Files
@ r28498:139f88c72711
Branch filter:
Location: cpp/openttd-patchpack/source/src/core/bitmath_func.hpp
r28498:139f88c72711
12.2 KiB
text/x-c++hdr
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | /*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file bitmath_func.hpp Functions related to bit mathematics. */
#ifndef BITMATH_FUNC_HPP
#define BITMATH_FUNC_HPP
/**
* Fetch \a n bits from \a x, started at bit \a s.
*
* This function can be used to fetch \a n bits from the value \a x. The
* \a s value set the start position to read. The start position is
* count from the LSB and starts at \c 0. The result starts at a
* LSB, as this isn't just an and-bitmask but also some
* bit-shifting operations. GB(0xFF, 2, 1) will so
* return 0x01 (0000 0001) instead of
* 0x04 (0000 0100).
*
* @param x The value to read some bits.
* @param s The start position to read some bits.
* @param n The number of bits to read.
* @pre n < sizeof(T) * 8
* @pre s + n <= sizeof(T) * 8
* @return The selected bits, aligned to a LSB.
*/
template <typename T>
debug_inline constexpr static uint GB(const T x, const uint8_t s, const uint8_t n)
{
return (x >> s) & (((T)1U << n) - 1);
}
/**
* Set \a n bits in \a x starting at bit \a s to \a d
*
* This function sets \a n bits from \a x which started as bit \a s to the value of
* \a d. The parameters \a x, \a s and \a n works the same as the parameters of
* #GB. The result is saved in \a x again. Unused bits in the window
* provided by n are set to 0 if the value of \a d isn't "big" enough.
* This is not a bug, its a feature.
*
* @note Parameter \a x must be a variable as the result is saved there.
* @note To avoid unexpected results the value of \a d should not use more
* space as the provided space of \a n bits (log2)
* @param x The variable to change some bits
* @param s The start position for the new bits
* @param n The size/window for the new bits
* @param d The actually new bits to save in the defined position.
* @pre n < sizeof(T) * 8
* @pre s + n <= sizeof(T) * 8
* @return The new value of \a x
*/
template <typename T, typename U>
inline T SB(T &x, const uint8_t s, const uint8_t n, const U d)
{
x &= (T)(~((((T)1U << n) - 1) << s));
x |= (T)(d << s);
return x;
}
/**
* Add \a i to \a n bits of \a x starting at bit \a s.
*
* This adds the value of \a i on \a n bits of \a x starting at bit \a s. The parameters \a x,
* \a s, \a i are similar to #GB. Besides, \ a x must be a variable as the result are
* saved there. An overflow does not affect the following bits of the given
* bit window and is simply ignored.
*
* @note Parameter x must be a variable as the result is saved there.
* @param x The variable to add some bits at some position
* @param s The start position of the addition
* @param n The size/window for the addition
* @pre n < sizeof(T) * 8
* @pre s + n <= sizeof(T) * 8
* @param i The value to add at the given start position in the given window.
* @return The new value of \a x
*/
template <typename T, typename U>
inline T AB(T &x, const uint8_t s, const uint8_t n, const U i)
{
const T mask = ((((T)1U << n) - 1) << s);
x = (T)((x & ~mask) | ((x + (i << s)) & mask));
return x;
}
/**
* Checks if a bit in a value is set.
*
* This function checks if a bit inside a value is set or not.
* The \a y value specific the position of the bit, started at the
* LSB and count from \c 0.
*
* @param x The value to check
* @param y The position of the bit to check, started from the LSB
* @pre y < sizeof(T) * 8
* @return True if the bit is set, false else.
*/
template <typename T>
debug_inline static bool HasBit(const T x, const uint8_t y)
{
return (x & ((T)1U << y)) != 0;
}
/**
* Set a bit in a variable.
*
* This function sets a bit in a variable. The variable is changed
* and the value is also returned. Parameter y defines the bit and
* starts at the LSB with 0.
*
* @param x The variable to set a bit
* @param y The bit position to set
* @pre y < sizeof(T) * 8
* @return The new value of the old value with the bit set
*/
template <typename T>
inline T SetBit(T &x, const uint8_t y)
{
return x = (T)(x | ((T)1U << y));
}
/**
* Sets several bits in a variable.
*
* This macro sets several bits in a variable. The bits to set are provided
* by a value. The new value is also returned.
*
* @param x The variable to set some bits
* @param y The value with set bits for setting them in the variable
* @return The new value of x
*/
#define SETBITS(x, y) ((x) |= (y))
/**
* Clears a bit in a variable.
*
* This function clears a bit in a variable. The variable is
* changed and the value is also returned. Parameter y defines the bit
* to clear and starts at the LSB with 0.
*
* @param x The variable to clear the bit
* @param y The bit position to clear
* @pre y < sizeof(T) * 8
* @return The new value of the old value with the bit cleared
*/
template <typename T>
inline T ClrBit(T &x, const uint8_t y)
{
return x = (T)(x & ~((T)1U << y));
}
/**
* Clears several bits in a variable.
*
* This macro clears several bits in a variable. The bits to clear are
* provided by a value. The new value is also returned.
*
* @param x The variable to clear some bits
* @param y The value with set bits for clearing them in the variable
* @return The new value of x
*/
#define CLRBITS(x, y) ((x) &= ~(y))
/**
* Toggles a bit in a variable.
*
* This function toggles a bit in a variable. The variable is
* changed and the value is also returned. Parameter y defines the bit
* to toggle and starts at the LSB with 0.
*
* @param x The variable to toggle the bit
* @param y The bit position to toggle
* @pre y < sizeof(T) * 8
* @return The new value of the old value with the bit toggled
*/
template <typename T>
inline T ToggleBit(T &x, const uint8_t y)
{
return x = (T)(x ^ ((T)1U << y));
}
/** Lookup table to check which bit is set in a 6 bit variable */
extern const uint8_t _ffb_64[64];
/**
* Returns the first non-zero bit in a 6-bit value (from right).
*
* Returns the position of the first bit that is not zero, counted from the
* LSB. Ie, 110100 returns 2, 000001 returns 0, etc. When x == 0 returns
* 0.
*
* @param x The 6-bit value to check the first zero-bit
* @return The first position of a bit started from the LSB or 0 if x is 0.
*/
#define FIND_FIRST_BIT(x) _ffb_64[(x)]
/**
* Finds the position of the first non-zero bit in an integer.
*
* This function returns the position of the first bit set in the
* integer. It does only check the bits of the bitmask
* 0x3F3F (0011111100111111) and checks only the
* bits of the bitmask 0x3F00 if and only if the
* lower part 0x00FF is 0. This results the bits at 0x00C0 must
* be also zero to check the bits at 0x3F00.
*
* @param value The value to check the first bits
* @return The position of the first bit which is set
* @see FIND_FIRST_BIT
*/
inline uint8_t FindFirstBit2x64(const int value)
{
if ((value & 0xFF) == 0) {
return FIND_FIRST_BIT((value >> 8) & 0x3F) + 8;
} else {
return FIND_FIRST_BIT(value & 0x3F);
}
}
uint8_t FindFirstBit(uint64_t x);
uint8_t FindLastBit(uint64_t x);
/**
* Clear the first bit in an integer.
*
* This function returns a value where the first bit (from LSB)
* is cleared.
* So, 110100 returns 110000, 000001 returns 000000, etc.
*
* @param value The value to clear the first bit
* @return The new value with the first bit cleared
*/
template <typename T>
inline T KillFirstBit(T value)
{
return value &= (T)(value - 1);
}
/**
* Counts the number of set bits in a variable.
*
* @param value the value to count the number of bits in.
* @return the number of bits.
*/
template <typename T>
inline uint CountBits(T value)
{
uint num;
/* This loop is only called once for every bit set by clearing the lowest
* bit in each loop. The number of bits is therefore equal to the number of
* times the loop was called. It was found at the following website:
* http://graphics.stanford.edu/~seander/bithacks.html */
for (num = 0; value != 0; num++) {
value &= (T)(value - 1);
}
return num;
}
/**
* Test whether \a value has exactly 1 bit set
*
* @param value the value to test.
* @return does \a value have exactly 1 bit set?
*/
template <typename T>
inline bool HasExactlyOneBit(T value)
{
return value != 0 && (value & (value - 1)) == 0;
}
/**
* Test whether \a value has at most 1 bit set
*
* @param value the value to test.
* @return does \a value have at most 1 bit set?
*/
template <typename T>
inline bool HasAtMostOneBit(T value)
{
return (value & (value - 1)) == 0;
}
/**
* ROtate \a x Left by \a n
*
* @note Assumes a byte has 8 bits
* @param x The value which we want to rotate
* @param n The number how many we want to rotate
* @pre n < sizeof(T) * 8
* @return A bit rotated number
*/
template <typename T>
inline T ROL(const T x, const uint8_t n)
{
if (n == 0) return x;
return (T)(x << n | x >> (sizeof(x) * 8 - n));
}
/**
* ROtate \a x Right by \a n
*
* @note Assumes a byte has 8 bits
* @param x The value which we want to rotate
* @param n The number how many we want to rotate
* @pre n < sizeof(T) * 8
* @return A bit rotated number
*/
template <typename T>
inline T ROR(const T x, const uint8_t n)
{
if (n == 0) return x;
return (T)(x >> n | x << (sizeof(x) * 8 - n));
}
/**
* Iterable ensemble of each set bit in a value.
* @tparam Tbitpos Type of the position variable.
* @tparam Tbitset Type of the bitset value.
*/
template <typename Tbitpos = uint, typename Tbitset = uint>
struct SetBitIterator {
struct Iterator {
typedef Tbitpos value_type;
typedef value_type *pointer;
typedef value_type &reference;
typedef size_t difference_type;
typedef std::forward_iterator_tag iterator_category;
explicit Iterator(Tbitset bitset) : bitset(bitset), bitpos(static_cast<Tbitpos>(0))
{
this->Validate();
}
bool operator==(const Iterator &other) const
{
return this->bitset == other.bitset && (this->bitset == 0 || this->bitpos == other.bitpos);
}
bool operator!=(const Iterator &other) const { return !(*this == other); }
Tbitpos operator*() const { return this->bitpos; }
Iterator & operator++() { this->Next(); this->Validate(); return *this; }
private:
Tbitset bitset;
Tbitpos bitpos;
void Validate()
{
while (this->bitset != 0 && (this->bitset & 1) == 0) this->Next();
}
void Next()
{
this->bitset = static_cast<Tbitset>(this->bitset >> 1);
this->bitpos++;
}
};
SetBitIterator(Tbitset bitset) : bitset(bitset) {}
Iterator begin() { return Iterator(this->bitset); }
Iterator end() { return Iterator(static_cast<Tbitset>(0)); }
bool empty() { return this->begin() == this->end(); }
private:
Tbitset bitset;
};
#if defined(__APPLE__)
/* Make endian swapping use Apple's macros to increase speed
* (since it will use hardware swapping if available).
* Even though they should return uint16_t and uint32_t, we get
* warnings if we don't cast those (why?) */
# define BSWAP32(x) (static_cast<uint32_t>(CFSwapInt32(x)))
# define BSWAP16(x) (static_cast<uint16_t>(CFSwapInt16(x)))
#elif defined(_MSC_VER)
/* MSVC has intrinsics for swapping, resulting in faster code */
# define BSWAP32(x) (_byteswap_ulong(x))
# define BSWAP16(x) (_byteswap_ushort(x))
#else
/**
* Perform a 32 bits endianness bitswap on x.
* @param x the variable to bitswap
* @return the bitswapped value.
*/
static inline uint32_t BSWAP32(uint32_t x)
{
#if !defined(__ICC) && defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && __GNUC_MINOR__ >= 3))
/* GCC >= 4.3 provides a builtin, resulting in faster code */
return static_cast<uint32_t>(__builtin_bswap32(static_cast<int32_t>(x)));
#else
return ((x >> 24) & 0xFF) | ((x >> 8) & 0xFF00) | ((x << 8) & 0xFF0000) | ((x << 24) & 0xFF000000);
#endif /* defined(__GNUC__) */
}
/**
* Perform a 16 bits endianness bitswap on x.
* @param x the variable to bitswap
* @return the bitswapped value.
*/
static inline uint16_t BSWAP16(uint16_t x)
{
return (x >> 8) | (x << 8);
}
#endif /* __APPLE__ */
#endif /* BITMATH_FUNC_HPP */
|