tiles, so never allow "1" as height. */
	_settings_game.game_creation.snow_line_height = std::max(CalculateCoverageLine(_settings_game.game_creation.snow_coverage, 0), 2u);
}

/**
 * Calculate the line (in height) between desert and tropic.
 * @return The height of the line between desert and tropic.
 */
static uint8_t CalculateDesertLine()
{
	/* CalculateCoverageLine() runs from top to bottom, so we need to invert the coverage. */
	return CalculateCoverageLine(100 - _settings_game.game_creation.desert_coverage, 4);
}

bool GenerateLandscape(byte mode)
{
	/** Number of steps of landscape generation */
	enum GenLandscapeSteps {
		GLS_HEIGHTMAP    =  3, ///< Loading a heightmap
		GLS_TERRAGENESIS =  5, ///< Terragenesis generator
		GLS_ORIGINAL     =  2, ///< Original generator
		GLS_TROPIC       = 12, ///< Extra steps needed for tropic landscape
		GLS_OTHER        =  0, ///< Extra steps for other landscapes
	};
	uint steps = (_settings_game.game_creation.landscape == LT_TROPIC) ? GLS_TROPIC : GLS_OTHER;

	if (mode == GWM_HEIGHTMAP) {
		SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_HEIGHTMAP);
		if (!LoadHeightmap(_file_to_saveload.detail_ftype, _file_to_saveload.name.c_str())) {
			return false;
		}
		IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
	} else if (_settings_game.game_creation.land_generator == LG_TERRAGENESIS) {
		SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_TERRAGENESIS);
		GenerateTerrainPerlin();
	} else {
		SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_ORIGINAL);
		if (_settings_game.construction.freeform_edges) {
			for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, 0));
			for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(0, y));
		}
		switch (_settings_game.game_creation.landscape) {
			case LT_ARCTIC: {
				uint32_t r = Random();

				for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 950); i != 0; --i) {
					GenerateTerrain(2, 0);
				}

				uint flag = GB(r, 7, 2) | 4;
				for (uint i = Map::ScaleBySize(GB(r, 9, 7) + 450); i != 0; --i) {
					GenerateTerrain(4, flag);
				}
				break;
			}

			case LT_TROPIC: {
				uint32_t r = Random();

				for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 170); i != 0; --i) {
					GenerateTerrain(0, 0);
				}

				uint flag = GB(r, 7, 2) | 4;
				for (uint i = Map::ScaleBySize(GB(r, 9, 8) + 1700); i != 0; --i) {
					GenerateTerrain(0, flag);
				}

				flag ^= 2;

				for (uint i = Map::ScaleBySize(GB(r, 17, 7) + 410); i != 0; --i) {
					GenerateTerrain(3, flag);
				}
				break;
			}

			default: {
				uint32_t r = Random();

				assert(_settings_game.difficulty.quantity_sea_lakes != CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY);
				uint i = Map::ScaleBySize(GB(r, 0, 7) + (3 - _settings_game.difficulty.quantity_sea_lakes) * 256 + 100);
				for (; i != 0; --i) {
					/* Make sure we do not overflow. */
					GenerateTerrain(Clamp(_settings_game.difficulty.terrain_type, 0, 3), 0);
				}
				break;
			}
		}
	}

	/* Do not call IncreaseGeneratingWorldProgress() before FixSlopes(),
	 * it allows screen redraw. Drawing of broken slopes crashes the game */
	FixSlopes();
	MarkWholeScreenDirty();
	IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);

	ConvertGroundTilesIntoWaterTiles();
	MarkWholeScreenDirty();
	IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);

	switch (_settings_game.game_creation.landscape) {
		case LT_ARCTIC:
			CalculateSnowLine();
			break;

		case LT_TROPIC: {
			uint desert_tropic_line = CalculateDesertLine();
			CreateDesertOrRainForest(desert_tropic_line);
			break;
		}

		default:
			break;
	}

	CreateRivers();
	return true;
}

void OnTick_Town();
void OnTick_Trees();
void OnTick_Station();
void OnTick_Industry();

void OnTick_Companies();
void OnTick_LinkGraph();

void CallLandscapeTick()
{
	{
		PerformanceAccumulator framerate(PFE_GL_LANDSCAPE);

		OnTick_Town();
		OnTick_Trees();
		OnTick_Station();
		OnTick_Industry();
	}

	OnTick_Companies();
	OnTick_LinkGraph();
}