Files @ r25670:05e0344a9551
Branch filter:

Location: cpp/openttd-patchpack/source/src/3rdparty/fmt/format-inl.h

rubidium42
Fix a99ac62: fmt's include of cassert breaks our assert logic
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
// Formatting library for C++ - implementation
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.

#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_

/* Do not include cassert as that breaks our own asserts. */
#include <cctype>
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstring>  // std::memmove
#include <cwchar>
#include <exception>

#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
#  include <locale>
#endif

#ifdef _WIN32
#  include <io.h>  // _isatty
#endif

#include "format.h"

// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; }
inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; }

FMT_BEGIN_NAMESPACE
namespace detail {

FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
  // Use unchecked std::fprintf to avoid triggering another assertion when
  // writing to stderr fails
  std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
  // Chosen instead of std::abort to satisfy Clang in CUDA mode during device
  // code pass.
  std::terminate();
}

#ifndef _MSC_VER
#  define FMT_SNPRINTF snprintf
#else  // _MSC_VER
inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
  va_list args;
  va_start(args, format);
  int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
  va_end(args);
  return result;
}
#  define FMT_SNPRINTF fmt_snprintf
#endif  // _MSC_VER

// A portable thread-safe version of strerror.
// Sets buffer to point to a string describing the error code.
// This can be either a pointer to a string stored in buffer,
// or a pointer to some static immutable string.
// Returns one of the following values:
//   0      - success
//   ERANGE - buffer is not large enough to store the error message
//   other  - failure
// Buffer should be at least of size 1.
inline int safe_strerror(int error_code, char*& buffer,
                         size_t buffer_size) FMT_NOEXCEPT {
  FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer");

  class dispatcher {
   private:
    int error_code_;
    char*& buffer_;
    size_t buffer_size_;

    // A noop assignment operator to avoid bogus warnings.
    void operator=(const dispatcher&) {}

    // Handle the result of XSI-compliant version of strerror_r.
    int handle(int result) {
      // glibc versions before 2.13 return result in errno.
      return result == -1 ? errno : result;
    }

    // Handle the result of GNU-specific version of strerror_r.
    FMT_MAYBE_UNUSED
    int handle(char* message) {
      // If the buffer is full then the message is probably truncated.
      if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
        return ERANGE;
      buffer_ = message;
      return 0;
    }

    // Handle the case when strerror_r is not available.
    FMT_MAYBE_UNUSED
    int handle(detail::null<>) {
      return fallback(strerror_s(buffer_, buffer_size_, error_code_));
    }

    // Fallback to strerror_s when strerror_r is not available.
    FMT_MAYBE_UNUSED
    int fallback(int result) {
      // If the buffer is full then the message is probably truncated.
      return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE
                                                                : result;
    }

#if !FMT_MSC_VER
    // Fallback to strerror if strerror_r and strerror_s are not available.
    int fallback(detail::null<>) {
      errno = 0;
      buffer_ = strerror(error_code_);
      return errno;
    }
#endif

   public:
    dispatcher(int err_code, char*& buf, size_t buf_size)
        : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}

    int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); }
  };
  return dispatcher(error_code, buffer, buffer_size).run();
}

FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
                                string_view message) FMT_NOEXCEPT {
  // Report error code making sure that the output fits into
  // inline_buffer_size to avoid dynamic memory allocation and potential
  // bad_alloc.
  out.try_resize(0);
  static const char SEP[] = ": ";
  static const char ERROR_STR[] = "error ";
  // Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
  size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
  auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
  if (detail::is_negative(error_code)) {
    abs_value = 0 - abs_value;
    ++error_code_size;
  }
  error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
  auto it = buffer_appender<char>(out);
  if (message.size() <= inline_buffer_size - error_code_size)
    format_to(it, "{}{}", message, SEP);
  format_to(it, "{}{}", ERROR_STR, error_code);
  assert(out.size() <= inline_buffer_size);
}

FMT_FUNC void report_error(format_func func, int error_code,
                           string_view message) FMT_NOEXCEPT {
  memory_buffer full_message;
  func(full_message, error_code, message);
  // Don't use fwrite_fully because the latter may throw.
  (void)std::fwrite(full_message.data(), full_message.size(), 1, stderr);
  std::fputc('\n', stderr);
}

// A wrapper around fwrite that throws on error.
inline void fwrite_fully(const void* ptr, size_t size, size_t count,
                         FILE* stream) {
  size_t written = std::fwrite(ptr, size, count, stream);
  if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
}
}  // namespace detail

#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
namespace detail {

template <typename Locale>
locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
  static_assert(std::is_same<Locale, std::locale>::value, "");
}

template <typename Locale> Locale locale_ref::get() const {
  static_assert(std::is_same<Locale, std::locale>::value, "");
  return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
}

template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref loc) {
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()).grouping();
}
template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
      .thousands_sep();
}
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
      .decimal_point();
}
}  // namespace detail
#else
template <typename Char>
FMT_FUNC std::string detail::grouping_impl(locale_ref) {
  return "\03";
}
template <typename Char> FMT_FUNC Char detail::thousands_sep_impl(locale_ref) {
  return FMT_STATIC_THOUSANDS_SEPARATOR;
}
template <typename Char> FMT_FUNC Char detail::decimal_point_impl(locale_ref) {
  return '.';
}
#endif

FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default;
FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default;

FMT_FUNC void system_error::init(int err_code, string_view format_str,
                                 format_args args) {
  error_code_ = err_code;
  memory_buffer buffer;
  format_system_error(buffer, err_code, vformat(format_str, args));
  std::runtime_error& base = *this;
  base = std::runtime_error(to_string(buffer));
}

namespace detail {

template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) {
  // fallback_uintptr is always stored in little endian.
  int i = static_cast<int>(sizeof(void*)) - 1;
  while (i > 0 && n.value[i] == 0) --i;
  auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
  return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
}

template <typename T>
const typename basic_data<T>::digit_pair basic_data<T>::digits[] = {
    {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
    {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
    {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
    {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
    {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
    {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
    {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
    {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
    {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
    {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
    {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
    {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
    {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
    {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
    {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
    {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
    {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};

template <typename T>
const char basic_data<T>::hex_digits[] = "0123456789abcdef";

#define FMT_POWERS_OF_10(factor)                                             \
  factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
      (factor)*1000000, (factor)*10000000, (factor)*100000000,               \
      (factor)*1000000000

template <typename T>
const uint64_t basic_data<T>::powers_of_10_64[] = {
    1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
    10000000000000000000ULL};

template <typename T>
const uint32_t basic_data<T>::zero_or_powers_of_10_32[] = {0,
                                                           FMT_POWERS_OF_10(1)};
template <typename T>
const uint64_t basic_data<T>::zero_or_powers_of_10_64[] = {
    0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
    10000000000000000000ULL};

template <typename T>
const uint32_t basic_data<T>::zero_or_powers_of_10_32_new[] = {
    0, 0, FMT_POWERS_OF_10(1)};

template <typename T>
const uint64_t basic_data<T>::zero_or_powers_of_10_64_new[] = {
    0, 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
    10000000000000000000ULL};

// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
template <typename T>
const uint64_t basic_data<T>::grisu_pow10_significands[] = {
    0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
    0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
    0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
    0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
    0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
    0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
    0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
    0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
    0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
    0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
    0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
    0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
    0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
    0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
    0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
    0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
    0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
    0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
    0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
    0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
    0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
    0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
    0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
    0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
    0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
    0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
    0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
    0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
    0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
};

// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
template <typename T>
const int16_t basic_data<T>::grisu_pow10_exponents[] = {
    -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
    -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,  -688, -661,
    -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,  -422,  -396, -369,
    -343,  -316,  -289,  -263,  -236,  -210,  -183,  -157,  -130,  -103, -77,
    -50,   -24,   3,     30,    56,    83,    109,   136,   162,   189,  216,
    242,   269,   295,   322,   348,   375,   402,   428,   455,   481,  508,
    534,   561,   588,   614,   641,   667,   694,   720,   747,   774,  800,
    827,   853,   880,   907,   933,   960,   986,   1013,  1039,  1066};

template <typename T>
const divtest_table_entry<uint32_t> basic_data<T>::divtest_table_for_pow5_32[] =
    {{0x00000001, 0xffffffff}, {0xcccccccd, 0x33333333},
     {0xc28f5c29, 0x0a3d70a3}, {0x26e978d5, 0x020c49ba},
     {0x3afb7e91, 0x0068db8b}, {0x0bcbe61d, 0x0014f8b5},
     {0x68c26139, 0x000431bd}, {0xae8d46a5, 0x0000d6bf},
     {0x22e90e21, 0x00002af3}, {0x3a2e9c6d, 0x00000897},
     {0x3ed61f49, 0x000001b7}};

template <typename T>
const divtest_table_entry<uint64_t> basic_data<T>::divtest_table_for_pow5_64[] =
    {{0x0000000000000001, 0xffffffffffffffff},
     {0xcccccccccccccccd, 0x3333333333333333},
     {0x8f5c28f5c28f5c29, 0x0a3d70a3d70a3d70},
     {0x1cac083126e978d5, 0x020c49ba5e353f7c},
     {0xd288ce703afb7e91, 0x0068db8bac710cb2},
     {0x5d4e8fb00bcbe61d, 0x0014f8b588e368f0},
     {0x790fb65668c26139, 0x000431bde82d7b63},
     {0xe5032477ae8d46a5, 0x0000d6bf94d5e57a},
     {0xc767074b22e90e21, 0x00002af31dc46118},
     {0x8e47ce423a2e9c6d, 0x0000089705f4136b},
     {0x4fa7f60d3ed61f49, 0x000001b7cdfd9d7b},
     {0x0fee64690c913975, 0x00000057f5ff85e5},
     {0x3662e0e1cf503eb1, 0x000000119799812d},
     {0xa47a2cf9f6433fbd, 0x0000000384b84d09},
     {0x54186f653140a659, 0x00000000b424dc35},
     {0x7738164770402145, 0x0000000024075f3d},
     {0xe4a4d1417cd9a041, 0x000000000734aca5},
     {0xc75429d9e5c5200d, 0x000000000170ef54},
     {0xc1773b91fac10669, 0x000000000049c977},
     {0x26b172506559ce15, 0x00000000000ec1e4},
     {0xd489e3a9addec2d1, 0x000000000002f394},
     {0x90e860bb892c8d5d, 0x000000000000971d},
     {0x502e79bf1b6f4f79, 0x0000000000001e39},
     {0xdcd618596be30fe5, 0x000000000000060b}};

template <typename T>
const uint64_t basic_data<T>::dragonbox_pow10_significands_64[] = {
    0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f,
    0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb,
    0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28,
    0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb,
    0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a,
    0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810,
    0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
    0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd,
    0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424,
    0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b,
    0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
    0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
    0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
    0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
    0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
    0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
    0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
    0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
    0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
    0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984,
    0xa18f07d736b90be5, 0xc9f2c9cd04674ede, 0xfc6f7c4045812296,
    0x9dc5ada82b70b59d, 0xc5371912364ce305, 0xf684df56c3e01bc6,
    0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20,
    0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
    0x92efd1b8d0cf37be, 0xb7abc627050305ad, 0xe596b7b0c643c719,
    0x8f7e32ce7bea5c6f, 0xb35dbf821ae4f38b, 0xe0352f62a19e306e};

template <typename T>
const uint128_wrapper basic_data<T>::dragonbox_pow10_significands_128[] = {
#if FMT_USE_FULL_CACHE_DRAGONBOX
    {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
    {0x9faacf3df73609b1, 0x77b191618c54e9ad},
    {0xc795830d75038c1d, 0xd59df5b9ef6a2418},
    {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e},
    {0x9becce62836ac577, 0x4ee367f9430aec33},
    {0xc2e801fb244576d5, 0x229c41f793cda740},
    {0xf3a20279ed56d48a, 0x6b43527578c11110},
    {0x9845418c345644d6, 0x830a13896b78aaaa},
    {0xbe5691ef416bd60c, 0x23cc986bc656d554},
    {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9},
    {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa},
    {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54},
    {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69},
    {0x91376c36d99995be, 0x23100809b9c21fa2},
    {0xb58547448ffffb2d, 0xabd40a0c2832a78b},
    {0xe2e69915b3fff9f9, 0x16c90c8f323f516d},
    {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4},
    {0xb1442798f49ffb4a, 0x99cd11cfdf41779d},
    {0xdd95317f31c7fa1d, 0x40405643d711d584},
    {0x8a7d3eef7f1cfc52, 0x482835ea666b2573},
    {0xad1c8eab5ee43b66, 0xda3243650005eed0},
    {0xd863b256369d4a40, 0x90bed43e40076a83},
    {0x873e4f75e2224e68, 0x5a7744a6e804a292},
    {0xa90de3535aaae202, 0x711515d0a205cb37},
    {0xd3515c2831559a83, 0x0d5a5b44ca873e04},
    {0x8412d9991ed58091, 0xe858790afe9486c3},
    {0xa5178fff668ae0b6, 0x626e974dbe39a873},
    {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
    {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a},
    {0xa139029f6a239f72, 0x1c1fffc1ebc44e81},
    {0xc987434744ac874e, 0xa327ffb266b56221},
    {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9},
    {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa},
    {0xc4ce17b399107c22, 0xcb550fb4384d21d4},
    {0xf6019da07f549b2b, 0x7e2a53a146606a49},
    {0x99c102844f94e0fb, 0x2eda7444cbfc426e},
    {0xc0314325637a1939, 0xfa911155fefb5309},
    {0xf03d93eebc589f88, 0x793555ab7eba27cb},
    {0x96267c7535b763b5, 0x4bc1558b2f3458df},
    {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17},
    {0xea9c227723ee8bcb, 0x465e15a979c1cadd},
    {0x92a1958a7675175f, 0x0bfacd89ec191eca},
    {0xb749faed14125d36, 0xcef980ec671f667c},
    {0xe51c79a85916f484, 0x82b7e12780e7401b},
    {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811},
    {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16},
    {0xdfbdcece67006ac9, 0x67a791e093e1d49b},
    {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1},
    {0xaecc49914078536d, 0x58fae9f773886e19},
    {0xda7f5bf590966848, 0xaf39a475506a899f},
    {0x888f99797a5e012d, 0x6d8406c952429604},
    {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84},
    {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65},
    {0x855c3be0a17fcd26, 0x5cf2eea09a550680},
    {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
    {0xd0601d8efc57b08b, 0xf13b94daf124da27},
    {0x823c12795db6ce57, 0x76c53d08d6b70859},
    {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f},
    {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a},
    {0xfe5d54150b090b02, 0xd3f93b35435d7c4d},
    {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0},
    {0xc6b8e9b0709f109a, 0x359ab6419ca1091c},
    {0xf867241c8cc6d4c0, 0xc30163d203c94b63},
    {0x9b407691d7fc44f8, 0x79e0de63425dcf1e},
    {0xc21094364dfb5636, 0x985915fc12f542e5},
    {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e},
    {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43},
    {0xbd8430bd08277231, 0x50c6ff782a838354},
    {0xece53cec4a314ebd, 0xa4f8bf5635246429},
    {0x940f4613ae5ed136, 0x871b7795e136be9a},
    {0xb913179899f68584, 0x28e2557b59846e40},
    {0xe757dd7ec07426e5, 0x331aeada2fe589d0},
    {0x9096ea6f3848984f, 0x3ff0d2c85def7622},
    {0xb4bca50b065abe63, 0x0fed077a756b53aa},
    {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895},
    {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d},
    {0xb080392cc4349dec, 0xbd8d794d96aacfb4},
    {0xdca04777f541c567, 0xecf0d7a0fc5583a1},
    {0x89e42caaf9491b60, 0xf41686c49db57245},
    {0xac5d37d5b79b6239, 0x311c2875c522ced6},
    {0xd77485cb25823ac7, 0x7d633293366b828c},
    {0x86a8d39ef77164bc, 0xae5dff9c02033198},
    {0xa8530886b54dbdeb, 0xd9f57f830283fdfd},
    {0xd267caa862a12d66, 0xd072df63c324fd7c},
    {0x8380dea93da4bc60, 0x4247cb9e59f71e6e},
    {0xa46116538d0deb78, 0x52d9be85f074e609},
    {0xcd795be870516656, 0x67902e276c921f8c},
    {0x806bd9714632dff6, 0x00ba1cd8a3db53b7},
    {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5},
    {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce},
    {0xfad2a4b13d1b5d6c, 0x796b805720085f82},
    {0x9cc3a6eec6311a63, 0xcbe3303674053bb1},
    {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d},
    {0xf4f1b4d515acb93b, 0xee92fb5515482d45},
    {0x991711052d8bf3c5, 0x751bdd152d4d1c4b},
    {0xbf5cd54678eef0b6, 0xd262d45a78a0635e},
    {0xef340a98172aace4, 0x86fb897116c87c35},
    {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1},
    {0xbae0a846d2195712, 0x8974836059cca10a},
    {0xe998d258869facd7, 0x2bd1a438703fc94c},
    {0x91ff83775423cc06, 0x7b6306a34627ddd0},
    {0xb67f6455292cbf08, 0x1a3bc84c17b1d543},
    {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94},
    {0x8e938662882af53e, 0x547eb47b7282ee9d},
    {0xb23867fb2a35b28d, 0xe99e619a4f23aa44},
    {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5},
    {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05},
    {0xae0b158b4738705e, 0x9624ab50b148d446},
    {0xd98ddaee19068c76, 0x3badd624dd9b0958},
    {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7},
    {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d},
    {0xd47487cc8470652b, 0x7647c32000696720},
    {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074},
    {0xa5fb0a17c777cf09, 0xf468107100525891},
    {0xcf79cc9db955c2cc, 0x7182148d4066eeb5},
    {0x81ac1fe293d599bf, 0xc6f14cd848405531},
    {0xa21727db38cb002f, 0xb8ada00e5a506a7d},
    {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d},
    {0xfd442e4688bd304a, 0x908f4a166d1da664},
    {0x9e4a9cec15763e2e, 0x9a598e4e043287ff},
    {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe},
    {0xf7549530e188c128, 0xd12bee59e68ef47d},
    {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf},
    {0xc13a148e3032d6e7, 0xe36a52363c1faf02},
    {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2},
    {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba},
    {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8},
    {0xebdf661791d60f56, 0x111b495b3464ad22},
    {0x936b9fcebb25c995, 0xcab10dd900beec35},
    {0xb84687c269ef3bfb, 0x3d5d514f40eea743},
    {0xe65829b3046b0afa, 0x0cb4a5a3112a5113},
    {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac},
    {0xb3f4e093db73a093, 0x59ed216765690f57},
    {0xe0f218b8d25088b8, 0x306869c13ec3532d},
    {0x8c974f7383725573, 0x1e414218c73a13fc},
    {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
    {0xdbac6c247d62a583, 0xdf45f746b74abf3a},
    {0x894bc396ce5da772, 0x6b8bba8c328eb784},
    {0xab9eb47c81f5114f, 0x066ea92f3f326565},
    {0xd686619ba27255a2, 0xc80a537b0efefebe},
    {0x8613fd0145877585, 0xbd06742ce95f5f37},
    {0xa798fc4196e952e7, 0x2c48113823b73705},
    {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6},
    {0x82ef85133de648c4, 0x9a984d73dbe722fc},
    {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb},
    {0xcc963fee10b7d1b3, 0x318df905079926a9},
    {0xffbbcfe994e5c61f, 0xfdf17746497f7053},
    {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634},
    {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1},
    {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1},
    {0x9c1661a651213e2d, 0x06bea10ca65c084f},
    {0xc31bfa0fe5698db8, 0x486e494fcff30a63},
    {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb},
    {0x986ddb5c6b3a76b7, 0xf89629465a75e01d},
    {0xbe89523386091465, 0xf6bbb397f1135824},
    {0xee2ba6c0678b597f, 0x746aa07ded582e2d},
    {0x94db483840b717ef, 0xa8c2a44eb4571cdd},
    {0xba121a4650e4ddeb, 0x92f34d62616ce414},
    {0xe896a0d7e51e1566, 0x77b020baf9c81d18},
    {0x915e2486ef32cd60, 0x0ace1474dc1d122f},
    {0xb5b5ada8aaff80b8, 0x0d819992132456bb},
    {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a},
    {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
    {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3},
    {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf},
    {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c},
    {0xad4ab7112eb3929d, 0x86c16c98d2c953c7},
    {0xd89d64d57a607744, 0xe871c7bf077ba8b8},
    {0x87625f056c7c4a8b, 0x11471cd764ad4973},
    {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0},
    {0xd389b47879823479, 0x4aff1d108d4ec2c4},
    {0x843610cb4bf160cb, 0xcedf722a585139bb},
    {0xa54394fe1eedb8fe, 0xc2974eb4ee658829},
    {0xce947a3da6a9273e, 0x733d226229feea33},
    {0x811ccc668829b887, 0x0806357d5a3f5260},
    {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8},
    {0xc9bcff6034c13052, 0xfc89b393dd02f0b6},
    {0xfc2c3f3841f17c67, 0xbbac2078d443ace3},
    {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e},
    {0xc5029163f384a931, 0x0a9e795e65d4df12},
    {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6},
    {0x99ea0196163fa42e, 0x504bced1bf8e4e46},
    {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7},
    {0xf07da27a82c37088, 0x5d767327bb4e5a4d},
    {0x964e858c91ba2655, 0x3a6a07f8d510f870},
    {0xbbe226efb628afea, 0x890489f70a55368c},
    {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f},
    {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e},
    {0xb77ada0617e3bbcb, 0x09ce6ebb40173745},
    {0xe55990879ddcaabd, 0xcc420a6a101d0516},
    {0x8f57fa54c2a9eab6, 0x9fa946824a12232e},
    {0xb32df8e9f3546564, 0x47939822dc96abfa},
    {0xdff9772470297ebd, 0x59787e2b93bc56f8},
    {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b},
    {0xaefae51477a06b03, 0xede622920b6b23f2},
    {0xdab99e59958885c4, 0xe95fab368e45ecee},
    {0x88b402f7fd75539b, 0x11dbcb0218ebb415},
    {0xaae103b5fcd2a881, 0xd652bdc29f26a11a},
    {0xd59944a37c0752a2, 0x4be76d3346f04960},
    {0x857fcae62d8493a5, 0x6f70a4400c562ddc},
    {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953},
    {0xd097ad07a71f26b2, 0x7e2000a41346a7a8},
    {0x825ecc24c873782f, 0x8ed400668c0c28c9},
    {0xa2f67f2dfa90563b, 0x728900802f0f32fb},
    {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba},
    {0xfea126b7d78186bc, 0xe2f610c84987bfa9},
    {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca},
    {0xc6ede63fa05d3143, 0x91503d1c79720dbc},
    {0xf8a95fcf88747d94, 0x75a44c6397ce912b},
    {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb},
    {0xc24452da229b021b, 0xfbe85badce996169},
    {0xf2d56790ab41c2a2, 0xfae27299423fb9c4},
    {0x97c560ba6b0919a5, 0xdccd879fc967d41b},
    {0xbdb6b8e905cb600f, 0x5400e987bbc1c921},
    {0xed246723473e3813, 0x290123e9aab23b69},
    {0x9436c0760c86e30b, 0xf9a0b6720aaf6522},
    {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
    {0xe7958cb87392c2c2, 0xb60b1d1230b20e05},
    {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3},
    {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4},
    {0xe2280b6c20dd5232, 0x25c6da63c38de1b1},
    {0x8d590723948a535f, 0x579c487e5a38ad0f},
    {0xb0af48ec79ace837, 0x2d835a9df0c6d852},
    {0xdcdb1b2798182244, 0xf8e431456cf88e66},
    {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900},
    {0xac8b2d36eed2dac5, 0xe272467e3d222f40},
    {0xd7adf884aa879177, 0x5b0ed81dcc6abb10},
    {0x86ccbb52ea94baea, 0x98e947129fc2b4ea},
    {0xa87fea27a539e9a5, 0x3f2398d747b36225},
    {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae},
    {0x83a3eeeef9153e89, 0x1953cf68300424ad},
    {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8},
    {0xcdb02555653131b6, 0x3792f412cb06794e},
    {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1},
    {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5},
    {0xc8de047564d20a8b, 0xf245825a5a445276},
    {0xfb158592be068d2e, 0xeed6e2f0f0d56713},
    {0x9ced737bb6c4183d, 0x55464dd69685606c},
    {0xc428d05aa4751e4c, 0xaa97e14c3c26b887},
    {0xf53304714d9265df, 0xd53dd99f4b3066a9},
    {0x993fe2c6d07b7fab, 0xe546a8038efe402a},
    {0xbf8fdb78849a5f96, 0xde98520472bdd034},
    {0xef73d256a5c0f77c, 0x963e66858f6d4441},
    {0x95a8637627989aad, 0xdde7001379a44aa9},
    {0xbb127c53b17ec159, 0x5560c018580d5d53},
    {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7},
    {0x9226712162ab070d, 0xcab3961304ca70e9},
    {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23},
    {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b},
    {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243},
    {0xb267ed1940f1c61c, 0x55f038b237591ed4},
    {0xdf01e85f912e37a3, 0x6b6c46dec52f6689},
    {0x8b61313bbabce2c6, 0x2323ac4b3b3da016},
    {0xae397d8aa96c1b77, 0xabec975e0a0d081b},
    {0xd9c7dced53c72255, 0x96e7bd358c904a22},
    {0x881cea14545c7575, 0x7e50d64177da2e55},
    {0xaa242499697392d2, 0xdde50bd1d5d0b9ea},
    {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865},
    {0x84ec3c97da624ab4, 0xbd5af13bef0b113f},
    {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f},
    {0xcfb11ead453994ba, 0x67de18eda5814af3},
    {0x81ceb32c4b43fcf4, 0x80eacf948770ced8},
    {0xa2425ff75e14fc31, 0xa1258379a94d028e},
    {0xcad2f7f5359a3b3e, 0x096ee45813a04331},
    {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd},
    {0x9e74d1b791e07e48, 0x775ea264cf55347e},
    {0xc612062576589dda, 0x95364afe032a819e},
    {0xf79687aed3eec551, 0x3a83ddbd83f52205},
    {0x9abe14cd44753b52, 0xc4926a9672793543},
    {0xc16d9a0095928a27, 0x75b7053c0f178294},
    {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
    {0x971da05074da7bee, 0xd3f6fc16ebca5e04},
    {0xbce5086492111aea, 0x88f4bb1ca6bcf585},
    {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6},
    {0x9392ee8e921d5d07, 0x3aff322e62439fd0},
    {0xb877aa3236a4b449, 0x09befeb9fad487c3},
    {0xe69594bec44de15b, 0x4c2ebe687989a9b4},
    {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11},
    {0xb424dc35095cd80f, 0x538484c19ef38c95},
    {0xe12e13424bb40e13, 0x2865a5f206b06fba},
    {0x8cbccc096f5088cb, 0xf93f87b7442e45d4},
    {0xafebff0bcb24aafe, 0xf78f69a51539d749},
    {0xdbe6fecebdedd5be, 0xb573440e5a884d1c},
    {0x89705f4136b4a597, 0x31680a88f8953031},
    {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e},
    {0xd6bf94d5e57a42bc, 0x3d32907604691b4d},
    {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110},
    {0xa7c5ac471b478423, 0x0fcf80dc33721d54},
    {0xd1b71758e219652b, 0xd3c36113404ea4a9},
    {0x83126e978d4fdf3b, 0x645a1cac083126ea},
    {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4},
    {0xcccccccccccccccc, 0xcccccccccccccccd},
    {0x8000000000000000, 0x0000000000000000},
    {0xa000000000000000, 0x0000000000000000},
    {0xc800000000000000, 0x0000000000000000},
    {0xfa00000000000000, 0x0000000000000000},
    {0x9c40000000000000, 0x0000000000000000},
    {0xc350000000000000, 0x0000000000000000},
    {0xf424000000000000, 0x0000000000000000},
    {0x9896800000000000, 0x0000000000000000},
    {0xbebc200000000000, 0x0000000000000000},
    {0xee6b280000000000, 0x0000000000000000},
    {0x9502f90000000000, 0x0000000000000000},
    {0xba43b74000000000, 0x0000000000000000},
    {0xe8d4a51000000000, 0x0000000000000000},
    {0x9184e72a00000000, 0x0000000000000000},
    {0xb5e620f480000000, 0x0000000000000000},
    {0xe35fa931a0000000, 0x0000000000000000},
    {0x8e1bc9bf04000000, 0x0000000000000000},
    {0xb1a2bc2ec5000000, 0x0000000000000000},
    {0xde0b6b3a76400000, 0x0000000000000000},
    {0x8ac7230489e80000, 0x0000000000000000},
    {0xad78ebc5ac620000, 0x0000000000000000},
    {0xd8d726b7177a8000, 0x0000000000000000},
    {0x878678326eac9000, 0x0000000000000000},
    {0xa968163f0a57b400, 0x0000000000000000},
    {0xd3c21bcecceda100, 0x0000000000000000},
    {0x84595161401484a0, 0x0000000000000000},
    {0xa56fa5b99019a5c8, 0x0000000000000000},
    {0xcecb8f27f4200f3a, 0x0000000000000000},
    {0x813f3978f8940984, 0x4000000000000000},
    {0xa18f07d736b90be5, 0x5000000000000000},
    {0xc9f2c9cd04674ede, 0xa400000000000000},
    {0xfc6f7c4045812296, 0x4d00000000000000},
    {0x9dc5ada82b70b59d, 0xf020000000000000},
    {0xc5371912364ce305, 0x6c28000000000000},
    {0xf684df56c3e01bc6, 0xc732000000000000},
    {0x9a130b963a6c115c, 0x3c7f400000000000},
    {0xc097ce7bc90715b3, 0x4b9f100000000000},
    {0xf0bdc21abb48db20, 0x1e86d40000000000},
    {0x96769950b50d88f4, 0x1314448000000000},
    {0xbc143fa4e250eb31, 0x17d955a000000000},
    {0xeb194f8e1ae525fd, 0x5dcfab0800000000},
    {0x92efd1b8d0cf37be, 0x5aa1cae500000000},
    {0xb7abc627050305ad, 0xf14a3d9e40000000},
    {0xe596b7b0c643c719, 0x6d9ccd05d0000000},
    {0x8f7e32ce7bea5c6f, 0xe4820023a2000000},
    {0xb35dbf821ae4f38b, 0xdda2802c8a800000},
    {0xe0352f62a19e306e, 0xd50b2037ad200000},
    {0x8c213d9da502de45, 0x4526f422cc340000},
    {0xaf298d050e4395d6, 0x9670b12b7f410000},
    {0xdaf3f04651d47b4c, 0x3c0cdd765f114000},
    {0x88d8762bf324cd0f, 0xa5880a69fb6ac800},
    {0xab0e93b6efee0053, 0x8eea0d047a457a00},
    {0xd5d238a4abe98068, 0x72a4904598d6d880},
    {0x85a36366eb71f041, 0x47a6da2b7f864750},
    {0xa70c3c40a64e6c51, 0x999090b65f67d924},
    {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d},
    {0x82818f1281ed449f, 0xbff8f10e7a8921a4},
    {0xa321f2d7226895c7, 0xaff72d52192b6a0d},
    {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490},
    {0xfee50b7025c36a08, 0x02f236d04753d5b4},
    {0x9f4f2726179a2245, 0x01d762422c946590},
    {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5},
    {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2},
    {0x9b934c3b330c8577, 0x63cc55f49f88eb2f},
    {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb},
    {0xf316271c7fc3908a, 0x8bef464e3945ef7a},
    {0x97edd871cfda3a56, 0x97758bf0e3cbb5ac},
    {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317},
    {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd},
    {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a},
    {0xb975d6b6ee39e436, 0xb3e2fd538e122b44},
    {0xe7d34c64a9c85d44, 0x60dbbca87196b616},
    {0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd},
    {0xb51d13aea4a488dd, 0x6babab6398bdbe41},
    {0xe264589a4dcdab14, 0xc696963c7eed2dd1},
    {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2},
    {0xb0de65388cc8ada8, 0x3b25a55f43294bcb},
    {0xdd15fe86affad912, 0x49ef0eb713f39ebe},
    {0x8a2dbf142dfcc7ab, 0x6e3569326c784337},
    {0xacb92ed9397bf996, 0x49c2c37f07965404},
    {0xd7e77a8f87daf7fb, 0xdc33745ec97be906},
    {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3},
    {0xa8acd7c0222311bc, 0xc40832ea0d68ce0c},
    {0xd2d80db02aabd62b, 0xf50a3fa490c30190},
    {0x83c7088e1aab65db, 0x792667c6da79e0fa},
    {0xa4b8cab1a1563f52, 0x577001b891185938},
    {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
    {0x80b05e5ac60b6178, 0x544f8158315b05b4},
    {0xa0dc75f1778e39d6, 0x696361ae3db1c721},
    {0xc913936dd571c84c, 0x03bc3a19cd1e38e9},
    {0xfb5878494ace3a5f, 0x04ab48a04065c723},
    {0x9d174b2dcec0e47b, 0x62eb0d64283f9c76},
    {0xc45d1df942711d9a, 0x3ba5d0bd324f8394},
    {0xf5746577930d6500, 0xca8f44ec7ee36479},
    {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb},
    {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e},
    {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e},
    {0x95d04aee3b80ece5, 0xbba1f1d158724a12},
    {0xbb445da9ca61281f, 0x2a8a6e45ae8edc97},
    {0xea1575143cf97226, 0xf52d09d71a3293bd},
    {0x924d692ca61be758, 0x593c2626705f9c56},
    {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c},
    {0xe498f455c38b997a, 0x0b6dfb9c0f956447},
    {0x8edf98b59a373fec, 0x4724bd4189bd5eac},
    {0xb2977ee300c50fe7, 0x58edec91ec2cb657},
    {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed},
    {0x8b865b215899f46c, 0xbd79e0d20082ee74},
    {0xae67f1e9aec07187, 0xecd8590680a3aa11},
    {0xda01ee641a708de9, 0xe80e6f4820cc9495},
    {0x884134fe908658b2, 0x3109058d147fdcdd},
    {0xaa51823e34a7eede, 0xbd4b46f0599fd415},
    {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a},
    {0x850fadc09923329e, 0x03e2cf6bc604ddb0},
    {0xa6539930bf6bff45, 0x84db8346b786151c},
    {0xcfe87f7cef46ff16, 0xe612641865679a63},
    {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e},
    {0xa26da3999aef7749, 0xe3be5e330f38f09d},
    {0xcb090c8001ab551c, 0x5cadf5bfd3072cc5},
    {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6},
    {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa},
    {0xc646d63501a1511d, 0xb281e1fd541501b8},
    {0xf7d88bc24209a565, 0x1f225a7ca91a4226},
    {0x9ae757596946075f, 0x3375788de9b06958},
    {0xc1a12d2fc3978937, 0x0052d6b1641c83ae},
    {0xf209787bb47d6b84, 0xc0678c5dbd23a49a},
    {0x9745eb4d50ce6332, 0xf840b7ba963646e0},
    {0xbd176620a501fbff, 0xb650e5a93bc3d898},
    {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe},
    {0x93ba47c980e98cdf, 0xc66f336c36b10137},
    {0xb8a8d9bbe123f017, 0xb80b0047445d4184},
    {0xe6d3102ad96cec1d, 0xa60dc059157491e5},
    {0x9043ea1ac7e41392, 0x87c89837ad68db2f},
    {0xb454e4a179dd1877, 0x29babe4598c311fb},
    {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a},
    {0x8ce2529e2734bb1d, 0x1899e4a65f58660c},
    {0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f},
    {0xdc21a1171d42645d, 0x76707543f4fa1f73},
    {0x899504ae72497eba, 0x6a06494a791c53a8},
    {0xabfa45da0edbde69, 0x0487db9d17636892},
    {0xd6f8d7509292d603, 0x45a9d2845d3c42b6},
    {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
    {0xa7f26836f282b732, 0x8e6cac7768d7141e},
    {0xd1ef0244af2364ff, 0x3207d795430cd926},
    {0x8335616aed761f1f, 0x7f44e6bd49e807b8},
    {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6},
    {0xcd036837130890a1, 0x36dba887c37a8c0f},
    {0x802221226be55a64, 0xc2494954da2c9789},
    {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c},
    {0xc83553c5c8965d3d, 0x6f92829494e5acc7},
    {0xfa42a8b73abbf48c, 0xcb772339ba1f17f9},
    {0x9c69a97284b578d7, 0xff2a760414536efb},
    {0xc38413cf25e2d70d, 0xfef5138519684aba},
    {0xf46518c2ef5b8cd1, 0x7eb258665fc25d69},
    {0x98bf2f79d5993802, 0xef2f773ffbd97a61},
    {0xbeeefb584aff8603, 0xaafb550ffacfd8fa},
    {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38},
    {0x952ab45cfa97a0b2, 0xdd945a747bf26183},
    {0xba756174393d88df, 0x94f971119aeef9e4},
    {0xe912b9d1478ceb17, 0x7a37cd5601aab85d},
    {0x91abb422ccb812ee, 0xac62e055c10ab33a},
    {0xb616a12b7fe617aa, 0x577b986b314d6009},
    {0xe39c49765fdf9d94, 0xed5a7e85fda0b80b},
    {0x8e41ade9fbebc27d, 0x14588f13be847307},
    {0xb1d219647ae6b31c, 0x596eb2d8ae258fc8},
    {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb},
    {0x8aec23d680043bee, 0x25de7bb9480d5854},
    {0xada72ccc20054ae9, 0xaf561aa79a10ae6a},
    {0xd910f7ff28069da4, 0x1b2ba1518094da04},
    {0x87aa9aff79042286, 0x90fb44d2f05d0842},
    {0xa99541bf57452b28, 0x353a1607ac744a53},
    {0xd3fa922f2d1675f2, 0x42889b8997915ce8},
    {0x847c9b5d7c2e09b7, 0x69956135febada11},
    {0xa59bc234db398c25, 0x43fab9837e699095},
    {0xcf02b2c21207ef2e, 0x94f967e45e03f4bb},
    {0x8161afb94b44f57d, 0x1d1be0eebac278f5},
    {0xa1ba1ba79e1632dc, 0x6462d92a69731732},
    {0xca28a291859bbf93, 0x7d7b8f7503cfdcfe},
    {0xfcb2cb35e702af78, 0x5cda735244c3d43e},
    {0x9defbf01b061adab, 0x3a0888136afa64a7},
    {0xc56baec21c7a1916, 0x088aaa1845b8fdd0},
    {0xf6c69a72a3989f5b, 0x8aad549e57273d45},
    {0x9a3c2087a63f6399, 0x36ac54e2f678864b},
    {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd},
    {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5},
    {0x969eb7c47859e743, 0x9f644ae5a4b1b325},
    {0xbc4665b596706114, 0x873d5d9f0dde1fee},
    {0xeb57ff22fc0c7959, 0xa90cb506d155a7ea},
    {0x9316ff75dd87cbd8, 0x09a7f12442d588f2},
    {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb2f},
    {0xe5d3ef282a242e81, 0x8f1668c8a86da5fa},
    {0x8fa475791a569d10, 0xf96e017d694487bc},
    {0xb38d92d760ec4455, 0x37c981dcc395a9ac},
    {0xe070f78d3927556a, 0x85bbe253f47b1417},
    {0x8c469ab843b89562, 0x93956d7478ccec8e},
    {0xaf58416654a6babb, 0x387ac8d1970027b2},
    {0xdb2e51bfe9d0696a, 0x06997b05fcc0319e},
    {0x88fcf317f22241e2, 0x441fece3bdf81f03},
    {0xab3c2fddeeaad25a, 0xd527e81cad7626c3},
    {0xd60b3bd56a5586f1, 0x8a71e223d8d3b074},
    {0x85c7056562757456, 0xf6872d5667844e49},
    {0xa738c6bebb12d16c, 0xb428f8ac016561db},
    {0xd106f86e69d785c7, 0xe13336d701beba52},
    {0x82a45b450226b39c, 0xecc0024661173473},
    {0xa34d721642b06084, 0x27f002d7f95d0190},
    {0xcc20ce9bd35c78a5, 0x31ec038df7b441f4},
    {0xff290242c83396ce, 0x7e67047175a15271},
    {0x9f79a169bd203e41, 0x0f0062c6e984d386},
    {0xc75809c42c684dd1, 0x52c07b78a3e60868},
    {0xf92e0c3537826145, 0xa7709a56ccdf8a82},
    {0x9bbcc7a142b17ccb, 0x88a66076400bb691},
    {0xc2abf989935ddbfe, 0x6acff893d00ea435},
    {0xf356f7ebf83552fe, 0x0583f6b8c4124d43},
    {0x98165af37b2153de, 0xc3727a337a8b704a},
    {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c},
    {0xeda2ee1c7064130c, 0x1162def06f79df73},
    {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8},
    {0xb9a74a0637ce2ee1, 0x6d953e2bd7173692},
    {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437},
    {0x910ab1d4db9914a0, 0x1d9c9892400a22a2},
    {0xb54d5e4a127f59c8, 0x2503beb6d00cab4b},
    {0xe2a0b5dc971f303a, 0x2e44ae64840fd61d},
    {0x8da471a9de737e24, 0x5ceaecfed289e5d2},
    {0xb10d8e1456105dad, 0x7425a83e872c5f47},
    {0xdd50f1996b947518, 0xd12f124e28f77719},
    {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f},
    {0xace73cbfdc0bfb7b, 0x636cc64d1001550b},
    {0xd8210befd30efa5a, 0x3c47f7e05401aa4e},
    {0x8714a775e3e95c78, 0x65acfaec34810a71},
    {0xa8d9d1535ce3b396, 0x7f1839a741a14d0d},
    {0xd31045a8341ca07c, 0x1ede48111209a050},
    {0x83ea2b892091e44d, 0x934aed0aab460432},
    {0xa4e4b66b68b65d60, 0xf81da84d5617853f},
    {0xce1de40642e3f4b9, 0x36251260ab9d668e},
    {0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019},
    {0xa1075a24e4421730, 0xb24cf65b8612f81f},
    {0xc94930ae1d529cfc, 0xdee033f26797b627},
    {0xfb9b7cd9a4a7443c, 0x169840ef017da3b1},
    {0x9d412e0806e88aa5, 0x8e1f289560ee864e},
    {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2},
    {0xf5b5d7ec8acb58a2, 0xae10af696774b1db},
    {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29},
    {0xbff610b0cc6edd3f, 0x17fd090a58d32af3},
    {0xeff394dcff8a948e, 0xddfc4b4cef07f5b0},
    {0x95f83d0a1fb69cd9, 0x4abdaf101564f98e},
    {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1},
    {0xea53df5fd18d5513, 0x84c86189216dc5ed},
    {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4},
    {0xb7118682dbb66a77, 0x3fbc8c33221dc2a1},
    {0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
    {0x8f05b1163ba6832d, 0x29cb4d87f2a7400e},
    {0xb2c71d5bca9023f8, 0x743e20e9ef511012},
    {0xdf78e4b2bd342cf6, 0x914da9246b255416},
    {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e},
    {0xae9672aba3d0c320, 0xa184ac2473b529b1},
    {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e},
    {0x8865899617fb1871, 0x7e2fa67c7a658892},
    {0xaa7eebfb9df9de8d, 0xddbb901b98feeab7},
    {0xd51ea6fa85785631, 0x552a74227f3ea565},
    {0x8533285c936b35de, 0xd53a88958f87275f},
    {0xa67ff273b8460356, 0x8a892abaf368f137},
    {0xd01fef10a657842c, 0x2d2b7569b0432d85},
    {0x8213f56a67f6b29b, 0x9c3b29620e29fc73},
    {0xa298f2c501f45f42, 0x8349f3ba91b47b8f},
    {0xcb3f2f7642717713, 0x241c70a936219a73},
    {0xfe0efb53d30dd4d7, 0xed238cd383aa0110},
    {0x9ec95d1463e8a506, 0xf4363804324a40aa},
    {0xc67bb4597ce2ce48, 0xb143c6053edcd0d5},
    {0xf81aa16fdc1b81da, 0xdd94b7868e94050a},
    {0x9b10a4e5e9913128, 0xca7cf2b4191c8326},
    {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0},
    {0xf24a01a73cf2dccf, 0xbc633b39673c8cec},
    {0x976e41088617ca01, 0xd5be0503e085d813},
    {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18},
    {0xec9c459d51852ba2, 0xddf8e7d60ed1219e},
    {0x93e1ab8252f33b45, 0xcabb90e5c942b503},
    {0xb8da1662e7b00a17, 0x3d6a751f3b936243},
    {0xe7109bfba19c0c9d, 0x0cc512670a783ad4},
    {0x906a617d450187e2, 0x27fb2b80668b24c5},
    {0xb484f9dc9641e9da, 0xb1f9f660802dedf6},
    {0xe1a63853bbd26451, 0x5e7873f8a0396973},
    {0x8d07e33455637eb2, 0xdb0b487b6423e1e8},
    {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62},
    {0xdc5c5301c56b75f7, 0x7641a140cc7810fb},
    {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d},
    {0xac2820d9623bf429, 0x546345fa9fbdcd44},
    {0xd732290fbacaf133, 0xa97c177947ad4095},
    {0x867f59a9d4bed6c0, 0x49ed8eabcccc485d},
    {0xa81f301449ee8c70, 0x5c68f256bfff5a74},
    {0xd226fc195c6a2f8c, 0x73832eec6fff3111},
    {0x83585d8fd9c25db7, 0xc831fd53c5ff7eab},
    {0xa42e74f3d032f525, 0xba3e7ca8b77f5e55},
    {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb},
    {0x80444b5e7aa7cf85, 0x7980d163cf5b81b3},
    {0xa0555e361951c366, 0xd7e105bcc332621f},
    {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7},
    {0xfa856334878fc150, 0xb14f98f6f0feb951},
    {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3},
    {0xc3b8358109e84f07, 0x0a862f80ec4700c8},
    {0xf4a642e14c6262c8, 0xcd27bb612758c0fa},
    {0x98e7e9cccfbd7dbd, 0x8038d51cb897789c},
    {0xbf21e44003acdd2c, 0xe0470a63e6bd56c3},
    {0xeeea5d5004981478, 0x1858ccfce06cac74},
    {0x95527a5202df0ccb, 0x0f37801e0c43ebc8},
    {0xbaa718e68396cffd, 0xd30560258f54e6ba},
    {0xe950df20247c83fd, 0x47c6b82ef32a2069},
    {0x91d28b7416cdd27e, 0x4cdc331d57fa5441},
    {0xb6472e511c81471d, 0xe0133fe4adf8e952},
    {0xe3d8f9e563a198e5, 0x58180fddd97723a6},
    {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648},
    {0xb201833b35d63f73, 0x2cd2cc6551e513da},
    {0xde81e40a034bcf4f, 0xf8077f7ea65e58d1},
    {0x8b112e86420f6191, 0xfb04afaf27faf782},
    {0xadd57a27d29339f6, 0x79c5db9af1f9b563},
    {0xd94ad8b1c7380874, 0x18375281ae7822bc},
    {0x87cec76f1c830548, 0x8f2293910d0b15b5},
    {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb22},
    {0xd433179d9c8cb841, 0x5fa60692a46151eb},
    {0x849feec281d7f328, 0xdbc7c41ba6bcd333},
    {0xa5c7ea73224deff3, 0x12b9b522906c0800},
    {0xcf39e50feae16bef, 0xd768226b34870a00},
    {0x81842f29f2cce375, 0xe6a1158300d46640},
    {0xa1e53af46f801c53, 0x60495ae3c1097fd0},
    {0xca5e89b18b602368, 0x385bb19cb14bdfc4},
    {0xfcf62c1dee382c42, 0x46729e03dd9ed7b5},
    {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d1},
    {0xc5a05277621be293, 0xc7098b7305241885},
    {0xf70867153aa2db38, 0xb8cbee4fc66d1ea7}
#else
    {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
    {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
    {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
    {0x86a8d39ef77164bc, 0xae5dff9c02033198},
    {0xd98ddaee19068c76, 0x3badd624dd9b0958},
    {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
    {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
    {0xe55990879ddcaabd, 0xcc420a6a101d0516},
    {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
    {0x95a8637627989aad, 0xdde7001379a44aa9},
    {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
    {0xc350000000000000, 0x0000000000000000},
    {0x9dc5ada82b70b59d, 0xf020000000000000},
    {0xfee50b7025c36a08, 0x02f236d04753d5b4},
    {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
    {0xa6539930bf6bff45, 0x84db8346b786151c},
    {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
    {0xd910f7ff28069da4, 0x1b2ba1518094da04},
    {0xaf58416654a6babb, 0x387ac8d1970027b2},
    {0x8da471a9de737e24, 0x5ceaecfed289e5d2},
    {0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
    {0xb8da1662e7b00a17, 0x3d6a751f3b936243},
    {0x95527a5202df0ccb, 0x0f37801e0c43ebc8}
#endif
};

#if !FMT_USE_FULL_CACHE_DRAGONBOX
template <typename T>
const uint64_t basic_data<T>::powers_of_5_64[] = {
    0x0000000000000001, 0x0000000000000005, 0x0000000000000019,
    0x000000000000007d, 0x0000000000000271, 0x0000000000000c35,
    0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1,
    0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd,
    0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9,
    0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5,
    0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631,
    0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed,
    0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9};

template <typename T>
const uint32_t basic_data<T>::dragonbox_pow10_recovery_errors[] = {
    0x50001400, 0x54044100, 0x54014555, 0x55954415, 0x54115555, 0x00000001,
    0x50000000, 0x00104000, 0x54010004, 0x05004001, 0x55555544, 0x41545555,
    0x54040551, 0x15445545, 0x51555514, 0x10000015, 0x00101100, 0x01100015,
    0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x04450514, 0x45414110,
    0x55555145, 0x50544050, 0x15040155, 0x11054140, 0x50111514, 0x11451454,
    0x00400541, 0x00000000, 0x55555450, 0x10056551, 0x10054011, 0x55551014,
    0x69514555, 0x05151109, 0x00155555};
#endif

template <typename T>
const char basic_data<T>::foreground_color[] = "\x1b[38;2;";
template <typename T>
const char basic_data<T>::background_color[] = "\x1b[48;2;";
template <typename T> const char basic_data<T>::reset_color[] = "\x1b[0m";
template <typename T> const wchar_t basic_data<T>::wreset_color[] = L"\x1b[0m";
template <typename T> const char basic_data<T>::signs[] = {0, '-', '+', ' '};
template <typename T>
const char basic_data<T>::left_padding_shifts[] = {31, 31, 0, 1, 0};
template <typename T>
const char basic_data<T>::right_padding_shifts[] = {0, 31, 0, 1, 0};

template <typename T> struct bits {
  static FMT_CONSTEXPR_DECL const int value =
      static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
};

class fp;
template <int SHIFT = 0> fp normalize(fp value);

// Lower (upper) boundary is a value half way between a floating-point value
// and its predecessor (successor). Boundaries have the same exponent as the
// value so only significands are stored.
struct boundaries {
  uint64_t lower;
  uint64_t upper;
};

// A handmade floating-point number f * pow(2, e).
class fp {
 private:
  using significand_type = uint64_t;

  template <typename Float>
  using is_supported_float = bool_constant<sizeof(Float) == sizeof(uint64_t) ||
                                           sizeof(Float) == sizeof(uint32_t)>;

 public:
  significand_type f;
  int e;

  // All sizes are in bits.
  // Subtract 1 to account for an implicit most significant bit in the
  // normalized form.
  static FMT_CONSTEXPR_DECL const int double_significand_size =
      std::numeric_limits<double>::digits - 1;
  static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
      1ULL << double_significand_size;
  static FMT_CONSTEXPR_DECL const int significand_size =
      bits<significand_type>::value;

  fp() : f(0), e(0) {}
  fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}

  // Constructs fp from an IEEE754 double. It is a template to prevent compile
  // errors on platforms where double is not IEEE754.
  template <typename Double> explicit fp(Double d) { assign(d); }

  // Assigns d to this and return true iff predecessor is closer than successor.
  template <typename Float, FMT_ENABLE_IF(is_supported_float<Float>::value)>
  bool assign(Float d) {
    // Assume float is in the format [sign][exponent][significand].
    using limits = std::numeric_limits<Float>;
    const int float_significand_size = limits::digits - 1;
    const int exponent_size =
        bits<Float>::value - float_significand_size - 1;  // -1 for sign
    const uint64_t float_implicit_bit = 1ULL << float_significand_size;
    const uint64_t significand_mask = float_implicit_bit - 1;
    const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask;
    const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
    constexpr bool is_double = sizeof(Float) == sizeof(uint64_t);
    auto u = bit_cast<conditional_t<is_double, uint64_t, uint32_t>>(d);
    f = u & significand_mask;
    int biased_e =
        static_cast<int>((u & exponent_mask) >> float_significand_size);
    // Predecessor is closer if d is a normalized power of 2 (f == 0) other than
    // the smallest normalized number (biased_e > 1).
    bool is_predecessor_closer = f == 0 && biased_e > 1;
    if (biased_e != 0)
      f += float_implicit_bit;
    else
      biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
    e = biased_e - exponent_bias - float_significand_size;
    return is_predecessor_closer;
  }

  template <typename Float, FMT_ENABLE_IF(!is_supported_float<Float>::value)>
  bool assign(Float) {
    *this = fp();
    return false;
  }
};

// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template <int SHIFT> fp normalize(fp value) {
  // Handle subnormals.
  const auto shifted_implicit_bit = fp::implicit_bit << SHIFT;
  while ((value.f & shifted_implicit_bit) == 0) {
    value.f <<= 1;
    --value.e;
  }
  // Subtract 1 to account for hidden bit.
  const auto offset =
      fp::significand_size - fp::double_significand_size - SHIFT - 1;
  value.f <<= offset;
  value.e -= offset;
  return value;
}

inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; }

// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
#if FMT_USE_INT128
  auto product = static_cast<__uint128_t>(lhs) * rhs;
  auto f = static_cast<uint64_t>(product >> 64);
  return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
#else
  // Multiply 32-bit parts of significands.
  uint64_t mask = (1ULL << 32) - 1;
  uint64_t a = lhs >> 32, b = lhs & mask;
  uint64_t c = rhs >> 32, d = rhs & mask;
  uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
  // Compute mid 64-bit of result and round.
  uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
  return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
#endif
}

inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; }

// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
inline fp get_cached_power(int min_exponent, int& pow10_exponent) {
  const int shift = 32;
  const auto significand = static_cast<int64_t>(data::log10_2_significand);
  int index = static_cast<int>(
      ((min_exponent + fp::significand_size - 1) * (significand >> shift) +
       ((int64_t(1) << shift) - 1))  // ceil
      >> 32                          // arithmetic shift
  );
  // Decimal exponent of the first (smallest) cached power of 10.
  const int first_dec_exp = -348;
  // Difference between 2 consecutive decimal exponents in cached powers of 10.
  const int dec_exp_step = 8;
  index = (index - first_dec_exp - 1) / dec_exp_step + 1;
  pow10_exponent = first_dec_exp + index * dec_exp_step;
  return {data::grisu_pow10_significands[index],
          data::grisu_pow10_exponents[index]};
}

// A simple accumulator to hold the sums of terms in bigint::square if uint128_t
// is not available.
struct accumulator {
  uint64_t lower;
  uint64_t upper;

  accumulator() : lower(0), upper(0) {}
  explicit operator uint32_t() const { return static_cast<uint32_t>(lower); }

  void operator+=(uint64_t n) {
    lower += n;
    if (lower < n) ++upper;
  }
  void operator>>=(int shift) {
    assert(shift == 32);
    (void)shift;
    lower = (upper << 32) | (lower >> 32);
    upper >>= 32;
  }
};

class bigint {
 private:
  // A bigint is stored as an array of bigits (big digits), with bigit at index
  // 0 being the least significant one.
  using bigit = uint32_t;
  using double_bigit = uint64_t;
  enum { bigits_capacity = 32 };
  basic_memory_buffer<bigit, bigits_capacity> bigits_;
  int exp_;

  bigit operator[](int index) const { return bigits_[to_unsigned(index)]; }
  bigit& operator[](int index) { return bigits_[to_unsigned(index)]; }

  static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;

  friend struct formatter<bigint>;

  void subtract_bigits(int index, bigit other, bigit& borrow) {
    auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
    (*this)[index] = static_cast<bigit>(result);
    borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
  }

  void remove_leading_zeros() {
    int num_bigits = static_cast<int>(bigits_.size()) - 1;
    while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
    bigits_.resize(to_unsigned(num_bigits + 1));
  }

  // Computes *this -= other assuming aligned bigints and *this >= other.
  void subtract_aligned(const bigint& other) {
    FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
    FMT_ASSERT(compare(*this, other) >= 0, "");
    bigit borrow = 0;
    int i = other.exp_ - exp_;
    for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
      subtract_bigits(i, other.bigits_[j], borrow);
    while (borrow > 0) subtract_bigits(i, 0, borrow);
    remove_leading_zeros();
  }

  void multiply(uint32_t value) {
    const double_bigit wide_value = value;
    bigit carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      double_bigit result = bigits_[i] * wide_value + carry;
      bigits_[i] = static_cast<bigit>(result);
      carry = static_cast<bigit>(result >> bigit_bits);
    }
    if (carry != 0) bigits_.push_back(carry);
  }

  void multiply(uint64_t value) {
    const bigit mask = ~bigit(0);
    const double_bigit lower = value & mask;
    const double_bigit upper = value >> bigit_bits;
    double_bigit carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      double_bigit result = bigits_[i] * lower + (carry & mask);
      carry =
          bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits);
      bigits_[i] = static_cast<bigit>(result);
    }
    while (carry != 0) {
      bigits_.push_back(carry & mask);
      carry >>= bigit_bits;
    }
  }

 public:
  bigint() : exp_(0) {}
  explicit bigint(uint64_t n) { assign(n); }
  ~bigint() { assert(bigits_.capacity() <= bigits_capacity); }

  bigint(const bigint&) = delete;
  void operator=(const bigint&) = delete;

  void assign(const bigint& other) {
    auto size = other.bigits_.size();
    bigits_.resize(size);
    auto data = other.bigits_.data();
    std::copy(data, data + size, make_checked(bigits_.data(), size));
    exp_ = other.exp_;
  }

  void assign(uint64_t n) {
    size_t num_bigits = 0;
    do {
      bigits_[num_bigits++] = n & ~bigit(0);
      n >>= bigit_bits;
    } while (n != 0);
    bigits_.resize(num_bigits);
    exp_ = 0;
  }

  int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }

  FMT_NOINLINE bigint& operator<<=(int shift) {
    assert(shift >= 0);
    exp_ += shift / bigit_bits;
    shift %= bigit_bits;
    if (shift == 0) return *this;
    bigit carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      bigit c = bigits_[i] >> (bigit_bits - shift);
      bigits_[i] = (bigits_[i] << shift) + carry;
      carry = c;
    }
    if (carry != 0) bigits_.push_back(carry);
    return *this;
  }

  template <typename Int> bigint& operator*=(Int value) {
    FMT_ASSERT(value > 0, "");
    multiply(uint32_or_64_or_128_t<Int>(value));
    return *this;
  }

  friend int compare(const bigint& lhs, const bigint& rhs) {
    int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
    if (num_lhs_bigits != num_rhs_bigits)
      return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
    int i = static_cast<int>(lhs.bigits_.size()) - 1;
    int j = static_cast<int>(rhs.bigits_.size()) - 1;
    int end = i - j;
    if (end < 0) end = 0;
    for (; i >= end; --i, --j) {
      bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
      if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
    }
    if (i != j) return i > j ? 1 : -1;
    return 0;
  }

  // Returns compare(lhs1 + lhs2, rhs).
  friend int add_compare(const bigint& lhs1, const bigint& lhs2,
                         const bigint& rhs) {
    int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
    int num_rhs_bigits = rhs.num_bigits();
    if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
    if (max_lhs_bigits > num_rhs_bigits) return 1;
    auto get_bigit = [](const bigint& n, int i) -> bigit {
      return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
    };
    double_bigit borrow = 0;
    int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
    for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
      double_bigit sum =
          static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
      bigit rhs_bigit = get_bigit(rhs, i);
      if (sum > rhs_bigit + borrow) return 1;
      borrow = rhs_bigit + borrow - sum;
      if (borrow > 1) return -1;
      borrow <<= bigit_bits;
    }
    return borrow != 0 ? -1 : 0;
  }

  // Assigns pow(10, exp) to this bigint.
  void assign_pow10(int exp) {
    assert(exp >= 0);
    if (exp == 0) return assign(1);
    // Find the top bit.
    int bitmask = 1;
    while (exp >= bitmask) bitmask <<= 1;
    bitmask >>= 1;
    // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
    // repeated squaring and multiplication.
    assign(5);
    bitmask >>= 1;
    while (bitmask != 0) {
      square();
      if ((exp & bitmask) != 0) *this *= 5;
      bitmask >>= 1;
    }
    *this <<= exp;  // Multiply by pow(2, exp) by shifting.
  }

  void square() {
    basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
    int num_bigits = static_cast<int>(bigits_.size());
    int num_result_bigits = 2 * num_bigits;
    bigits_.resize(to_unsigned(num_result_bigits));
    using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>;
    auto sum = accumulator_t();
    for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
      // Compute bigit at position bigit_index of the result by adding
      // cross-product terms n[i] * n[j] such that i + j == bigit_index.
      for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
        // Most terms are multiplied twice which can be optimized in the future.
        sum += static_cast<double_bigit>(n[i]) * n[j];
      }
      (*this)[bigit_index] = static_cast<bigit>(sum);
      sum >>= bits<bigit>::value;  // Compute the carry.
    }
    // Do the same for the top half.
    for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
         ++bigit_index) {
      for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
        sum += static_cast<double_bigit>(n[i++]) * n[j--];
      (*this)[bigit_index] = static_cast<bigit>(sum);
      sum >>= bits<bigit>::value;
    }
    --num_result_bigits;
    remove_leading_zeros();
    exp_ *= 2;
  }

  // If this bigint has a bigger exponent than other, adds trailing zero to make
  // exponents equal. This simplifies some operations such as subtraction.
  void align(const bigint& other) {
    int exp_difference = exp_ - other.exp_;
    if (exp_difference <= 0) return;
    int num_bigits = static_cast<int>(bigits_.size());
    bigits_.resize(to_unsigned(num_bigits + exp_difference));
    for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
      bigits_[j] = bigits_[i];
    std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
    exp_ -= exp_difference;
  }

  // Divides this bignum by divisor, assigning the remainder to this and
  // returning the quotient.
  int divmod_assign(const bigint& divisor) {
    FMT_ASSERT(this != &divisor, "");
    if (compare(*this, divisor) < 0) return 0;
    FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
    align(divisor);
    int quotient = 0;
    do {
      subtract_aligned(divisor);
      ++quotient;
    } while (compare(*this, divisor) >= 0);
    return quotient;
  }
};

enum class round_direction { unknown, up, down };

// Given the divisor (normally a power of 10), the remainder = v % divisor for
// some number v and the error, returns whether v should be rounded up, down, or
// whether the rounding direction can't be determined due to error.
// error should be less than divisor / 2.
inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
                                           uint64_t error) {
  FMT_ASSERT(remainder < divisor, "");  // divisor - remainder won't overflow.
  FMT_ASSERT(error < divisor, "");      // divisor - error won't overflow.
  FMT_ASSERT(error < divisor - error, "");  // error * 2 won't overflow.
  // Round down if (remainder + error) * 2 <= divisor.
  if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
    return round_direction::down;
  // Round up if (remainder - error) * 2 >= divisor.
  if (remainder >= error &&
      remainder - error >= divisor - (remainder - error)) {
    return round_direction::up;
  }
  return round_direction::unknown;
}

namespace digits {
enum result {
  more,  // Generate more digits.
  done,  // Done generating digits.
  error  // Digit generation cancelled due to an error.
};
}

// Generates output using the Grisu digit-gen algorithm.
// error: the size of the region (lower, upper) outside of which numbers
// definitely do not round to value (Delta in Grisu3).
template <typename Handler>
FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error,
                                                  int& exp, Handler& handler) {
  const fp one(1ULL << -value.e, value.e);
  // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
  // zero because it contains a product of two 64-bit numbers with MSB set (due
  // to normalization) - 1, shifted right by at most 60 bits.
  auto integral = static_cast<uint32_t>(value.f >> -one.e);
  FMT_ASSERT(integral != 0, "");
  FMT_ASSERT(integral == value.f >> -one.e, "");
  // The fractional part of scaled value (p2 in Grisu) c = value % one.
  uint64_t fractional = value.f & (one.f - 1);
  exp = count_digits(integral);  // kappa in Grisu.
  // Divide by 10 to prevent overflow.
  auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e,
                                 value.f / 10, error * 10, exp);
  if (result != digits::more) return result;
  // Generate digits for the integral part. This can produce up to 10 digits.
  do {
    uint32_t digit = 0;
    auto divmod_integral = [&](uint32_t divisor) {
      digit = integral / divisor;
      integral %= divisor;
    };
    // This optimization by Milo Yip reduces the number of integer divisions by
    // one per iteration.
    switch (exp) {
    case 10:
      divmod_integral(1000000000);
      break;
    case 9:
      divmod_integral(100000000);
      break;
    case 8:
      divmod_integral(10000000);
      break;
    case 7:
      divmod_integral(1000000);
      break;
    case 6:
      divmod_integral(100000);
      break;
    case 5:
      divmod_integral(10000);
      break;
    case 4:
      divmod_integral(1000);
      break;
    case 3:
      divmod_integral(100);
      break;
    case 2:
      divmod_integral(10);
      break;
    case 1:
      digit = integral;
      integral = 0;
      break;
    default:
      FMT_ASSERT(false, "invalid number of digits");
    }
    --exp;
    auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
    result = handler.on_digit(static_cast<char>('0' + digit),
                              data::powers_of_10_64[exp] << -one.e, remainder,
                              error, exp, true);
    if (result != digits::more) return result;
  } while (exp > 0);
  // Generate digits for the fractional part.
  for (;;) {
    fractional *= 10;
    error *= 10;
    char digit = static_cast<char>('0' + (fractional >> -one.e));
    fractional &= one.f - 1;
    --exp;
    result = handler.on_digit(digit, one.f, fractional, error, exp, false);
    if (result != digits::more) return result;
  }
}

// The fixed precision digit handler.
struct fixed_handler {
  char* buf;
  int size;
  int precision;
  int exp10;
  bool fixed;

  digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
                          int& exp) {
    // Non-fixed formats require at least one digit and no precision adjustment.
    if (!fixed) return digits::more;
    // Adjust fixed precision by exponent because it is relative to decimal
    // point.
    precision += exp + exp10;
    // Check if precision is satisfied just by leading zeros, e.g.
    // format("{:.2f}", 0.001) gives "0.00" without generating any digits.
    if (precision > 0) return digits::more;
    if (precision < 0) return digits::done;
    auto dir = get_round_direction(divisor, remainder, error);
    if (dir == round_direction::unknown) return digits::error;
    buf[size++] = dir == round_direction::up ? '1' : '0';
    return digits::done;
  }

  digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
                          uint64_t error, int, bool integral) {
    FMT_ASSERT(remainder < divisor, "");
    buf[size++] = digit;
    if (!integral && error >= remainder) return digits::error;
    if (size < precision) return digits::more;
    if (!integral) {
      // Check if error * 2 < divisor with overflow prevention.
      // The check is not needed for the integral part because error = 1
      // and divisor > (1 << 32) there.
      if (error >= divisor || error >= divisor - error) return digits::error;
    } else {
      FMT_ASSERT(error == 1 && divisor > 2, "");
    }
    auto dir = get_round_direction(divisor, remainder, error);
    if (dir != round_direction::up)
      return dir == round_direction::down ? digits::done : digits::error;
    ++buf[size - 1];
    for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
      buf[i] = '0';
      ++buf[i - 1];
    }
    if (buf[0] > '9') {
      buf[0] = '1';
      if (fixed)
        buf[size++] = '0';
      else
        ++exp10;
    }
    return digits::done;
  }
};

// Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox.
namespace dragonbox {
// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
FMT_SAFEBUFFERS inline uint128_wrapper umul128(uint64_t x,
                                               uint64_t y) FMT_NOEXCEPT {
#if FMT_USE_INT128
  return static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
#elif defined(_MSC_VER) && defined(_M_X64)
  uint128_wrapper result;
  result.low_ = _umul128(x, y, &result.high_);
  return result;
#else
  const uint64_t mask = (uint64_t(1) << 32) - uint64_t(1);

  uint64_t a = x >> 32;
  uint64_t b = x & mask;
  uint64_t c = y >> 32;
  uint64_t d = y & mask;

  uint64_t ac = a * c;
  uint64_t bc = b * c;
  uint64_t ad = a * d;
  uint64_t bd = b * d;

  uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);

  return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
          (intermediate << 32) + (bd & mask)};
#endif
}

// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
FMT_SAFEBUFFERS inline uint64_t umul128_upper64(uint64_t x,
                                                uint64_t y) FMT_NOEXCEPT {
#if FMT_USE_INT128
  auto p = static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
  return static_cast<uint64_t>(p >> 64);
#elif defined(_MSC_VER) && defined(_M_X64)
  return __umulh(x, y);
#else
  return umul128(x, y).high();
#endif
}

// Computes upper 64 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
FMT_SAFEBUFFERS inline uint64_t umul192_upper64(uint64_t x, uint128_wrapper y)
    FMT_NOEXCEPT {
  uint128_wrapper g0 = umul128(x, y.high());
  g0 += umul128_upper64(x, y.low());
  return g0.high();
}

// Computes upper 32 bits of multiplication of a 32-bit unsigned integer and a
// 64-bit unsigned integer.
inline uint32_t umul96_upper32(uint32_t x, uint64_t y) FMT_NOEXCEPT {
  return static_cast<uint32_t>(umul128_upper64(x, y));
}

// Computes middle 64 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
FMT_SAFEBUFFERS inline uint64_t umul192_middle64(uint64_t x, uint128_wrapper y)
    FMT_NOEXCEPT {
  uint64_t g01 = x * y.high();
  uint64_t g10 = umul128_upper64(x, y.low());
  return g01 + g10;
}

// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
// 64-bit unsigned integer.
inline uint64_t umul96_lower64(uint32_t x, uint64_t y) FMT_NOEXCEPT {
  return x * y;
}

// Computes floor(log10(pow(2, e))) for e in [-1700, 1700] using the method from
// https://fmt.dev/papers/Grisu-Exact.pdf#page=5, section 3.4.
inline int floor_log10_pow2(int e) FMT_NOEXCEPT {
  FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
  const int shift = 22;
  return (e * static_cast<int>(data::log10_2_significand >> (64 - shift))) >>
         shift;
}

// Various fast log computations.
inline int floor_log2_pow10(int e) FMT_NOEXCEPT {
  FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
  const uint64_t log2_10_integer_part = 3;
  const uint64_t log2_10_fractional_digits = 0x5269e12f346e2bf9;
  const int shift_amount = 19;
  return (e * static_cast<int>(
                  (log2_10_integer_part << shift_amount) |
                  (log2_10_fractional_digits >> (64 - shift_amount)))) >>
         shift_amount;
}
inline int floor_log10_pow2_minus_log10_4_over_3(int e) FMT_NOEXCEPT {
  FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
  const uint64_t log10_4_over_3_fractional_digits = 0x1ffbfc2bbc780375;
  const int shift_amount = 22;
  return (e * static_cast<int>(data::log10_2_significand >>
                               (64 - shift_amount)) -
          static_cast<int>(log10_4_over_3_fractional_digits >>
                           (64 - shift_amount))) >>
         shift_amount;
}

// Returns true iff x is divisible by pow(2, exp).
inline bool divisible_by_power_of_2(uint32_t x, int exp) FMT_NOEXCEPT {
  FMT_ASSERT(exp >= 1, "");
  FMT_ASSERT(x != 0, "");
#ifdef FMT_BUILTIN_CTZ
  return FMT_BUILTIN_CTZ(x) >= exp;
#else
  return exp < num_bits<uint32_t>() && x == ((x >> exp) << exp);
#endif
}
inline bool divisible_by_power_of_2(uint64_t x, int exp) FMT_NOEXCEPT {
  FMT_ASSERT(exp >= 1, "");
  FMT_ASSERT(x != 0, "");
#ifdef FMT_BUILTIN_CTZLL
  return FMT_BUILTIN_CTZLL(x) >= exp;
#else
  return exp < num_bits<uint64_t>() && x == ((x >> exp) << exp);
#endif
}

// Returns true iff x is divisible by pow(5, exp).
inline bool divisible_by_power_of_5(uint32_t x, int exp) FMT_NOEXCEPT {
  FMT_ASSERT(exp <= 10, "too large exponent");
  return x * data::divtest_table_for_pow5_32[exp].mod_inv <=
         data::divtest_table_for_pow5_32[exp].max_quotient;
}
inline bool divisible_by_power_of_5(uint64_t x, int exp) FMT_NOEXCEPT {
  FMT_ASSERT(exp <= 23, "too large exponent");
  return x * data::divtest_table_for_pow5_64[exp].mod_inv <=
         data::divtest_table_for_pow5_64[exp].max_quotient;
}

// Replaces n by floor(n / pow(5, N)) returning true if and only if n is
// divisible by pow(5, N).
// Precondition: n <= 2 * pow(5, N + 1).
template <int N>
bool check_divisibility_and_divide_by_pow5(uint32_t& n) FMT_NOEXCEPT {
  static constexpr struct {
    uint32_t magic_number;
    int bits_for_comparison;
    uint32_t threshold;
    int shift_amount;
  } infos[] = {{0xcccd, 16, 0x3333, 18}, {0xa429, 8, 0x0a, 20}};
  constexpr auto info = infos[N - 1];
  n *= info.magic_number;
  const uint32_t comparison_mask = (1u << info.bits_for_comparison) - 1;
  bool result = (n & comparison_mask) <= info.threshold;
  n >>= info.shift_amount;
  return result;
}

// Computes floor(n / pow(10, N)) for small n and N.
// Precondition: n <= pow(10, N + 1).
template <int N> uint32_t small_division_by_pow10(uint32_t n) FMT_NOEXCEPT {
  static constexpr struct {
    uint32_t magic_number;
    int shift_amount;
    uint32_t divisor_times_10;
  } infos[] = {{0xcccd, 19, 100}, {0xa3d8, 22, 1000}};
  constexpr auto info = infos[N - 1];
  FMT_ASSERT(n <= info.divisor_times_10, "n is too large");
  return n * info.magic_number >> info.shift_amount;
}

// Computes floor(n / 10^(kappa + 1)) (float)
inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) FMT_NOEXCEPT {
  return n / float_info<float>::big_divisor;
}
// Computes floor(n / 10^(kappa + 1)) (double)
inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) FMT_NOEXCEPT {
  return umul128_upper64(n, 0x83126e978d4fdf3c) >> 9;
}

// Various subroutines using pow10 cache
template <class T> struct cache_accessor;

template <> struct cache_accessor<float> {
  using carrier_uint = float_info<float>::carrier_uint;
  using cache_entry_type = uint64_t;

  static uint64_t get_cached_power(int k) FMT_NOEXCEPT {
    FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k,
               "k is out of range");
    return data::dragonbox_pow10_significands_64[k - float_info<float>::min_k];
  }

  static carrier_uint compute_mul(carrier_uint u,
                                  const cache_entry_type& cache) FMT_NOEXCEPT {
    return umul96_upper32(u, cache);
  }

  static uint32_t compute_delta(const cache_entry_type& cache,
                                int beta_minus_1) FMT_NOEXCEPT {
    return static_cast<uint32_t>(cache >> (64 - 1 - beta_minus_1));
  }

  static bool compute_mul_parity(carrier_uint two_f,
                                 const cache_entry_type& cache,
                                 int beta_minus_1) FMT_NOEXCEPT {
    FMT_ASSERT(beta_minus_1 >= 1, "");
    FMT_ASSERT(beta_minus_1 < 64, "");

    return ((umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
  }

  static carrier_uint compute_left_endpoint_for_shorter_interval_case(
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
    return static_cast<carrier_uint>(
        (cache - (cache >> (float_info<float>::significand_bits + 2))) >>
        (64 - float_info<float>::significand_bits - 1 - beta_minus_1));
  }

  static carrier_uint compute_right_endpoint_for_shorter_interval_case(
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
    return static_cast<carrier_uint>(
        (cache + (cache >> (float_info<float>::significand_bits + 1))) >>
        (64 - float_info<float>::significand_bits - 1 - beta_minus_1));
  }

  static carrier_uint compute_round_up_for_shorter_interval_case(
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
    return (static_cast<carrier_uint>(
                cache >>
                (64 - float_info<float>::significand_bits - 2 - beta_minus_1)) +
            1) /
           2;
  }
};

template <> struct cache_accessor<double> {
  using carrier_uint = float_info<double>::carrier_uint;
  using cache_entry_type = uint128_wrapper;

  static uint128_wrapper get_cached_power(int k) FMT_NOEXCEPT {
    FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k,
               "k is out of range");

#if FMT_USE_FULL_CACHE_DRAGONBOX
    return data::dragonbox_pow10_significands_128[k -
                                                  float_info<double>::min_k];
#else
    static const int compression_ratio = 27;

    // Compute base index.
    int cache_index = (k - float_info<double>::min_k) / compression_ratio;
    int kb = cache_index * compression_ratio + float_info<double>::min_k;
    int offset = k - kb;

    // Get base cache.
    uint128_wrapper base_cache =
        data::dragonbox_pow10_significands_128[cache_index];
    if (offset == 0) return base_cache;

    // Compute the required amount of bit-shift.
    int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset;
    FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected");

    // Try to recover the real cache.
    uint64_t pow5 = data::powers_of_5_64[offset];
    uint128_wrapper recovered_cache = umul128(base_cache.high(), pow5);
    uint128_wrapper middle_low =
        umul128(base_cache.low() - (kb < 0 ? 1u : 0u), pow5);

    recovered_cache += middle_low.high();

    uint64_t high_to_middle = recovered_cache.high() << (64 - alpha);
    uint64_t middle_to_low = recovered_cache.low() << (64 - alpha);

    recovered_cache =
        uint128_wrapper{(recovered_cache.low() >> alpha) | high_to_middle,
                        ((middle_low.low() >> alpha) | middle_to_low)};

    if (kb < 0) recovered_cache += 1;

    // Get error.
    int error_idx = (k - float_info<double>::min_k) / 16;
    uint32_t error = (data::dragonbox_pow10_recovery_errors[error_idx] >>
                      ((k - float_info<double>::min_k) % 16) * 2) &
                     0x3;

    // Add the error back.
    FMT_ASSERT(recovered_cache.low() + error >= recovered_cache.low(), "");
    return {recovered_cache.high(), recovered_cache.low() + error};
#endif
  }

  static carrier_uint compute_mul(carrier_uint u,
                                  const cache_entry_type& cache) FMT_NOEXCEPT {
    return umul192_upper64(u, cache);
  }

  static uint32_t compute_delta(cache_entry_type const& cache,
                                int beta_minus_1) FMT_NOEXCEPT {
    return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta_minus_1));
  }

  static bool compute_mul_parity(carrier_uint two_f,
                                 const cache_entry_type& cache,
                                 int beta_minus_1) FMT_NOEXCEPT {
    FMT_ASSERT(beta_minus_1 >= 1, "");
    FMT_ASSERT(beta_minus_1 < 64, "");

    return ((umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
  }

  static carrier_uint compute_left_endpoint_for_shorter_interval_case(
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
    return (cache.high() -
            (cache.high() >> (float_info<double>::significand_bits + 2))) >>
           (64 - float_info<double>::significand_bits - 1 - beta_minus_1);
  }

  static carrier_uint compute_right_endpoint_for_shorter_interval_case(
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
    return (cache.high() +
            (cache.high() >> (float_info<double>::significand_bits + 1))) >>
           (64 - float_info<double>::significand_bits - 1 - beta_minus_1);
  }

  static carrier_uint compute_round_up_for_shorter_interval_case(
      const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
    return ((cache.high() >>
             (64 - float_info<double>::significand_bits - 2 - beta_minus_1)) +
            1) /
           2;
  }
};

// Various integer checks
template <class T>
bool is_left_endpoint_integer_shorter_interval(int exponent) FMT_NOEXCEPT {
  return exponent >=
             float_info<
                 T>::case_shorter_interval_left_endpoint_lower_threshold &&
         exponent <=
             float_info<T>::case_shorter_interval_left_endpoint_upper_threshold;
}
template <class T>
bool is_endpoint_integer(typename float_info<T>::carrier_uint two_f,
                         int exponent, int minus_k) FMT_NOEXCEPT {
  if (exponent < float_info<T>::case_fc_pm_half_lower_threshold) return false;
  // For k >= 0.
  if (exponent <= float_info<T>::case_fc_pm_half_upper_threshold) return true;
  // For k < 0.
  if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
  return divisible_by_power_of_5(two_f, minus_k);
}

template <class T>
bool is_center_integer(typename float_info<T>::carrier_uint two_f, int exponent,
                       int minus_k) FMT_NOEXCEPT {
  // Exponent for 5 is negative.
  if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
  if (exponent > float_info<T>::case_fc_upper_threshold)
    return divisible_by_power_of_5(two_f, minus_k);
  // Both exponents are nonnegative.
  if (exponent >= float_info<T>::case_fc_lower_threshold) return true;
  // Exponent for 2 is negative.
  return divisible_by_power_of_2(two_f, minus_k - exponent + 1);
}

// Remove trailing zeros from n and return the number of zeros removed (float)
FMT_ALWAYS_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT {
#ifdef FMT_BUILTIN_CTZ
  int t = FMT_BUILTIN_CTZ(n);
#else
  int t = ctz(n);
#endif
  if (t > float_info<float>::max_trailing_zeros)
    t = float_info<float>::max_trailing_zeros;

  const uint32_t mod_inv1 = 0xcccccccd;
  const uint32_t max_quotient1 = 0x33333333;
  const uint32_t mod_inv2 = 0xc28f5c29;
  const uint32_t max_quotient2 = 0x0a3d70a3;

  int s = 0;
  for (; s < t - 1; s += 2) {
    if (n * mod_inv2 > max_quotient2) break;
    n *= mod_inv2;
  }
  if (s < t && n * mod_inv1 <= max_quotient1) {
    n *= mod_inv1;
    ++s;
  }
  n >>= s;
  return s;
}

// Removes trailing zeros and returns the number of zeros removed (double)
FMT_ALWAYS_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT {
#ifdef FMT_BUILTIN_CTZLL
  int t = FMT_BUILTIN_CTZLL(n);
#else
  int t = ctzll(n);
#endif
  if (t > float_info<double>::max_trailing_zeros)
    t = float_info<double>::max_trailing_zeros;
  // Divide by 10^8 and reduce to 32-bits
  // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17,
  // both of the quotient and the r should fit in 32-bits

  const uint32_t mod_inv1 = 0xcccccccd;
  const uint32_t max_quotient1 = 0x33333333;
  const uint64_t mod_inv8 = 0xc767074b22e90e21;
  const uint64_t max_quotient8 = 0x00002af31dc46118;

  // If the number is divisible by 1'0000'0000, work with the quotient
  if (t >= 8) {
    auto quotient_candidate = n * mod_inv8;

    if (quotient_candidate <= max_quotient8) {
      auto quotient = static_cast<uint32_t>(quotient_candidate >> 8);

      int s = 8;
      for (; s < t; ++s) {
        if (quotient * mod_inv1 > max_quotient1) break;
        quotient *= mod_inv1;
      }
      quotient >>= (s - 8);
      n = quotient;
      return s;
    }
  }

  // Otherwise, work with the remainder
  auto quotient = static_cast<uint32_t>(n / 100000000);
  auto remainder = static_cast<uint32_t>(n - 100000000 * quotient);

  if (t == 0 || remainder * mod_inv1 > max_quotient1) {
    return 0;
  }
  remainder *= mod_inv1;

  if (t == 1 || remainder * mod_inv1 > max_quotient1) {
    n = (remainder >> 1) + quotient * 10000000ull;
    return 1;
  }
  remainder *= mod_inv1;

  if (t == 2 || remainder * mod_inv1 > max_quotient1) {
    n = (remainder >> 2) + quotient * 1000000ull;
    return 2;
  }
  remainder *= mod_inv1;

  if (t == 3 || remainder * mod_inv1 > max_quotient1) {
    n = (remainder >> 3) + quotient * 100000ull;
    return 3;
  }
  remainder *= mod_inv1;

  if (t == 4 || remainder * mod_inv1 > max_quotient1) {
    n = (remainder >> 4) + quotient * 10000ull;
    return 4;
  }
  remainder *= mod_inv1;

  if (t == 5 || remainder * mod_inv1 > max_quotient1) {
    n = (remainder >> 5) + quotient * 1000ull;
    return 5;
  }
  remainder *= mod_inv1;

  if (t == 6 || remainder * mod_inv1 > max_quotient1) {
    n = (remainder >> 6) + quotient * 100ull;
    return 6;
  }
  remainder *= mod_inv1;

  n = (remainder >> 7) + quotient * 10ull;
  return 7;
}

// The main algorithm for shorter interval case
template <class T>
FMT_ALWAYS_INLINE FMT_SAFEBUFFERS decimal_fp<T> shorter_interval_case(
    int exponent) FMT_NOEXCEPT {
  decimal_fp<T> ret_value;
  // Compute k and beta
  const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
  const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);

  // Compute xi and zi
  using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
  const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);

  auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case(
      cache, beta_minus_1);
  auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case(
      cache, beta_minus_1);

  // If the left endpoint is not an integer, increase it
  if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi;

  // Try bigger divisor
  ret_value.significand = zi / 10;

  // If succeed, remove trailing zeros if necessary and return
  if (ret_value.significand * 10 >= xi) {
    ret_value.exponent = minus_k + 1;
    ret_value.exponent += remove_trailing_zeros(ret_value.significand);
    return ret_value;
  }

  // Otherwise, compute the round-up of y
  ret_value.significand =
      cache_accessor<T>::compute_round_up_for_shorter_interval_case(
          cache, beta_minus_1);
  ret_value.exponent = minus_k;

  // When tie occurs, choose one of them according to the rule
  if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold &&
      exponent <= float_info<T>::shorter_interval_tie_upper_threshold) {
    ret_value.significand = ret_value.significand % 2 == 0
                                ? ret_value.significand
                                : ret_value.significand - 1;
  } else if (ret_value.significand < xi) {
    ++ret_value.significand;
  }
  return ret_value;
}

template <typename T>
FMT_SAFEBUFFERS decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
  // Step 1: integer promotion & Schubfach multiplier calculation.

  using carrier_uint = typename float_info<T>::carrier_uint;
  using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
  auto br = bit_cast<carrier_uint>(x);

  // Extract significand bits and exponent bits.
  const carrier_uint significand_mask =
      (static_cast<carrier_uint>(1) << float_info<T>::significand_bits) - 1;
  carrier_uint significand = (br & significand_mask);
  int exponent = static_cast<int>((br & exponent_mask<T>()) >>
                                  float_info<T>::significand_bits);

  if (exponent != 0) {  // Check if normal.
    exponent += float_info<T>::exponent_bias - float_info<T>::significand_bits;

    // Shorter interval case; proceed like Schubfach.
    if (significand == 0) return shorter_interval_case<T>(exponent);

    significand |=
        (static_cast<carrier_uint>(1) << float_info<T>::significand_bits);
  } else {
    // Subnormal case; the interval is always regular.
    if (significand == 0) return {0, 0};
    exponent = float_info<T>::min_exponent - float_info<T>::significand_bits;
  }

  const bool include_left_endpoint = (significand % 2 == 0);
  const bool include_right_endpoint = include_left_endpoint;

  // Compute k and beta.
  const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa;
  const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
  const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);

  // Compute zi and deltai
  // 10^kappa <= deltai < 10^(kappa + 1)
  const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta_minus_1);
  const carrier_uint two_fc = significand << 1;
  const carrier_uint two_fr = two_fc | 1;
  const carrier_uint zi =
      cache_accessor<T>::compute_mul(two_fr << beta_minus_1, cache);

  // Step 2: Try larger divisor; remove trailing zeros if necessary

  // Using an upper bound on zi, we might be able to optimize the division
  // better than the compiler; we are computing zi / big_divisor here
  decimal_fp<T> ret_value;
  ret_value.significand = divide_by_10_to_kappa_plus_1(zi);
  uint32_t r = static_cast<uint32_t>(zi - float_info<T>::big_divisor *
                                              ret_value.significand);

  if (r > deltai) {
    goto small_divisor_case_label;
  } else if (r < deltai) {
    // Exclude the right endpoint if necessary
    if (r == 0 && !include_right_endpoint &&
        is_endpoint_integer<T>(two_fr, exponent, minus_k)) {
      --ret_value.significand;
      r = float_info<T>::big_divisor;
      goto small_divisor_case_label;
    }
  } else {
    // r == deltai; compare fractional parts
    // Check conditions in the order different from the paper
    // to take advantage of short-circuiting
    const carrier_uint two_fl = two_fc - 1;
    if ((!include_left_endpoint ||
         !is_endpoint_integer<T>(two_fl, exponent, minus_k)) &&
        !cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)) {
      goto small_divisor_case_label;
    }
  }
  ret_value.exponent = minus_k + float_info<T>::kappa + 1;

  // We may need to remove trailing zeros
  ret_value.exponent += remove_trailing_zeros(ret_value.significand);
  return ret_value;

  // Step 3: Find the significand with the smaller divisor

small_divisor_case_label:
  ret_value.significand *= 10;
  ret_value.exponent = minus_k + float_info<T>::kappa;

  const uint32_t mask = (1u << float_info<T>::kappa) - 1;
  auto dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);

  // Is dist divisible by 2^kappa?
  if ((dist & mask) == 0) {
    const bool approx_y_parity =
        ((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
    dist >>= float_info<T>::kappa;

    // Is dist divisible by 5^kappa?
    if (check_divisibility_and_divide_by_pow5<float_info<T>::kappa>(dist)) {
      ret_value.significand += dist;

      // Check z^(f) >= epsilon^(f)
      // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
      // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
      // Since there are only 2 possibilities, we only need to care about the
      // parity. Also, zi and r should have the same parity since the divisor
      // is an even number
      if (cache_accessor<T>::compute_mul_parity(two_fc, cache, beta_minus_1) !=
          approx_y_parity) {
        --ret_value.significand;
      } else {
        // If z^(f) >= epsilon^(f), we might have a tie
        // when z^(f) == epsilon^(f), or equivalently, when y is an integer
        if (is_center_integer<T>(two_fc, exponent, minus_k)) {
          ret_value.significand = ret_value.significand % 2 == 0
                                      ? ret_value.significand
                                      : ret_value.significand - 1;
        }
      }
    }
    // Is dist not divisible by 5^kappa?
    else {
      ret_value.significand += dist;
    }
  }
  // Is dist not divisible by 2^kappa?
  else {
    // Since we know dist is small, we might be able to optimize the division
    // better than the compiler; we are computing dist / small_divisor here
    ret_value.significand +=
        small_division_by_pow10<float_info<T>::kappa>(dist);
  }
  return ret_value;
}
}  // namespace dragonbox

// Formats value using a variation of the Fixed-Precision Positive
// Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
// https://fmt.dev/p372-steele.pdf.
template <typename Double>
void fallback_format(Double d, int num_digits, bool binary32, buffer<char>& buf,
                     int& exp10) {
  bigint numerator;    // 2 * R in (FPP)^2.
  bigint denominator;  // 2 * S in (FPP)^2.
  // lower and upper are differences between value and corresponding boundaries.
  bigint lower;             // (M^- in (FPP)^2).
  bigint upper_store;       // upper's value if different from lower.
  bigint* upper = nullptr;  // (M^+ in (FPP)^2).
  fp value;
  // Shift numerator and denominator by an extra bit or two (if lower boundary
  // is closer) to make lower and upper integers. This eliminates multiplication
  // by 2 during later computations.
  const bool is_predecessor_closer =
      binary32 ? value.assign(static_cast<float>(d)) : value.assign(d);
  int shift = is_predecessor_closer ? 2 : 1;
  uint64_t significand = value.f << shift;
  if (value.e >= 0) {
    numerator.assign(significand);
    numerator <<= value.e;
    lower.assign(1);
    lower <<= value.e;
    if (shift != 1) {
      upper_store.assign(1);
      upper_store <<= value.e + 1;
      upper = &upper_store;
    }
    denominator.assign_pow10(exp10);
    denominator <<= shift;
  } else if (exp10 < 0) {
    numerator.assign_pow10(-exp10);
    lower.assign(numerator);
    if (shift != 1) {
      upper_store.assign(numerator);
      upper_store <<= 1;
      upper = &upper_store;
    }
    numerator *= significand;
    denominator.assign(1);
    denominator <<= shift - value.e;
  } else {
    numerator.assign(significand);
    denominator.assign_pow10(exp10);
    denominator <<= shift - value.e;
    lower.assign(1);
    if (shift != 1) {
      upper_store.assign(1ULL << 1);
      upper = &upper_store;
    }
  }
  // Invariant: value == (numerator / denominator) * pow(10, exp10).
  if (num_digits < 0) {
    // Generate the shortest representation.
    if (!upper) upper = &lower;
    bool even = (value.f & 1) == 0;
    num_digits = 0;
    char* data = buf.data();
    for (;;) {
      int digit = numerator.divmod_assign(denominator);
      bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower.
      // numerator + upper >[=] pow10:
      bool high = add_compare(numerator, *upper, denominator) + even > 0;
      data[num_digits++] = static_cast<char>('0' + digit);
      if (low || high) {
        if (!low) {
          ++data[num_digits - 1];
        } else if (high) {
          int result = add_compare(numerator, numerator, denominator);
          // Round half to even.
          if (result > 0 || (result == 0 && (digit % 2) != 0))
            ++data[num_digits - 1];
        }
        buf.try_resize(to_unsigned(num_digits));
        exp10 -= num_digits - 1;
        return;
      }
      numerator *= 10;
      lower *= 10;
      if (upper != &lower) *upper *= 10;
    }
  }
  // Generate the given number of digits.
  exp10 -= num_digits - 1;
  if (num_digits == 0) {
    buf.try_resize(1);
    denominator *= 10;
    buf[0] = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
    return;
  }
  buf.try_resize(to_unsigned(num_digits));
  for (int i = 0; i < num_digits - 1; ++i) {
    int digit = numerator.divmod_assign(denominator);
    buf[i] = static_cast<char>('0' + digit);
    numerator *= 10;
  }
  int digit = numerator.divmod_assign(denominator);
  auto result = add_compare(numerator, numerator, denominator);
  if (result > 0 || (result == 0 && (digit % 2) != 0)) {
    if (digit == 9) {
      const auto overflow = '0' + 10;
      buf[num_digits - 1] = overflow;
      // Propagate the carry.
      for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
        buf[i] = '0';
        ++buf[i - 1];
      }
      if (buf[0] == overflow) {
        buf[0] = '1';
        ++exp10;
      }
      return;
    }
    ++digit;
  }
  buf[num_digits - 1] = static_cast<char>('0' + digit);
}

template <typename T>
int format_float(T value, int precision, float_specs specs, buffer<char>& buf) {
  static_assert(!std::is_same<T, float>::value, "");
  FMT_ASSERT(value >= 0, "value is negative");

  const bool fixed = specs.format == float_format::fixed;
  if (value <= 0) {  // <= instead of == to silence a warning.
    if (precision <= 0 || !fixed) {
      buf.push_back('0');
      return 0;
    }
    buf.try_resize(to_unsigned(precision));
    std::uninitialized_fill_n(buf.data(), precision, '0');
    return -precision;
  }

  if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf);

  if (precision < 0) {
    // Use Dragonbox for the shortest format.
    if (specs.binary32) {
      auto dec = dragonbox::to_decimal(static_cast<float>(value));
      write<char>(buffer_appender<char>(buf), dec.significand);
      return dec.exponent;
    }
    auto dec = dragonbox::to_decimal(static_cast<double>(value));
    write<char>(buffer_appender<char>(buf), dec.significand);
    return dec.exponent;
  }

  // Use Grisu + Dragon4 for the given precision:
  // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
  int exp = 0;
  const int min_exp = -60;  // alpha in Grisu.
  int cached_exp10 = 0;     // K in Grisu.
  fp normalized = normalize(fp(value));
  const auto cached_pow = get_cached_power(
      min_exp - (normalized.e + fp::significand_size), cached_exp10);
  normalized = normalized * cached_pow;
  // Limit precision to the maximum possible number of significant digits in an
  // IEEE754 double because we don't need to generate zeros.
  const int max_double_digits = 767;
  if (precision > max_double_digits) precision = max_double_digits;
  fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
  if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error) {
    exp += handler.size - cached_exp10 - 1;
    fallback_format(value, handler.precision, specs.binary32, buf, exp);
  } else {
    exp += handler.exp10;
    buf.try_resize(to_unsigned(handler.size));
  }
  if (!fixed && !specs.showpoint) {
    // Remove trailing zeros.
    auto num_digits = buf.size();
    while (num_digits > 0 && buf[num_digits - 1] == '0') {
      --num_digits;
      ++exp;
    }
    buf.try_resize(num_digits);
  }
  return exp;
}  // namespace detail

template <typename T>
int snprintf_float(T value, int precision, float_specs specs,
                   buffer<char>& buf) {
  // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
  FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
  static_assert(!std::is_same<T, float>::value, "");

  // Subtract 1 to account for the difference in precision since we use %e for
  // both general and exponent format.
  if (specs.format == float_format::general ||
      specs.format == float_format::exp)
    precision = (precision >= 0 ? precision : 6) - 1;

  // Build the format string.
  enum { max_format_size = 7 };  // The longest format is "%#.*Le".
  char format[max_format_size];
  char* format_ptr = format;
  *format_ptr++ = '%';
  if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#';
  if (precision >= 0) {
    *format_ptr++ = '.';
    *format_ptr++ = '*';
  }
  if (std::is_same<T, long double>()) *format_ptr++ = 'L';
  *format_ptr++ = specs.format != float_format::hex
                      ? (specs.format == float_format::fixed ? 'f' : 'e')
                      : (specs.upper ? 'A' : 'a');
  *format_ptr = '\0';

  // Format using snprintf.
  auto offset = buf.size();
  for (;;) {
    auto begin = buf.data() + offset;
    auto capacity = buf.capacity() - offset;
#ifdef FMT_FUZZ
    if (precision > 100000)
      throw std::runtime_error(
          "fuzz mode - avoid large allocation inside snprintf");
#endif
    // Suppress the warning about a nonliteral format string.
    // Cannot use auto because of a bug in MinGW (#1532).
    int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
    int result = precision >= 0
                     ? snprintf_ptr(begin, capacity, format, precision, value)
                     : snprintf_ptr(begin, capacity, format, value);
    if (result < 0) {
      // The buffer will grow exponentially.
      buf.try_reserve(buf.capacity() + 1);
      continue;
    }
    auto size = to_unsigned(result);
    // Size equal to capacity means that the last character was truncated.
    if (size >= capacity) {
      buf.try_reserve(size + offset + 1);  // Add 1 for the terminating '\0'.
      continue;
    }
    auto is_digit = [](char c) { return c >= '0' && c <= '9'; };
    if (specs.format == float_format::fixed) {
      if (precision == 0) {
        buf.try_resize(size);
        return 0;
      }
      // Find and remove the decimal point.
      auto end = begin + size, p = end;
      do {
        --p;
      } while (is_digit(*p));
      int fraction_size = static_cast<int>(end - p - 1);
      std::memmove(p, p + 1, to_unsigned(fraction_size));
      buf.try_resize(size - 1);
      return -fraction_size;
    }
    if (specs.format == float_format::hex) {
      buf.try_resize(size + offset);
      return 0;
    }
    // Find and parse the exponent.
    auto end = begin + size, exp_pos = end;
    do {
      --exp_pos;
    } while (*exp_pos != 'e');
    char sign = exp_pos[1];
    assert(sign == '+' || sign == '-');
    int exp = 0;
    auto p = exp_pos + 2;  // Skip 'e' and sign.
    do {
      assert(is_digit(*p));
      exp = exp * 10 + (*p++ - '0');
    } while (p != end);
    if (sign == '-') exp = -exp;
    int fraction_size = 0;
    if (exp_pos != begin + 1) {
      // Remove trailing zeros.
      auto fraction_end = exp_pos - 1;
      while (*fraction_end == '0') --fraction_end;
      // Move the fractional part left to get rid of the decimal point.
      fraction_size = static_cast<int>(fraction_end - begin - 1);
      std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size));
    }
    buf.try_resize(to_unsigned(fraction_size) + offset + 1);
    return exp - fraction_size;
  }
}

// A public domain branchless UTF-8 decoder by Christopher Wellons:
// https://github.com/skeeto/branchless-utf8
/* Decode the next character, c, from buf, reporting errors in e.
 *
 * Since this is a branchless decoder, four bytes will be read from the
 * buffer regardless of the actual length of the next character. This
 * means the buffer _must_ have at least three bytes of zero padding
 * following the end of the data stream.
 *
 * Errors are reported in e, which will be non-zero if the parsed
 * character was somehow invalid: invalid byte sequence, non-canonical
 * encoding, or a surrogate half.
 *
 * The function returns a pointer to the next character. When an error
 * occurs, this pointer will be a guess that depends on the particular
 * error, but it will always advance at least one byte.
 */
inline const char* utf8_decode(const char* buf, uint32_t* c, int* e) {
  static const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
  static const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
  static const int shiftc[] = {0, 18, 12, 6, 0};
  static const int shifte[] = {0, 6, 4, 2, 0};

  int len = code_point_length(buf);
  const char* next = buf + len;

  // Assume a four-byte character and load four bytes. Unused bits are
  // shifted out.
  auto s = reinterpret_cast<const unsigned char*>(buf);
  *c = uint32_t(s[0] & masks[len]) << 18;
  *c |= uint32_t(s[1] & 0x3f) << 12;
  *c |= uint32_t(s[2] & 0x3f) << 6;
  *c |= uint32_t(s[3] & 0x3f) << 0;
  *c >>= shiftc[len];

  // Accumulate the various error conditions.
  *e = (*c < mins[len]) << 6;       // non-canonical encoding
  *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
  *e |= (*c > 0x10FFFF) << 8;       // out of range?
  *e |= (s[1] & 0xc0) >> 2;
  *e |= (s[2] & 0xc0) >> 4;
  *e |= (s[3]) >> 6;
  *e ^= 0x2a;  // top two bits of each tail byte correct?
  *e >>= shifte[len];

  return next;
}

struct stringifier {
  template <typename T> FMT_INLINE std::string operator()(T value) const {
    return to_string(value);
  }
  std::string operator()(basic_format_arg<format_context>::handle h) const {
    memory_buffer buf;
    format_parse_context parse_ctx({});
    format_context format_ctx(buffer_appender<char>(buf), {}, {});
    h.format(parse_ctx, format_ctx);
    return to_string(buf);
  }
};
}  // namespace detail

template <> struct formatter<detail::bigint> {
  format_parse_context::iterator parse(format_parse_context& ctx) {
    return ctx.begin();
  }

  format_context::iterator format(const detail::bigint& n,
                                  format_context& ctx) {
    auto out = ctx.out();
    bool first = true;
    for (auto i = n.bigits_.size(); i > 0; --i) {
      auto value = n.bigits_[i - 1u];
      if (first) {
        out = format_to(out, "{:x}", value);
        first = false;
        continue;
      }
      out = format_to(out, "{:08x}", value);
    }
    if (n.exp_ > 0)
      out = format_to(out, "p{}", n.exp_ * detail::bigint::bigit_bits);
    return out;
  }
};

FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
  auto transcode = [this](const char* p) {
    auto cp = uint32_t();
    auto error = 0;
    p = utf8_decode(p, &cp, &error);
    if (error != 0) FMT_THROW(std::runtime_error("invalid utf8"));
    if (cp <= 0xFFFF) {
      buffer_.push_back(static_cast<wchar_t>(cp));
    } else {
      cp -= 0x10000;
      buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
      buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
    }
    return p;
  };
  auto p = s.data();
  const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
  if (s.size() >= block_size) {
    for (auto end = p + s.size() - block_size + 1; p < end;) p = transcode(p);
  }
  if (auto num_chars_left = s.data() + s.size() - p) {
    char buf[2 * block_size - 1] = {};
    memcpy(buf, p, to_unsigned(num_chars_left));
    p = buf;
    do {
      p = transcode(p);
    } while (p - buf < num_chars_left);
  }
  buffer_.push_back(0);
}

FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
                                  string_view message) FMT_NOEXCEPT {
  FMT_TRY {
    memory_buffer buf;
    buf.resize(inline_buffer_size);
    for (;;) {
      char* system_message = &buf[0];
      int result =
          detail::safe_strerror(error_code, system_message, buf.size());
      if (result == 0) {
        format_to(detail::buffer_appender<char>(out), "{}: {}", message,
                  system_message);
        return;
      }
      if (result != ERANGE)
        break;  // Can't get error message, report error code instead.
      buf.resize(buf.size() * 2);
    }
  }
  FMT_CATCH(...) {}
  format_error_code(out, error_code, message);
}

FMT_FUNC void detail::error_handler::on_error(const char* message) {
  FMT_THROW(format_error(message));
}

FMT_FUNC void report_system_error(int error_code,
                                  fmt::string_view message) FMT_NOEXCEPT {
  report_error(format_system_error, error_code, message);
}

FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) {
  if (format_str.size() == 2 && equal2(format_str.data(), "{}")) {
    auto arg = args.get(0);
    if (!arg) error_handler().on_error("argument not found");
    return visit_format_arg(stringifier(), arg);
  }
  memory_buffer buffer;
  detail::vformat_to(buffer, format_str, args);
  return to_string(buffer);
}

#ifdef _WIN32
namespace detail {
using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>;
extern "C" __declspec(dllimport) int __stdcall WriteConsoleW(  //
    void*, const void*, dword, dword*, void*);
}  // namespace detail
#endif

FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
  memory_buffer buffer;
  detail::vformat_to(buffer, format_str,
                     basic_format_args<buffer_context<char>>(args));
#ifdef _WIN32
  auto fd = _fileno(f);
  if (_isatty(fd)) {
    detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size()));
    auto written = detail::dword();
    if (!detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)),
                               u16.c_str(), static_cast<uint32_t>(u16.size()),
                               &written, nullptr)) {
      FMT_THROW(format_error("failed to write to console"));
    }
    return;
  }
#endif
  detail::fwrite_fully(buffer.data(), 1, buffer.size(), f);
}

#ifdef _WIN32
// Print assuming legacy (non-Unicode) encoding.
FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
                                      format_args args) {
  memory_buffer buffer;
  detail::vformat_to(buffer, format_str,
                     basic_format_args<buffer_context<char>>(args));
  fwrite_fully(buffer.data(), 1, buffer.size(), f);
}
#endif

FMT_FUNC void vprint(string_view format_str, format_args args) {
  vprint(stdout, format_str, args);
}

FMT_END_NAMESPACE

#endif  // FMT_FORMAT_INL_H_