Files @ r28333:19d577fdcc29
Branch filter:

Location: cpp/openttd-patchpack/source/src/blitter/32bpp_sse_func.hpp

Peter Nelson
Change: Scale sprites to requested highest resolution level. (#11600)

Sprites from graphics sets which only provide high resolution sprites are now scaled up from scaled down versions.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file 32bpp_sse_func.hpp Functions related to SSE 32 bpp blitter. */

#ifndef BLITTER_32BPP_SSE_FUNC_HPP
#define BLITTER_32BPP_SSE_FUNC_HPP

#ifdef WITH_SSE

GNU_TARGET(SSE_TARGET)
static inline void InsertFirstUint32(const uint32_t value, __m128i &into)
{
#if (SSE_VERSION >= 4)
	into = _mm_insert_epi32(into, value, 0);
#else
	into = _mm_insert_epi16(into, value, 0);
	into = _mm_insert_epi16(into, value >> 16, 1);
#endif
}

GNU_TARGET(SSE_TARGET)
static inline void InsertSecondUint32(const uint32_t value, __m128i &into)
{
#if (SSE_VERSION >= 4)
	into = _mm_insert_epi32(into, value, 1);
#else
	into = _mm_insert_epi16(into, value, 2);
	into = _mm_insert_epi16(into, value >> 16, 3);
#endif
}

GNU_TARGET(SSE_TARGET)
static inline void LoadUint64(const uint64_t value, __m128i &into)
{
#ifdef POINTER_IS_64BIT
	into = _mm_cvtsi64_si128(value);
#else
	#if (SSE_VERSION >= 4)
		into = _mm_cvtsi32_si128(value);
		InsertSecondUint32(value >> 32, into);
	#else
		(*(um128i*) &into).m128i_u64[0] = value;
	#endif
#endif
}

GNU_TARGET(SSE_TARGET)
static inline __m128i PackUnsaturated(__m128i from, const __m128i &mask)
{
#if (SSE_VERSION == 2)
	from = _mm_and_si128(from, mask);    // PAND, wipe high bytes to keep low bytes when packing
	return _mm_packus_epi16(from, from); // PACKUSWB, pack 2 colours (with saturation)
#else
	return _mm_shuffle_epi8(from, mask);
#endif
}

GNU_TARGET(SSE_TARGET)
static inline __m128i DistributeAlpha(const __m128i from, const __m128i &mask)
{
#if (SSE_VERSION == 2)
	__m128i alphaAB = _mm_shufflelo_epi16(from, 0x3F); // PSHUFLW, put alpha1 in front of each rgb1
	alphaAB = _mm_shufflehi_epi16(alphaAB, 0x3F);      // PSHUFHW, put alpha2 in front of each rgb2
	return _mm_andnot_si128(mask, alphaAB);            // PANDN, set alpha fields to 0
#else
	return _mm_shuffle_epi8(from, mask);
#endif
}

GNU_TARGET(SSE_TARGET)
static inline __m128i AlphaBlendTwoPixels(__m128i src, __m128i dst, const __m128i &distribution_mask, const __m128i &pack_mask, const __m128i &alpha_mask)
{
	__m128i srcAB = _mm_unpacklo_epi8(src, _mm_setzero_si128());   // PUNPCKLBW, expand each uint8_t into uint16
	__m128i dstAB = _mm_unpacklo_epi8(dst, _mm_setzero_si128());

	__m128i alphaMaskAB = _mm_cmpgt_epi16(srcAB, _mm_setzero_si128()); // PCMPGTW (alpha > 0) ? 0xFFFF : 0
	__m128i alphaAB = _mm_sub_epi16(srcAB, alphaMaskAB);               // if (alpha > 0) a++;
	alphaAB = DistributeAlpha(alphaAB, distribution_mask);

	srcAB = _mm_sub_epi16(srcAB, dstAB);     // PSUBW,    (r - Cr)
	srcAB = _mm_mullo_epi16(srcAB, alphaAB); // PMULLW, a*(r - Cr)
	srcAB = _mm_srli_epi16(srcAB, 8);        // PSRLW,  a*(r - Cr)/256
	srcAB = _mm_add_epi16(srcAB, dstAB);     // PADDW,  a*(r - Cr)/256 + Cr

	alphaMaskAB = _mm_and_si128(alphaMaskAB, alpha_mask); // PAND, set non alpha fields to 0
	srcAB = _mm_or_si128(srcAB, alphaMaskAB);             // POR, set alpha fields to 0xFFFF is src alpha was > 0

	return PackUnsaturated(srcAB, pack_mask);
}

/* Darken 2 pixels.
 * rgb = rgb * ((256/4) * 4 - (alpha/4)) / ((256/4) * 4)
 */
GNU_TARGET(SSE_TARGET)
static inline __m128i DarkenTwoPixels(__m128i src, __m128i dst, const __m128i &distribution_mask, const __m128i &tr_nom_base)
{
	__m128i srcAB = _mm_unpacklo_epi8(src, _mm_setzero_si128());
	__m128i dstAB = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
	__m128i alphaAB = DistributeAlpha(srcAB, distribution_mask);
	alphaAB = _mm_srli_epi16(alphaAB, 2); // Reduce to 64 levels of shades so the max value fits in 16 bits.
	__m128i nom = _mm_sub_epi16(tr_nom_base, alphaAB);
	dstAB = _mm_mullo_epi16(dstAB, nom);
	dstAB = _mm_srli_epi16(dstAB, 8);
	return _mm_packus_epi16(dstAB, dstAB);
}

IGNORE_UNINITIALIZED_WARNING_START
GNU_TARGET(SSE_TARGET)
static Colour ReallyAdjustBrightness(Colour colour, uint8_t brightness)
{
	uint64_t c16 = colour.b | (uint64_t) colour.g << 16 | (uint64_t) colour.r << 32;
	c16 *= brightness;
	uint64_t c16_ob = c16; // Helps out of order execution.
	c16 /= Blitter_32bppBase::DEFAULT_BRIGHTNESS;
	c16 &= 0x01FF01FF01FFULL;

	/* Sum overbright (maximum for each rgb is 508, 9 bits, -255 is changed in -256 so we just have to take the 8 lower bits into account). */
	c16_ob = (((c16_ob >> (8 + 7)) & 0x0100010001ULL) * 0xFF) & c16;
	const uint ob = ((uint16_t) c16_ob + (uint16_t) (c16_ob >> 16) + (uint16_t) (c16_ob >> 32)) / 2;

	const uint32_t alpha32 = colour.data & 0xFF000000;
	__m128i ret;
	LoadUint64(c16, ret);
	if (ob != 0) {
		__m128i ob128 = _mm_cvtsi32_si128(ob);
		ob128 = _mm_shufflelo_epi16(ob128, 0xC0);
		__m128i white = OVERBRIGHT_VALUE_MASK;
		__m128i c128 = ret;
		ret = _mm_subs_epu16(white, c128); // PSUBUSW,   (255 - rgb)
		ret = _mm_mullo_epi16(ret, ob128); // PMULLW, ob*(255 - rgb)
		ret = _mm_srli_epi16(ret, 8);      // PSRLW,  ob*(255 - rgb)/256
		ret = _mm_add_epi16(ret, c128);    // PADDW,  ob*(255 - rgb)/256 + rgb
	}

	ret = _mm_packus_epi16(ret, ret);      // PACKUSWB, saturate and pack.
	return alpha32 | _mm_cvtsi128_si32(ret);
}
IGNORE_UNINITIALIZED_WARNING_STOP

/** ReallyAdjustBrightness() is not called that often.
 * Inlining this function implies a far jump, which has a huge latency.
 */
static inline Colour AdjustBrightneSSE(Colour colour, uint8_t brightness)
{
	/* Shortcut for normal brightness. */
	if (brightness == Blitter_32bppBase::DEFAULT_BRIGHTNESS) return colour;

	return ReallyAdjustBrightness(colour, brightness);
}

GNU_TARGET(SSE_TARGET)
static inline __m128i AdjustBrightnessOfTwoPixels([[maybe_unused]] __m128i from, [[maybe_unused]] uint32_t brightness)
{
#if (SSE_VERSION < 3)
	NOT_REACHED();
#else
	/* The following dataflow differs from the one of AdjustBrightness() only for alpha.
	 * In order to keep alpha in colAB, insert a 1 in a unused brightness byte (a*1->a).
	 * OK, not a 1 but DEFAULT_BRIGHTNESS to compensate the div.
	 */
	brightness &= 0xFF00FF00;
	brightness += Blitter_32bppBase::DEFAULT_BRIGHTNESS;

	__m128i colAB = _mm_unpacklo_epi8(from, _mm_setzero_si128());
	__m128i briAB = _mm_cvtsi32_si128(brightness);
	briAB = _mm_shuffle_epi8(briAB, BRIGHTNESS_LOW_CONTROL_MASK); // DEFAULT_BRIGHTNESS in 0, 0x00 in 2.
	colAB = _mm_mullo_epi16(colAB, briAB);
	__m128i colAB_ob = _mm_srli_epi16(colAB, 8 + 7);
	colAB = _mm_srli_epi16(colAB, 7);

	/* Sum overbright.
	 * Maximum for each rgb is 508 => 9 bits. The highest bit tells if there is overbright.
	 * -255 is changed in -256 so we just have to take the 8 lower bits into account.
	 */
	colAB = _mm_and_si128(colAB, BRIGHTNESS_DIV_CLEANER);
	colAB_ob = _mm_and_si128(colAB_ob, OVERBRIGHT_PRESENCE_MASK);
	colAB_ob = _mm_mullo_epi16(colAB_ob, OVERBRIGHT_VALUE_MASK);
	colAB_ob = _mm_and_si128(colAB_ob, colAB);
	__m128i obAB = _mm_hadd_epi16(_mm_hadd_epi16(colAB_ob, _mm_setzero_si128()), _mm_setzero_si128());

	obAB = _mm_srli_epi16(obAB, 1);        // Reduce overbright strength.
	obAB = _mm_shuffle_epi8(obAB, OVERBRIGHT_CONTROL_MASK);
	__m128i retAB = OVERBRIGHT_VALUE_MASK; // ob_mask is equal to white.
	retAB = _mm_subs_epu16(retAB, colAB);  //    (255 - rgb)
	retAB = _mm_mullo_epi16(retAB, obAB);  // ob*(255 - rgb)
	retAB = _mm_srli_epi16(retAB, 8);      // ob*(255 - rgb)/256
	retAB = _mm_add_epi16(retAB, colAB);   // ob*(255 - rgb)/256 + rgb

	return _mm_packus_epi16(retAB, retAB);
#endif
}

#if FULL_ANIMATION == 0
/**
 * Draws a sprite to a (screen) buffer. It is templated to allow faster operation.
 *
 * @tparam mode blitter mode
 * @param bp further blitting parameters
 * @param zoom zoom level at which we are drawing
 */
IGNORE_UNINITIALIZED_WARNING_START
template <BlitterMode mode, Blitter_32bppSSE2::ReadMode read_mode, Blitter_32bppSSE2::BlockType bt_last, bool translucent>
GNU_TARGET(SSE_TARGET)
#if (SSE_VERSION == 2)
inline void Blitter_32bppSSE2::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
#elif (SSE_VERSION == 3)
inline void Blitter_32bppSSSE3::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
#elif (SSE_VERSION == 4)
inline void Blitter_32bppSSE4::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
#endif
{
	const byte * const remap = bp->remap;
	Colour *dst_line = (Colour *) bp->dst + bp->top * bp->pitch + bp->left;
	int effective_width = bp->width;

	/* Find where to start reading in the source sprite. */
	const SpriteData * const sd = (const SpriteData *) bp->sprite;
	const SpriteInfo * const si = &sd->infos[zoom];
	const MapValue *src_mv_line = (const MapValue *) &sd->data[si->mv_offset] + bp->skip_top * si->sprite_width;
	const Colour *src_rgba_line = (const Colour *) ((const byte *) &sd->data[si->sprite_offset] + bp->skip_top * si->sprite_line_size);

	if (read_mode != RM_WITH_MARGIN) {
		src_rgba_line += bp->skip_left;
		src_mv_line += bp->skip_left;
	}
	const MapValue *src_mv = src_mv_line;

	/* Load these variables into register before loop. */
	const __m128i alpha_and   = ALPHA_AND_MASK;
	#define ALPHA_BLEND_PARAM_3 alpha_and
#if (SSE_VERSION == 2)
	const __m128i clear_hi    = CLEAR_HIGH_BYTE_MASK;
	#define ALPHA_BLEND_PARAM_1 alpha_and
	#define ALPHA_BLEND_PARAM_2 clear_hi
	#define DARKEN_PARAM_1      tr_nom_base
	#define DARKEN_PARAM_2      tr_nom_base
#else
	const __m128i a_cm        = ALPHA_CONTROL_MASK;
	const __m128i pack_low_cm = PACK_LOW_CONTROL_MASK;
	#define ALPHA_BLEND_PARAM_1 a_cm
	#define ALPHA_BLEND_PARAM_2 pack_low_cm
	#define DARKEN_PARAM_1      a_cm
	#define DARKEN_PARAM_2      tr_nom_base
#endif
	const __m128i tr_nom_base = TRANSPARENT_NOM_BASE;

	for (int y = bp->height; y != 0; y--) {
		Colour *dst = dst_line;
		const Colour *src = src_rgba_line + META_LENGTH;
		if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv = src_mv_line;

		if (read_mode == RM_WITH_MARGIN) {
			assert(bt_last == BT_NONE); // or you must ensure block type is preserved
			src += src_rgba_line[0].data;
			dst += src_rgba_line[0].data;
			if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv += src_rgba_line[0].data;
			const int width_diff = si->sprite_width - bp->width;
			effective_width = bp->width - (int) src_rgba_line[0].data;
			const int delta_diff = (int) src_rgba_line[1].data - width_diff;
			const int new_width = effective_width - delta_diff;
			effective_width = delta_diff > 0 ? new_width : effective_width;
			if (effective_width <= 0) goto next_line;
		}

		switch (mode) {
			default:
				if (!translucent) {
					for (uint x = (uint) effective_width; x > 0; x--) {
						if (src->a) *dst = *src;
						src++;
						dst++;
					}
					break;
				}

				for (uint x = (uint) effective_width / 2; x > 0; x--) {
					__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
					__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
					_mm_storel_epi64((__m128i*) dst, AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
					src += 2;
					dst += 2;
				}

				if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) {
					__m128i srcABCD = _mm_cvtsi32_si128(src->data);
					__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
					dst->data = _mm_cvtsi128_si32(AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
				}
				break;

			case BM_COLOUR_REMAP:
#if (SSE_VERSION >= 3)
				for (uint x = (uint) effective_width / 2; x > 0; x--) {
					__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
					__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
					uint32_t mvX2 = *((uint32_t *) const_cast<MapValue *>(src_mv));

					/* Remap colours. */
					if (mvX2 & 0x00FF00FF) {
						#define CMOV_REMAP(m_colour, m_colour_init, m_src, m_m) \
							/* Written so the compiler uses CMOV. */ \
							Colour m_colour = m_colour_init; \
							{ \
							const Colour srcm = (Colour) (m_src); \
							const uint m = (byte) (m_m); \
							const uint r = remap[m]; \
							const Colour cmap = (this->LookupColourInPalette(r).data & 0x00FFFFFF) | (srcm.data & 0xFF000000); \
							m_colour = r == 0 ? m_colour : cmap; \
							m_colour = m != 0 ? m_colour : srcm; \
							}
#ifdef POINTER_IS_64BIT
						uint64_t srcs = _mm_cvtsi128_si64(srcABCD);
						uint64_t remapped_src = 0;
						CMOV_REMAP(c0, 0, srcs, mvX2);
						remapped_src = c0.data;
						CMOV_REMAP(c1, 0, srcs >> 32, mvX2 >> 16);
						remapped_src |= (uint64_t) c1.data << 32;
						srcABCD = _mm_cvtsi64_si128(remapped_src);
#else
						Colour remapped_src[2];
						CMOV_REMAP(c0, 0, _mm_cvtsi128_si32(srcABCD), mvX2);
						remapped_src[0] = c0.data;
						CMOV_REMAP(c1, 0, src[1], mvX2 >> 16);
						remapped_src[1] = c1.data;
						srcABCD = _mm_loadl_epi64((__m128i*) &remapped_src);
#endif

						if ((mvX2 & 0xFF00FF00) != 0x80008000) srcABCD = AdjustBrightnessOfTwoPixels(srcABCD, mvX2);
					}

					/* Blend colours. */
					_mm_storel_epi64((__m128i *) dst, AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
					dst += 2;
					src += 2;
					src_mv += 2;
				}

				if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) {
#else
				for (uint x = (uint) effective_width; x > 0; x--) {
#endif
					/* In case the m-channel is zero, do not remap this pixel in any way. */
					__m128i srcABCD;
					if (src_mv->m) {
						const uint r = remap[src_mv->m];
						if (r != 0) {
							Colour remapped_colour = AdjustBrightneSSE(this->LookupColourInPalette(r), src_mv->v);
							if (src->a == 255) {
								*dst = remapped_colour;
							} else {
								remapped_colour.a = src->a;
								srcABCD = _mm_cvtsi32_si128(remapped_colour.data);
								goto bmcr_alpha_blend_single;
							}
						}
					} else {
						srcABCD = _mm_cvtsi32_si128(src->data);
						if (src->a < 255) {
bmcr_alpha_blend_single:
							__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
							srcABCD = AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3);
						}
						dst->data = _mm_cvtsi128_si32(srcABCD);
					}
#if (SSE_VERSION == 2)
					src_mv++;
					dst++;
					src++;
#endif
				}
				break;

			case BM_TRANSPARENT:
				/* Make the current colour a bit more black, so it looks like this image is transparent. */
				for (uint x = (uint) bp->width / 2; x > 0; x--) {
					__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
					__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
					_mm_storel_epi64((__m128i *) dst, DarkenTwoPixels(srcABCD, dstABCD, DARKEN_PARAM_1, DARKEN_PARAM_2));
					src += 2;
					dst += 2;
				}

				if ((bt_last == BT_NONE && bp->width & 1) || bt_last == BT_ODD) {
					__m128i srcABCD = _mm_cvtsi32_si128(src->data);
					__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
					dst->data = _mm_cvtsi128_si32(DarkenTwoPixels(srcABCD, dstABCD, DARKEN_PARAM_1, DARKEN_PARAM_2));
				}
				break;

			case BM_TRANSPARENT_REMAP:
				/* Apply custom transparency remap. */
				for (uint x = (uint) bp->width; x > 0; x--) {
					if (src->a != 0) {
						*dst = this->LookupColourInPalette(bp->remap[GetNearestColourIndex(*dst)]);
					}
					src_mv++;
					dst++;
					src++;
				}
				break;

			case BM_CRASH_REMAP:
				for (uint x = (uint) bp->width; x > 0; x--) {
					if (src_mv->m == 0) {
						if (src->a != 0) {
							uint8_t g = MakeDark(src->r, src->g, src->b);
							*dst = ComposeColourRGBA(g, g, g, src->a, *dst);
						}
					} else {
						uint r = remap[src_mv->m];
						if (r != 0) *dst = ComposeColourPANoCheck(this->AdjustBrightness(this->LookupColourInPalette(r), src_mv->v), src->a, *dst);
					}
					src_mv++;
					dst++;
					src++;
				}
				break;

			case BM_BLACK_REMAP:
				for (uint x = (uint) bp->width; x > 0; x--) {
					if (src->a != 0) {
						*dst = Colour(0, 0, 0);
					}
					src_mv++;
					dst++;
					src++;
				}
				break;
		}

next_line:
		if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv_line += si->sprite_width;
		src_rgba_line = (const Colour*) ((const byte*) src_rgba_line + si->sprite_line_size);
		dst_line += bp->pitch;
	}
}
IGNORE_UNINITIALIZED_WARNING_STOP

/**
 * Draws a sprite to a (screen) buffer. Calls adequate templated function.
 *
 * @param bp further blitting parameters
 * @param mode blitter mode
 * @param zoom zoom level at which we are drawing
 */
#if (SSE_VERSION == 2)
void Blitter_32bppSSE2::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
#elif (SSE_VERSION == 3)
void Blitter_32bppSSSE3::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
#elif (SSE_VERSION == 4)
void Blitter_32bppSSE4::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
#endif
{
	switch (mode) {
		default: {
			if (bp->skip_left != 0 || bp->width <= MARGIN_NORMAL_THRESHOLD) {
bm_normal:
				const BlockType bt_last = (BlockType) (bp->width & 1);
				switch (bt_last) {
					default:     Draw<BM_NORMAL, RM_WITH_SKIP, BT_EVEN, true>(bp, zoom); return;
					case BT_ODD: Draw<BM_NORMAL, RM_WITH_SKIP, BT_ODD, true>(bp, zoom); return;
				}
			} else {
				if (((const Blitter_32bppSSE_Base::SpriteData *) bp->sprite)->flags & SF_TRANSLUCENT) {
					Draw<BM_NORMAL, RM_WITH_MARGIN, BT_NONE, true>(bp, zoom);
				} else {
					Draw<BM_NORMAL, RM_WITH_MARGIN, BT_NONE, false>(bp, zoom);
				}
				return;
			}
			break;
		}
		case BM_COLOUR_REMAP:
			if (((const Blitter_32bppSSE_Base::SpriteData *) bp->sprite)->flags & SF_NO_REMAP) goto bm_normal;
			if (bp->skip_left != 0 || bp->width <= MARGIN_REMAP_THRESHOLD) {
				Draw<BM_COLOUR_REMAP, RM_WITH_SKIP, BT_NONE, true>(bp, zoom); return;
			} else {
				Draw<BM_COLOUR_REMAP, RM_WITH_MARGIN, BT_NONE, true>(bp, zoom); return;
			}
		case BM_TRANSPARENT:  Draw<BM_TRANSPARENT, RM_NONE, BT_NONE, true>(bp, zoom); return;
		case BM_TRANSPARENT_REMAP: Draw<BM_TRANSPARENT_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
		case BM_CRASH_REMAP:  Draw<BM_CRASH_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
		case BM_BLACK_REMAP:  Draw<BM_BLACK_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
	}
}
#endif /* FULL_ANIMATION */

#endif /* WITH_SSE */
#endif /* BLITTER_32BPP_SSE_FUNC_HPP */