Files
@ r3198:2fd76a5c7026
Branch filter:
Location: cpp/openttd-patchpack/source/rail.h
r3198:2fd76a5c7026
20.9 KiB
text/x-c
(svn r3865) -Add: a fully optional configure script, that is a wrapper around
Makefile.config, inserting data directly into it. This is needed for the
CompileFarm (nightly) and most likely it will help out many people who want
to cross-compile. I might have missed several options out of the
Makefile.config, but those are the needed ones for the CompileFarm.
Makefile.config, inserting data directly into it. This is needed for the
CompileFarm (nightly) and most likely it will help out many people who want
to cross-compile. I might have missed several options out of the
Makefile.config, but those are the needed ones for the CompileFarm.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | /* $Id$ */
/** @file rail.h */
#ifndef RAIL_H
#define RAIL_H
#include "direction.h"
#include "tile.h"
/*
* Some enums for accesing the map bytes for rail tiles
*/
/** These types are used in the map5 byte for rail tiles. Use GetRailTileType() to
* get these values */
typedef enum RailTileTypes {
RAIL_TYPE_NORMAL = 0x0,
RAIL_TYPE_SIGNALS = 0x40,
RAIL_TYPE_UNUSED = 0x80, /* XXX: Maybe this could become waypoints? */
RAIL_TYPE_DEPOT_WAYPOINT = 0xC0, /* Is really depots and waypoints... */
RAIL_TILE_TYPE_MASK = 0xC0,
} RailTileType;
enum { /* DEPRECATED TODO: Rewrite all uses of this */
RAIL_TYPE_SPECIAL = 0x80, /* This used to say "If this bit is set, then it's
* not a regular track.", but currently, you
* should rather view map5[6..7] as one type,
* containing a value from RailTileTypes above.
* This value is only maintained for backwards
* compatibility */
/* There used to be RAIL_BIT_* enums here, they moved to (for now) npf.c as
* TRACK_BIT_* */
};
/** These subtypes are used in the map5 byte when the main rail type is
* RAIL_TYPE_DEPOT_WAYPOINT */
typedef enum RailTileSubtypes {
RAIL_SUBTYPE_DEPOT = 0x00,
RAIL_SUBTYPE_WAYPOINT = 0x04,
RAIL_SUBTYPE_MASK = 0x3C,
} RailTileSubtype;
typedef enum SignalTypes {
/* Stored in m4[0..1] for MP_RAILWAY */
SIGTYPE_NORMAL = 0, // normal signal
SIGTYPE_ENTRY = 1, // presignal block entry
SIGTYPE_EXIT = 2, // presignal block exit
SIGTYPE_COMBO = 3, // presignal inter-block
SIGTYPE_END,
SIGTYPE_MASK = 3,
} SignalType;
typedef enum RailTypes {
RAILTYPE_RAIL = 0,
RAILTYPE_MONO = 1,
RAILTYPE_MAGLEV = 2,
RAILTYPE_END,
RAILTYPE_MASK = 0x3,
INVALID_RAILTYPE = 0xFF,
} RailType;
enum {
SIG_SEMAPHORE_MASK = 1 << 2,
};
/** These are used to specify a single track. Can be translated to a trackbit
* with TrackToTrackbit */
typedef enum Tracks {
TRACK_X = 0,
TRACK_Y = 1,
TRACK_UPPER = 2,
TRACK_LOWER = 3,
TRACK_LEFT = 4,
TRACK_RIGHT = 5,
TRACK_END,
INVALID_TRACK = 0xFF,
} Track;
/** These are the bitfield variants of the above */
typedef enum TrackBits {
TRACK_BIT_X = 1U, // 0
TRACK_BIT_Y = 2U, // 1
TRACK_BIT_UPPER = 4U, // 2
TRACK_BIT_LOWER = 8U, // 3
TRACK_BIT_LEFT = 16U, // 4
TRACK_BIT_RIGHT = 32U, // 5
TRACK_BIT_MASK = 0x3FU,
} TrackBits;
/** These are a combination of tracks and directions. Values are 0-5 in one
direction (corresponding to the Track enum) and 8-13 in the other direction. */
typedef enum Trackdirs {
TRACKDIR_X_NE = 0,
TRACKDIR_Y_SE = 1,
TRACKDIR_UPPER_E = 2,
TRACKDIR_LOWER_E = 3,
TRACKDIR_LEFT_S = 4,
TRACKDIR_RIGHT_S = 5,
/* Note the two missing values here. This enables trackdir -> track
* conversion by doing (trackdir & 7) */
TRACKDIR_X_SW = 8,
TRACKDIR_Y_NW = 9,
TRACKDIR_UPPER_W = 10,
TRACKDIR_LOWER_W = 11,
TRACKDIR_LEFT_N = 12,
TRACKDIR_RIGHT_N = 13,
TRACKDIR_END,
INVALID_TRACKDIR = 0xFF,
} Trackdir;
/** These are a combination of tracks and directions. Values are 0-5 in one
direction (corresponding to the Track enum) and 8-13 in the other direction. */
typedef enum TrackdirBits {
TRACKDIR_BIT_X_NE = 0x1,
TRACKDIR_BIT_Y_SE = 0x2,
TRACKDIR_BIT_UPPER_E = 0x4,
TRACKDIR_BIT_LOWER_E = 0x8,
TRACKDIR_BIT_LEFT_S = 0x10,
TRACKDIR_BIT_RIGHT_S = 0x20,
/* Again, note the two missing values here. This enables trackdir -> track conversion by doing (trackdir & 0xFF) */
TRACKDIR_BIT_X_SW = 0x0100,
TRACKDIR_BIT_Y_NW = 0x0200,
TRACKDIR_BIT_UPPER_W = 0x0400,
TRACKDIR_BIT_LOWER_W = 0x0800,
TRACKDIR_BIT_LEFT_N = 0x1000,
TRACKDIR_BIT_RIGHT_N = 0x2000,
TRACKDIR_BIT_MASK = 0x3F3F,
INVALID_TRACKDIR_BIT = 0xFFFF,
} TrackdirBits;
/** These are states in which a signal can be. Currently these are only two, so
* simple boolean logic will do. But do try to compare to this enum instead of
* normal boolean evaluation, since that will make future additions easier.
*/
typedef enum SignalStates {
SIGNAL_STATE_RED = 0,
SIGNAL_STATE_GREEN = 1,
} SignalState;
/** This struct contains all the info that is needed to draw and construct tracks.
*/
typedef struct RailtypeInfo {
/** Struct containing the main sprites. @note not all sprites are listed, but only
* the ones used directly in the code */
struct {
SpriteID track_y; ///< single piece of rail in Y direction, with ground
SpriteID track_ns; ///< two pieces of rail in North and South corner (East-West direction)
SpriteID ground; ///< ground sprite for a 3-way switch
SpriteID single_y; ///< single piece of rail in Y direction, without ground
SpriteID single_x; ///< single piece of rail in X direction
SpriteID single_n; ///< single piece of rail in the northern corner
SpriteID single_s; ///< single piece of rail in the southern corner
SpriteID single_e; ///< single piece of rail in the eastern corner
SpriteID single_w; ///< single piece of rail in the western corner
SpriteID crossing; ///< level crossing, rail in X direction
SpriteID tunnel; ///< tunnel sprites base
} base_sprites;
/** struct containing the sprites for the rail GUI. @note only sprites referred to
* directly in the code are listed */
struct {
SpriteID build_ns_rail; ///< button for building single rail in N-S direction
SpriteID build_x_rail; ///< button for building single rail in X direction
SpriteID build_ew_rail; ///< button for building single rail in E-W direction
SpriteID build_y_rail; ///< button for building single rail in Y direction
SpriteID auto_rail; ///< button for the autorail construction
SpriteID build_depot; ///< button for building depots
SpriteID build_tunnel; ///< button for building a tunnel
SpriteID convert_rail; ///< button for converting rail
} gui_sprites;
struct {
CursorID rail_ns;
CursorID rail_swne;
CursorID rail_ew;
CursorID rail_nwse;
CursorID autorail;
CursorID depot;
CursorID tunnel;
CursorID convert;
} cursor;
struct {
StringID toolbar_caption;
} strings;
/** sprite number difference between a piece of track on a snowy ground and the corresponding one on normal ground */
SpriteID snow_offset;
/** bitmask to the OTHER railtypes that can be used by an engine of THIS railtype */
byte compatible_railtypes;
/**
* Offset between the current railtype and normal rail. This means that:<p>
* 1) All the sprites in a railset MUST be in the same order. This order
* is determined by normal rail. Check sprites 1005 and following for this order<p>
* 2) The position where the railtype is loaded must always be the same, otherwise
* the offset will fail.<p>
* @note: Something more flexible might be desirable in the future.
*/
SpriteID total_offset;
/**
* Bridge offset
*/
SpriteID bridge_offset;
} RailtypeInfo;
extern const RailtypeInfo _railtypes[RAILTYPE_END];
// these are the maximums used for updating signal blocks, and checking if a depot is in a pbs block
enum {
NUM_SSD_ENTRY = 256, // max amount of blocks
NUM_SSD_STACK = 32 ,// max amount of blocks to check recursively
};
/**
* Maps a Trackdir to the corresponding TrackdirBits value
*/
static inline TrackdirBits TrackdirToTrackdirBits(Trackdir trackdir) { return (TrackdirBits)(1 << trackdir); }
/**
* These functions check the validity of Tracks and Trackdirs. assert against
* them when convenient.
*/
static inline bool IsValidTrack(Track track) { return track < TRACK_END; }
static inline bool IsValidTrackdir(Trackdir trackdir) { return (TrackdirToTrackdirBits(trackdir) & TRACKDIR_BIT_MASK) != 0; }
/**
* Functions to map tracks to the corresponding bits in the signal
* presence/status bytes in the map. You should not use these directly, but
* wrapper functions below instead. XXX: Which are these?
*/
/**
* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction along with the trackdir.
*/
extern const byte _signal_along_trackdir[TRACKDIR_END];
static inline byte SignalAlongTrackdir(Trackdir trackdir) {return _signal_along_trackdir[trackdir];}
/**
* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction against the trackdir.
*/
static inline byte SignalAgainstTrackdir(Trackdir trackdir) {
extern const byte _signal_against_trackdir[TRACKDIR_END];
return _signal_against_trackdir[trackdir];
}
/**
* Maps a Track to the bits that store the status of the two signals that can
* be present on the given track.
*/
static inline byte SignalOnTrack(Track track) {
extern const byte _signal_on_track[TRACK_END];
return _signal_on_track[track];
}
/*
* Some functions to query rail tiles
*/
/**
* Returns the RailTileType of a given rail tile. (ie normal, with signals,
* depot, etc.)
*/
static inline RailTileType GetRailTileType(TileIndex tile)
{
assert(IsTileType(tile, MP_RAILWAY));
return _m[tile].m5 & RAIL_TILE_TYPE_MASK;
}
/**
* Returns the rail type of the given rail tile (ie rail, mono, maglev).
*/
static inline RailType GetRailType(TileIndex tile) { return (RailType)(_m[tile].m3 & RAILTYPE_MASK); }
/**
* Checks if a rail tile has signals.
*/
static inline bool HasSignals(TileIndex tile)
{
return GetRailTileType(tile) == RAIL_TYPE_SIGNALS;
}
/**
* Returns the RailTileSubtype of a given rail tile with type
* RAIL_TYPE_DEPOT_WAYPOINT
*/
static inline RailTileSubtype GetRailTileSubtype(TileIndex tile)
{
assert(GetRailTileType(tile) == RAIL_TYPE_DEPOT_WAYPOINT);
return (RailTileSubtype)(_m[tile].m5 & RAIL_SUBTYPE_MASK);
}
/**
* Returns whether this is plain rails, with or without signals. Iow, if this
* tiles RailTileType is RAIL_TYPE_NORMAL or RAIL_TYPE_SIGNALS.
*/
static inline bool IsPlainRailTile(TileIndex tile)
{
RailTileType rtt = GetRailTileType(tile);
return rtt == RAIL_TYPE_NORMAL || rtt == RAIL_TYPE_SIGNALS;
}
/**
* Returns the tracks present on the given plain rail tile (IsPlainRailTile())
*/
static inline TrackBits GetTrackBits(TileIndex tile)
{
assert(GetRailTileType(tile) == RAIL_TYPE_NORMAL || GetRailTileType(tile) == RAIL_TYPE_SIGNALS);
return (TrackBits)(_m[tile].m5 & TRACK_BIT_MASK);
}
/**
* Returns whether the given track is present on the given tile. Tile must be
* a plain rail tile (IsPlainRailTile()).
*/
static inline bool HasTrack(TileIndex tile, Track track)
{
assert(IsValidTrack(track));
return HASBIT(GetTrackBits(tile), track);
}
/*
* Functions describing logical relations between Tracks, TrackBits, Trackdirs
* TrackdirBits, Direction and DiagDirections.
*
* TODO: Add #unndefs or something similar to remove the arrays used below
* from the global scope and expose direct uses of them.
*/
/**
* Maps a trackdir to the reverse trackdir.
*/
static inline Trackdir ReverseTrackdir(Trackdir trackdir) {
extern const Trackdir _reverse_trackdir[TRACKDIR_END];
return _reverse_trackdir[trackdir];
}
/**
* Maps a Track to the corresponding TrackBits value
*/
static inline TrackBits TrackToTrackBits(Track track) { return (TrackBits)(1 << track); }
/**
* Returns the Track that a given Trackdir represents
*/
static inline Track TrackdirToTrack(Trackdir trackdir) { return (Track)(trackdir & 0x7); }
/**
* Returns a Trackdir for the given Track. Since every Track corresponds to
* two Trackdirs, we choose the one which points between NE and S.
* Note that the actual implementation is quite futile, but this might change
* in the future.
*/
static inline Trackdir TrackToTrackdir(Track track) { return (Trackdir)track; }
/**
* Returns a TrackdirBit mask that contains the two TrackdirBits that
* correspond with the given Track (one for each direction).
*/
static inline TrackdirBits TrackToTrackdirBits(Track track) { Trackdir td = TrackToTrackdir(track); return TrackdirToTrackdirBits(td) | TrackdirToTrackdirBits(ReverseTrackdir(td));}
/**
* Discards all directional information from the given TrackdirBits. Any
* Track which is present in either direction will be present in the result.
*/
static inline TrackBits TrackdirBitsToTrackBits(TrackdirBits bits) { return bits | (bits >> 8); }
/**
* Maps a trackdir to the trackdir that you will end up on if you go straight
* ahead. This will be the same trackdir for diagonal trackdirs, but a
* different (alternating) one for straight trackdirs
*/
static inline Trackdir NextTrackdir(Trackdir trackdir) {
extern const Trackdir _next_trackdir[TRACKDIR_END];
return _next_trackdir[trackdir];
}
/**
* Maps a track to all tracks that make 90 deg turns with it.
*/
static inline TrackBits TrackCrossesTracks(Track track) {
extern const TrackBits _track_crosses_tracks[TRACK_END];
return _track_crosses_tracks[track];
}
/**
* Maps a trackdir to the (4-way) direction the tile is exited when following
* that trackdir.
*/
static inline DiagDirection TrackdirToExitdir(Trackdir trackdir) {
extern const DiagDirection _trackdir_to_exitdir[TRACKDIR_END];
return _trackdir_to_exitdir[trackdir];
}
/**
* Maps a track and an (4-way) dir to the trackdir that represents the track
* with the exit in the given direction.
*/
static inline Trackdir TrackExitdirToTrackdir(Track track, DiagDirection diagdir) {
extern const Trackdir _track_exitdir_to_trackdir[TRACK_END][DIAGDIR_END];
return _track_exitdir_to_trackdir[track][diagdir];
}
/**
* Maps a track and an (4-way) dir to the trackdir that represents the track
* with the exit in the given direction.
*/
static inline Trackdir TrackEnterdirToTrackdir(Track track, DiagDirection diagdir) {
extern const Trackdir _track_enterdir_to_trackdir[TRACK_END][DIAGDIR_END];
return _track_enterdir_to_trackdir[track][diagdir];
}
/**
* Maps a track and a full (8-way) direction to the trackdir that represents
* the track running in the given direction.
*/
static inline Trackdir TrackDirectionToTrackdir(Track track, Direction dir) {
extern const Trackdir _track_direction_to_trackdir[TRACK_END][DIR_END];
return _track_direction_to_trackdir[track][dir];
}
/**
* Maps a (4-way) direction to the diagonal trackdir that runs in that
* direction.
*/
static inline Trackdir DiagdirToDiagTrackdir(DiagDirection diagdir) {
extern const Trackdir _dir_to_diag_trackdir[DIAGDIR_END];
return _dir_to_diag_trackdir[diagdir];
}
extern const TrackdirBits _exitdir_reaches_trackdirs[DIAGDIR_END];
/**
* Returns all trackdirs that can be reached when entering a tile from a given
* (diagonal) direction. This will obviously include 90 degree turns, since no
* information is available about the exact angle of entering */
static inline TrackdirBits DiagdirReachesTrackdirs(DiagDirection diagdir) { return _exitdir_reaches_trackdirs[diagdir]; }
/**
* Returns all tracks that can be reached when entering a tile from a given
* (diagonal) direction. This will obviously include 90 degree turns, since no
* information is available about the exact angle of entering */
static inline TrackBits DiagdirReachesTracks(DiagDirection diagdir) { return TrackdirBitsToTrackBits(DiagdirReachesTrackdirs(diagdir)); }
/**
* Maps a trackdir to the trackdirs that can be reached from it (ie, when
* entering the next tile. This will include 90 degree turns!
*/
static inline TrackdirBits TrackdirReachesTrackdirs(Trackdir trackdir) { return _exitdir_reaches_trackdirs[TrackdirToExitdir(trackdir)]; }
/* Note that there is no direct table for this function (there used to be),
* but it uses two simpeler tables to achieve the result */
/**
* Maps a trackdir to all trackdirs that make 90 deg turns with it.
*/
static inline TrackdirBits TrackdirCrossesTrackdirs(Trackdir trackdir) {
extern const TrackdirBits _track_crosses_trackdirs[TRACKDIR_END];
return _track_crosses_trackdirs[TrackdirToTrack(trackdir)];
}
/* Checks if a given Track is diagonal */
static inline bool IsDiagonalTrack(Track track) { return (track == TRACK_X) || (track == TRACK_Y); }
/* Checks if a given Trackdir is diagonal. */
static inline bool IsDiagonalTrackdir(Trackdir trackdir) { return IsDiagonalTrack(TrackdirToTrack(trackdir)); }
/*
* Functions quering signals on tiles.
*/
/**
* Checks for the presence of signals (either way) on the given track on the
* given rail tile.
*/
static inline bool HasSignalOnTrack(TileIndex tile, Track track)
{
assert(IsValidTrack(track));
return
GetRailTileType(tile) == RAIL_TYPE_SIGNALS &&
(_m[tile].m3 & SignalOnTrack(track)) != 0;
}
/**
* Checks for the presence of signals along the given trackdir on the given
* rail tile.
*
* Along meaning if you are currently driving on the given trackdir, this is
* the signal that is facing us (for which we stop when it's red).
*/
static inline bool HasSignalOnTrackdir(TileIndex tile, Trackdir trackdir)
{
assert (IsValidTrackdir(trackdir));
return
GetRailTileType(tile) == RAIL_TYPE_SIGNALS &&
_m[tile].m3 & SignalAlongTrackdir(trackdir);
}
/**
* Gets the state of the signal along the given trackdir.
*
* Along meaning if you are currently driving on the given trackdir, this is
* the signal that is facing us (for which we stop when it's red).
*/
static inline SignalState GetSignalState(TileIndex tile, Trackdir trackdir)
{
assert(IsValidTrackdir(trackdir));
assert(HasSignalOnTrack(tile, TrackdirToTrack(trackdir)));
return _m[tile].m2 & SignalAlongTrackdir(trackdir) ?
SIGNAL_STATE_GREEN : SIGNAL_STATE_RED;
}
/**
* Gets the type of signal on a given track on a given rail tile with signals.
*
* Note that currently, the track argument is not used, since
* signal types cannot be mixed. This function is trying to be
* future-compatible, though.
*/
static inline SignalType GetSignalType(TileIndex tile, Track track)
{
assert(IsValidTrack(track));
assert(GetRailTileType(tile) == RAIL_TYPE_SIGNALS);
return (SignalType)(_m[tile].m4 & SIGTYPE_MASK);
}
/**
* Checks if this tile contains semaphores (returns true) or normal signals
* (returns false) on the given track. Does not check if there are actually
* signals on the track, you should use HasSignalsOnTrack() for that.
*
* Note that currently, the track argument is not used, since
* semaphores/electric signals cannot be mixed. This function is trying to be
* future-compatible, though.
*/
static inline bool HasSemaphores(TileIndex tile, Track track)
{
assert(IsValidTrack(track));
return (_m[tile].m4 & SIG_SEMAPHORE_MASK) != 0;
}
/**
* Return the rail type of tile, or INVALID_RAILTYPE if this is no rail tile.
* Note that there is no check if the given trackdir is actually present on
* the tile!
* The given trackdir is used when there are (could be) multiple rail types on
* one tile.
*/
RailType GetTileRailType(TileIndex tile, Trackdir trackdir);
/**
* Returns whether the given tile is a level crossing.
*/
static inline bool IsLevelCrossing(TileIndex tile)
{
return (_m[tile].m5 & 0xF0) == 0x10;
}
/**
* Gets the transport type of the given track on the given crossing tile.
* @return The transport type of the given track, either TRANSPORT_ROAD,
* TRANSPORT_RAIL.
*/
static inline TransportType GetCrossingTransportType(TileIndex tile, Track track)
{
/* XXX: Nicer way to write this? */
switch (track) {
/* When map5 bit 3 is set, the road runs in the y direction */
case TRACK_X:
return (HASBIT(_m[tile].m5, 3) ? TRANSPORT_RAIL : TRANSPORT_ROAD);
case TRACK_Y:
return (HASBIT(_m[tile].m5, 3) ? TRANSPORT_ROAD : TRANSPORT_RAIL);
default:
assert(0);
}
return INVALID_TRANSPORT;
}
/**
* Returns a pointer to the Railtype information for a given railtype
* @param railtype the rail type which the information is requested for
* @return The pointer to the RailtypeInfo
*/
static inline const RailtypeInfo *GetRailTypeInfo(RailType railtype)
{
assert(railtype < RAILTYPE_END);
return &_railtypes[railtype];
}
/**
* Checks if an engine of the given RailType can drive on a tile with a given
* RailType. This would normally just be an equality check, but for electric
* rails (which also support non-electric engines).
* @return Whether the engine can drive on this tile.
* @param enginetype The RailType of the engine we are considering.
* @param tiletype The RailType of the tile we are considering.
*/
static inline bool IsCompatibleRail(RailType enginetype, RailType tiletype)
{
return HASBIT(GetRailTypeInfo(enginetype)->compatible_railtypes, tiletype);
}
/**
* Checks if the given tracks overlap, ie form a crossing. Basically this
* means when there is more than one track on the tile, exept when there are
* two parallel tracks.
* @param bits The tracks present.
* @return Whether the tracks present overlap in any way.
*/
static inline bool TracksOverlap(TrackBits bits)
{
/* With no, or only one track, there is no overlap */
if (bits == 0 || KILL_FIRST_BIT(bits) == 0) return false;
/* We know that there are at least two tracks present. When there are more
* than 2 tracks, they will surely overlap. When there are two, they will
* always overlap unless they are lower & upper or right & left. */
return
bits != (TRACK_BIT_UPPER | TRACK_BIT_LOWER) &&
bits != (TRACK_BIT_LEFT | TRACK_BIT_RIGHT);
}
void DrawTrainDepotSprite(int x, int y, int image, RailType railtype);
void DrawDefaultWaypointSprite(int x, int y, RailType railtype);
#endif /* RAIL_H */
|