Files @ r24213:10613c2a6ba0
Branch filter:

Location: cpp/openttd-patchpack/source/src/core/kdtree.hpp

Michael Lutz
Codechange: Store GS lang texts in std::strings.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file kdtree.hpp K-d tree template specialised for 2-dimensional Manhattan geometry */

#ifndef KDTREE_HPP
#define KDTREE_HPP

#include "../stdafx.h"
#include <vector>
#include <algorithm>
#include <limits>

/**
 * K-dimensional tree, specialised for 2-dimensional space.
 * This is not intended as a primary storage of data, but as an index into existing data.
 * Usually the type stored by this tree should be an index into an existing array.
 *
 * This implementation assumes Manhattan distances are used.
 *
 * Be careful when using this in game code, depending on usage pattern, the tree shape may
 * end up different for different clients in multiplayer, causing iteration order to differ
 * and possibly having elements returned in different order. The using code should be designed
 * to produce the same result regardless of iteration order.
 *
 * The element type T must be less-than comparable for FindNearest to work.
 *
 * @tparam T       Type stored in the tree, should be cheap to copy.
 * @tparam TxyFunc Functor type to extract coordinate from a T value and dimension index (0 or 1).
 * @tparam CoordT  Type of coordinate values extracted via TxyFunc.
 * @tparam DistT   Type to use for representing distance values.
 */
template <typename T, typename TxyFunc, typename CoordT, typename DistT>
class Kdtree {
	/** Type of a node in the tree */
	struct node {
		T      element;  ///< Element stored at node
		size_t left;     ///< Index of node to the left, INVALID_NODE if none
		size_t right;    ///< Index of node to the right, INVALID_NODE if none

		node(T element) : element(element), left(INVALID_NODE), right(INVALID_NODE) { }
	};

	static const size_t INVALID_NODE = SIZE_MAX; ///< Index value indicating no-such-node

	std::vector<node> nodes;       ///< Pool of all nodes in the tree
	std::vector<size_t> free_list; ///< List of dead indices in the nodes vector
	size_t root;                   ///< Index of root node
	TxyFunc xyfunc;                ///< Functor to extract a coordinate from an element
	size_t unbalanced;             ///< Number approximating how unbalanced the tree might be

	/** Create one new node in the tree, return its index in the pool */
	size_t AddNode(const T &element)
	{
		if (this->free_list.size() == 0) {
			this->nodes.emplace_back(element);
			return this->nodes.size() - 1;
		} else {
			size_t newidx = this->free_list.back();
			this->free_list.pop_back();
			this->nodes[newidx] = node{ element };
			return newidx;
		}
	}

	/** Find a coordinate value to split a range of elements at */
	template <typename It>
	CoordT SelectSplitCoord(It begin, It end, int level)
	{
		It mid = begin + (end - begin) / 2;
		std::nth_element(begin, mid, end, [&](T a, T b) { return this->xyfunc(a, level % 2) < this->xyfunc(b, level % 2); });
		return this->xyfunc(*mid, level % 2);
	}

	/** Construct a subtree from elements between begin and end iterators, return index of root */
	template <typename It>
	size_t BuildSubtree(It begin, It end, int level)
	{
		ptrdiff_t count = end - begin;

		if (count == 0) {
			return INVALID_NODE;
		} else if (count == 1) {
			return this->AddNode(*begin);
		} else if (count > 1) {
			CoordT split_coord = SelectSplitCoord(begin, end, level);
			It split = std::partition(begin, end, [&](T v) { return this->xyfunc(v, level % 2) < split_coord; });
			size_t newidx = this->AddNode(*split);
			this->nodes[newidx].left = this->BuildSubtree(begin, split, level + 1);
			this->nodes[newidx].right = this->BuildSubtree(split + 1, end, level + 1);
			return newidx;
		} else {
			NOT_REACHED();
		}
	}

	/** Rebuild the tree with all existing elements, optionally adding or removing one more */
	bool Rebuild(const T *include_element, const T *exclude_element)
	{
		size_t initial_count = this->Count();
		if (initial_count < 8) return false; // arbitrary value for "not worth rebalancing"

		T root_element = this->nodes[this->root].element;
		std::vector<T> elements = this->FreeSubtree(this->root);
		elements.push_back(root_element);

		if (include_element != nullptr) {
			elements.push_back(*include_element);
			initial_count++;
		}
		if (exclude_element != nullptr) {
			typename std::vector<T>::iterator removed = std::remove(elements.begin(), elements.end(), *exclude_element);
			elements.erase(removed, elements.end());
			initial_count--;
		}

		this->Build(elements.begin(), elements.end());
		assert(initial_count == this->Count());
		return true;
	}

	/** Insert one element in the tree somewhere below node_idx */
	void InsertRecursive(const T &element, size_t node_idx, int level)
	{
		/* Dimension index of current level */
		int dim = level % 2;
		/* Node reference */
		node &n = this->nodes[node_idx];

		/* Coordinate of element splitting at this node */
		CoordT nc = this->xyfunc(n.element, dim);
		/* Coordinate of the new element */
		CoordT ec = this->xyfunc(element, dim);
		/* Which side to insert on */
		size_t &next = (ec < nc) ? n.left : n.right;

		if (next == INVALID_NODE) {
			/* New leaf */
			size_t newidx = this->AddNode(element);
			/* Vector may have been reallocated at this point, n and next are invalid */
			node &nn = this->nodes[node_idx];
			if (ec < nc) nn.left = newidx; else nn.right = newidx;
		} else {
			this->InsertRecursive(element, next, level + 1);
		}
	}

	/**
	 * Free all children of the given node
	 * @return Collection of elements that were removed from tree.
	 */
	std::vector<T> FreeSubtree(size_t node_idx)
	{
		std::vector<T> subtree_elements;
		node &n = this->nodes[node_idx];

		/* We'll be appending items to the free_list, get index of our first item */
		size_t first_free = this->free_list.size();
		/* Prepare the descent with our children */
		if (n.left != INVALID_NODE) this->free_list.push_back(n.left);
		if (n.right != INVALID_NODE) this->free_list.push_back(n.right);
		n.left = n.right = INVALID_NODE;

		/* Recursively free the nodes being collected */
		for (size_t i = first_free; i < this->free_list.size(); i++) {
			node &fn = this->nodes[this->free_list[i]];
			subtree_elements.push_back(fn.element);
			if (fn.left != INVALID_NODE) this->free_list.push_back(fn.left);
			if (fn.right != INVALID_NODE) this->free_list.push_back(fn.right);
			fn.left = fn.right = INVALID_NODE;
		}

		return subtree_elements;
	}

	/**
	 * Find and remove one element from the tree.
	 * @param element   The element to search for
	 * @param node_idx  Sub-tree to search in
	 * @param level     Current depth in the tree
	 * @return New root node index of the sub-tree processed
	 */
	size_t RemoveRecursive(const T &element, size_t node_idx, int level)
	{
		/* Node reference */
		node &n = this->nodes[node_idx];

		if (n.element == element) {
			/* Remove this one */
			this->free_list.push_back(node_idx);
			if (n.left == INVALID_NODE && n.right == INVALID_NODE) {
				/* Simple case, leaf, new child node for parent is "none" */
				return INVALID_NODE;
			} else {
				/* Complex case, rebuild the sub-tree */
				std::vector<T> subtree_elements = this->FreeSubtree(node_idx);
				return this->BuildSubtree(subtree_elements.begin(), subtree_elements.end(), level);;
			}
		} else {
			/* Search in a sub-tree */
			/* Dimension index of current level */
			int dim = level % 2;
			/* Coordinate of element splitting at this node */
			CoordT nc = this->xyfunc(n.element, dim);
			/* Coordinate of the element being removed */
			CoordT ec = this->xyfunc(element, dim);
			/* Which side to remove from */
			size_t next = (ec < nc) ? n.left : n.right;
			assert(next != INVALID_NODE); // node must exist somewhere and must be found before a leaf is reached
			/* Descend */
			size_t new_branch = this->RemoveRecursive(element, next, level + 1);
			if (new_branch != next) {
				/* Vector may have been reallocated at this point, n and next are invalid */
				node &nn = this->nodes[node_idx];
				if (ec < nc) nn.left = new_branch; else nn.right = new_branch;
			}
			return node_idx;
		}
	}


	DistT ManhattanDistance(const T &element, CoordT x, CoordT y) const
	{
		return abs((DistT)this->xyfunc(element, 0) - (DistT)x) + abs((DistT)this->xyfunc(element, 1) - (DistT)y);
	}

	/** A data element and its distance to a searched-for point */
	using node_distance = std::pair<T, DistT>;
	/** Ordering function for node_distance objects, elements with equal distance are ordered by less-than comparison */
	static node_distance SelectNearestNodeDistance(const node_distance &a, const node_distance &b)
	{
		if (a.second < b.second) return a;
		if (b.second < a.second) return b;
		if (a.first < b.first) return a;
		if (b.first < a.first) return b;
		NOT_REACHED(); // a.first == b.first: same element must not be inserted twice
	}
	/** Search a sub-tree for the element nearest to a given point */
	node_distance FindNearestRecursive(CoordT xy[2], size_t node_idx, int level, DistT limit = std::numeric_limits<DistT>::max()) const
	{
		/* Dimension index of current level */
		int dim = level % 2;
		/* Node reference */
		const node &n = this->nodes[node_idx];

		/* Coordinate of element splitting at this node */
		CoordT c = this->xyfunc(n.element, dim);
		/* This node's distance to target */
		DistT thisdist = ManhattanDistance(n.element, xy[0], xy[1]);
		/* Assume this node is the best choice for now */
		node_distance best = std::make_pair(n.element, thisdist);

		/* Next node to visit */
		size_t next = (xy[dim] < c) ? n.left : n.right;
		if (next != INVALID_NODE) {
			/* Check if there is a better node down the tree */
			best = SelectNearestNodeDistance(best, this->FindNearestRecursive(xy, next, level + 1));
		}

		limit = min(best.second, limit);

		/* Check if the distance from current best is worse than distance from target to splitting line,
		 * if it is we also need to check the other side of the split. */
		size_t opposite = (xy[dim] >= c) ? n.left : n.right; // reverse of above
		if (opposite != INVALID_NODE && limit >= abs((int)xy[dim] - (int)c)) {
			node_distance other_candidate = this->FindNearestRecursive(xy, opposite, level + 1, limit);
			best = SelectNearestNodeDistance(best, other_candidate);
		}

		return best;
	}

	template <typename Outputter>
	void FindContainedRecursive(CoordT p1[2], CoordT p2[2], size_t node_idx, int level, Outputter outputter) const
	{
		/* Dimension index of current level */
		int dim = level % 2;
		/* Node reference */
		const node &n = this->nodes[node_idx];

		/* Coordinate of element splitting at this node */
		CoordT ec = this->xyfunc(n.element, dim);
		/* Opposite coordinate of element */
		CoordT oc = this->xyfunc(n.element, 1 - dim);

		/* Test if this element is within rectangle */
		if (ec >= p1[dim] && ec < p2[dim] && oc >= p1[1 - dim] && oc < p2[1 - dim]) outputter(n.element);

		/* Recurse left if part of rectangle is left of split */
		if (p1[dim] < ec && n.left != INVALID_NODE) this->FindContainedRecursive(p1, p2, n.left, level + 1, outputter);

		/* Recurse right if part of rectangle is right of split */
		if (p2[dim] > ec && n.right != INVALID_NODE) this->FindContainedRecursive(p1, p2, n.right, level + 1, outputter);
	}

	/** Debugging function, counts number of occurrences of an element regardless of its correct position in the tree */
	size_t CountValue(const T &element, size_t node_idx) const
	{
		if (node_idx == INVALID_NODE) return 0;
		const node &n = this->nodes[node_idx];
		return CountValue(element, n.left) + CountValue(element, n.right) + ((n.element == element) ? 1 : 0);
	}

	void IncrementUnbalanced(size_t amount = 1)
	{
		this->unbalanced += amount;
	}

	/** Check if the entire tree is in need of rebuilding */
	bool IsUnbalanced()
	{
		size_t count = this->Count();
		if (count < 8) return false;
		return this->unbalanced > this->Count() / 4;
	}

	/** Verify that the invariant is true for a sub-tree, assert if not */
	void CheckInvariant(size_t node_idx, int level, CoordT min_x, CoordT max_x, CoordT min_y, CoordT max_y)
	{
		if (node_idx == INVALID_NODE) return;

		const node &n = this->nodes[node_idx];
		CoordT cx = this->xyfunc(n.element, 0);
		CoordT cy = this->xyfunc(n.element, 1);

		assert(cx >= min_x);
		assert(cx < max_x);
		assert(cy >= min_y);
		assert(cy < max_y);

		if (level % 2 == 0) {
			// split in dimension 0 = x
			CheckInvariant(n.left,  level + 1, min_x, cx, min_y, max_y);
			CheckInvariant(n.right, level + 1, cx, max_x, min_y, max_y);
		} else {
			// split in dimension 1 = y
			CheckInvariant(n.left,  level + 1, min_x, max_x, min_y, cy);
			CheckInvariant(n.right, level + 1, min_x, max_x, cy, max_y);
		}
	}

	/** Verify the invariant for the entire tree, does nothing unless KDTREE_DEBUG is defined */
	void CheckInvariant()
	{
#ifdef KDTREE_DEBUG
		CheckInvariant(this->root, 0, std::numeric_limits<CoordT>::min(), std::numeric_limits<CoordT>::max(), std::numeric_limits<CoordT>::min(), std::numeric_limits<CoordT>::max());
#endif
	}

public:
	/** Construct a new Kdtree with the given xyfunc */
	Kdtree(TxyFunc xyfunc) : root(INVALID_NODE), xyfunc(xyfunc), unbalanced(0) { }

	/**
	 * Clear and rebuild the tree from a new sequence of elements,
	 * @tparam It    Iterator type for element sequence.
	 * @param  begin First element in sequence.
	 * @param  end   One past last element in sequence.
	 */
	template <typename It>
	void Build(It begin, It end)
	{
		this->nodes.clear();
		this->free_list.clear();
		this->unbalanced = 0;
		if (begin == end) return;
		this->nodes.reserve(end - begin);

		this->root = this->BuildSubtree(begin, end, 0);
		CheckInvariant();
	}

	/**
	 * Clear the tree.
	 */
	void Clear()
	{
		this->nodes.clear();
		this->free_list.clear();
		this->unbalanced = 0;
		return;
	}

	/**
	 * Reconstruct the tree with the same elements, letting it be fully balanced.
	 */
	void Rebuild()
	{
		this->Rebuild(nullptr, nullptr);
	}

	/**
	 * Insert a single element in the tree.
	 * Repeatedly inserting single elements may cause the tree to become unbalanced.
	 * Undefined behaviour if the element already exists in the tree.
	 */
	void Insert(const T &element)
	{
		if (this->Count() == 0) {
			this->root = this->AddNode(element);
		} else {
			if (!this->IsUnbalanced() || !this->Rebuild(&element, nullptr)) {
				this->InsertRecursive(element, this->root, 0);
				this->IncrementUnbalanced();
			}
			CheckInvariant();
		}
	}

	/**
	 * Remove a single element from the tree, if it exists.
	 * Since elements are stored in interior nodes as well as leaf nodes, removing one may
	 * require a larger sub-tree to be re-built. Because of this, worst case run time is
	 * as bad as a full tree rebuild.
	 */
	void Remove(const T &element)
	{
		size_t count = this->Count();
		if (count == 0) return;
		if (!this->IsUnbalanced() || !this->Rebuild(nullptr, &element)) {
			/* If the removed element is the root node, this modifies this->root */
			this->root = this->RemoveRecursive(element, this->root, 0);
			this->IncrementUnbalanced();
		}
		CheckInvariant();
	}

	/** Get number of elements stored in tree */
	size_t Count() const
	{
		assert(this->free_list.size() <= this->nodes.size());
		return this->nodes.size() - this->free_list.size();
	}

	/**
	 * Find the element closest to given coordinate, in Manhattan distance.
	 * For multiple elements with the same distance, the one comparing smaller with
	 * a less-than comparison is chosen.
	 */
	T FindNearest(CoordT x, CoordT y) const
	{
		assert(this->Count() > 0);

		CoordT xy[2] = { x, y };
		return this->FindNearestRecursive(xy, this->root, 0).first;
	}

	/**
	* Find all items contained within the given rectangle.
	* @note Start coordinates are inclusive, end coordinates are exclusive. x1<x2 && y1<y2 is a precondition.
	* @param x1 Start first coordinate, points found are greater or equals to this.
	* @param y1 Start second coordinate, points found are greater or equals to this.
	* @param x2 End first coordinate, points found are less than this.
	* @param y2 End second coordinate, points found are less than this.
	* @param outputter Callback used to return values from the search.
	*/
	template <typename Outputter>
	void FindContained(CoordT x1, CoordT y1, CoordT x2, CoordT y2, Outputter outputter) const
	{
		assert(x1 < x2);
		assert(y1 < y2);

		if (this->Count() == 0) return;

		CoordT p1[2] = { x1, y1 };
		CoordT p2[2] = { x2, y2 };
		this->FindContainedRecursive(p1, p2, this->root, 0, outputter);
	}

	/**
	 * Find all items contained within the given rectangle.
	 * @note End coordinates are exclusive, x1<x2 && y1<y2 is a precondition.
	 */
	std::vector<T> FindContained(CoordT x1, CoordT y1, CoordT x2, CoordT y2) const
	{
		std::vector<T> result;
		this->FindContained(x1, y1, x2, y2, [&result](T e) {result.push_back(e); });
		return result;
	}
};

#endif