Files
@ r961:3e8c29636fc7
Branch filter:
Location: cpp/openttd-patchpack/source/queue.c
r961:3e8c29636fc7
16.0 KiB
text/x-c
(svn r1453) Feature: MD5 hash check for TTD files
The original TTD files are now checked with a MD5 sum to determine which version of the grf files is used and to warn about possible file corruptions. (Thanks to ledow for the original patch)
The original TTD files are now checked with a MD5 sum to determine which version of the grf files is used and to warn about possible file corruptions. (Thanks to ledow for the original patch)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 | #include "stdafx.h"
#include "ttd.h"
#include "queue.h"
void Stack_Clear(Queue* q, bool free_values)
{
uint i;
if (free_values)
for (i=0;i<q->data.stack.size;i++)
free(q->data.stack.elements[i]);
q->data.stack.size = 0;
}
void Stack_Free(Queue* q, bool free_values)
{
q->clear(q, free_values);
free(q->data.stack.elements);
if (q->freeq)
free(q);
}
bool Stack_Push(Queue* q, void* item, int priority) {
if (q->data.stack.size == q->data.stack.max_size)
return false;
q->data.stack.elements[q->data.stack.size++] = item;
return true;
}
void* Stack_Pop(Queue* q) {
void* result;
if (q->data.stack.size == 0)
return NULL;
result = q->data.stack.elements[--q->data.stack.size];
return result;
}
bool Stack_Delete(Queue* q, void* item, int priority)
{
return false;
}
Queue* init_stack(Queue* q, uint max_size) {
q->push = Stack_Push;
q->pop = Stack_Pop;
q->del = Stack_Delete;
q->clear = Stack_Clear;
q->free = Stack_Free;
q->data.stack.max_size = max_size;
q->data.stack.size = 0;
q->data.stack.elements = malloc(max_size * sizeof(void*));
q->freeq = false;
return q;
}
Queue* new_Stack(uint max_size)
{
Queue* q = malloc(sizeof(Queue));
init_stack(q, max_size);
q->freeq = true;
return q;
}
/*
* Fifo
*/
void Fifo_Clear(Queue* q, bool free_values)
{
uint head, tail;
if (free_values) {
head = q->data.fifo.head;
tail = q->data.fifo.tail; /* cache for speed */
while (head != tail) {
free(q->data.fifo.elements[tail]);
tail = (tail + 1) % q->data.fifo.max_size;
}
}
q->data.fifo.head = q->data.fifo.tail = 0;
}
void Fifo_Free(Queue* q, bool free_values)
{
q->clear(q, free_values);
free(q->data.fifo.elements);
if (q->freeq)
free(q);
}
bool Fifo_Push(Queue* q, void* item, int priority) {
uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size;
if (next == q->data.fifo.tail)
return false;
q->data.fifo.elements[q->data.fifo.head] = item;
q->data.fifo.head = next;
return true;
}
void* Fifo_Pop(Queue* q) {
void* result;
if (q->data.fifo.head == q->data.fifo.tail)
return NULL;
result = q->data.fifo.elements[q->data.fifo.tail];
q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size;
return result;
}
bool Fifo_Delete(Queue* q, void* item, int priority)
{
return false;
}
Queue* init_fifo(Queue* q, uint max_size) {
q->push = Fifo_Push;
q->pop = Fifo_Pop;
q->del = Fifo_Delete;
q->clear = Fifo_Clear;
q->free = Fifo_Free;
q->data.fifo.max_size = max_size;
q->data.fifo.head = 0;
q->data.fifo.tail = 0;
q->data.fifo.elements = malloc(max_size * sizeof(void*));
q->freeq = false;
return q;
}
Queue* new_Fifo(uint max_size)
{
Queue* q = malloc(sizeof(Queue));
init_fifo(q, max_size);
q->freeq = true;
return q;
}
/*
* Insertion Sorter
*/
void InsSort_Clear(Queue* q, bool free_values) {
InsSortNode* node = q->data.inssort.first;
InsSortNode* prev;
while (node != NULL) {
if (free_values)
free(node->item);
prev = node;
node = node->next;
free(prev);
}
q->data.inssort.first = NULL;
}
void InsSort_Free(Queue* q, bool free_values)
{
q->clear(q, free_values);
if (q->freeq)
free(q);
}
bool InsSort_Push(Queue* q, void* item, int priority) {
InsSortNode* newnode = malloc(sizeof(InsSortNode));
if (newnode == NULL) return false;
newnode->item = item;
newnode->priority = priority;
if (q->data.inssort.first == NULL || q->data.inssort.first->priority >= priority) {
newnode->next = q->data.inssort.first;
q->data.inssort.first = newnode;
} else {
InsSortNode* node = q->data.inssort.first;
while( node != NULL ) {
if (node->next == NULL || node->next->priority >= priority) {
newnode->next = node->next;
node->next = newnode;
break;
}
node = node->next;
}
}
return true;
}
void* InsSort_Pop(Queue* q) {
InsSortNode* node = q->data.inssort.first;
void* result;
if (node == NULL)
return NULL;
result = node->item;
q->data.inssort.first = q->data.inssort.first->next;
if (q->data.inssort.first)
assert(q->data.inssort.first->priority >= node->priority);
free(node);
return result;
}
bool InsSort_Delete(Queue* q, void* item, int priority)
{
return false;
}
void init_InsSort(Queue* q) {
q->push = InsSort_Push;
q->pop = InsSort_Pop;
q->del = InsSort_Delete;
q->clear = InsSort_Clear;
q->free = InsSort_Free;
q->data.inssort.first = NULL;
q->freeq = false;
}
Queue* new_InsSort() {
Queue* q = malloc(sizeof(Queue));
init_InsSort(q);
q->freeq = true;
return q;
}
/*
* Binary Heap
* For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
*/
#define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
#define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE-1)
// To make our life easy, we make the next define
// Because Binary Heaps works with array from 1 to n,
// and C with array from 0 to n-1, and we don't like typing
// q->data.binaryheap.elements[i-1] every time, we use this define.
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]
void BinaryHeap_Clear(Queue* q, bool free_values)
{
/* Free all items if needed and free all but the first blocks of
* memory */
uint i,j;
for (i=0;i<q->data.binaryheap.blocks;i++) {
if (q->data.binaryheap.elements[i] == NULL) {
/* No more allocated blocks */
break;
}
/* For every allocated block */
if (free_values)
for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) {
/* For every element in the block */
if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
&& (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
break; /* We're past the last element */
free(q->data.binaryheap.elements[i][j].item);
}
if (i != 0) {
/* Leave the first block of memory alone */
free(q->data.binaryheap.elements[i]);
q->data.binaryheap.elements[i] = NULL;
}
}
q->data.binaryheap.size = 0;
q->data.binaryheap.blocks = 1;
}
void BinaryHeap_Free(Queue* q, bool free_values)
{
uint i;
q->clear(q, free_values);
for (i=0;i<q->data.binaryheap.blocks;i++) {
if (q->data.binaryheap.elements[i] == NULL)
break;
free(q->data.binaryheap.elements[i]);
}
if (q->freeq)
free(q);
}
bool BinaryHeap_Push(Queue* q, void* item, int priority) {
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
if (q->data.binaryheap.size == q->data.binaryheap.max_size)
return false;
assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
/* The currently allocated blocks are full, allocate a new one */
assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
q->data.binaryheap.blocks++;
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
#endif
}
// Add the item at the end of the array
BIN_HEAP_ARR(q->data.binaryheap.size+1).priority = priority;
BIN_HEAP_ARR(q->data.binaryheap.size+1).item = item;
q->data.binaryheap.size++;
// Now we are going to check where it belongs. As long as the parent is
// bigger, we switch with the parent
{
int i, j;
BinaryHeapNode temp;
i = q->data.binaryheap.size;
while (i > 1) {
// Get the parent of this object (divide by 2)
j = i / 2;
// Is the parent bigger then the current, switch them
if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
temp = BIN_HEAP_ARR(j);
BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
BIN_HEAP_ARR(i) = temp;
i = j;
} else {
// It is not, we're done!
break;
}
}
}
return true;
}
bool BinaryHeap_Delete(Queue* q, void* item, int priority)
{
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
uint i = 0;
// First, we try to find the item..
do {
if (BIN_HEAP_ARR(i+1).item == item) break;
i++;
} while (i < q->data.binaryheap.size);
// We did not find the item, so we return false
if (i == q->data.binaryheap.size) return false;
// Now we put the last item over the current item while decreasing the size of the elements
q->data.binaryheap.size--;
BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->data.binaryheap.size+1);
// Now the only thing we have to do, is resort it..
// On place i there is the item to be sorted.. let's start there
{
uint j;
BinaryHeapNode temp;
// Because of the fast that Binary Heap uses array from 1 to n, we need to increase
// i with 1
i++;
for (;;) {
j = i;
// Check if we have 2 childs
if (2*j+1 <= q->data.binaryheap.size) {
// Is this child smaller than the parent?
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; }
// Yes, we _need_ to use i here, not j, because we want to have the smallest child
// This way we get that straight away!
if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; }
// Do we have one child?
} else if (2*j <= q->data.binaryheap.size) {
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; }
}
// One of our childs is smaller than we are, switch
if (i != j) {
temp = BIN_HEAP_ARR(j);
BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
BIN_HEAP_ARR(i) = temp;
} else {
// None of our childs is smaller, so we stay here.. stop :)
break;
}
}
}
return true;
}
void* BinaryHeap_Pop(Queue* q) {
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
void* result;
if (q->data.binaryheap.size == 0)
return NULL;
// The best item is always on top, so give that as result
result = BIN_HEAP_ARR(1).item;
// And now we should get ride of this item...
BinaryHeap_Delete(q,BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);
return result;
}
void init_BinaryHeap(Queue* q, uint max_size)
{
assert(q);
q->push = BinaryHeap_Push;
q->pop = BinaryHeap_Pop;
q->del = BinaryHeap_Delete;
q->clear = BinaryHeap_Clear;
q->free = BinaryHeap_Free;
q->data.binaryheap.max_size = max_size;
q->data.binaryheap.size = 0;
// We malloc memory in block of BINARY_HEAP_BLOCKSIZE
// It autosizes when it runs out of memory
q->data.binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1);
q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
q->data.binaryheap.blocks = 1;
q->freeq = false;
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024));
#endif
}
Queue* new_BinaryHeap(uint max_size) {
Queue* q = malloc(sizeof(Queue));
init_BinaryHeap(q, max_size);
q->freeq = true;
return q;
}
// Because we don't want anyone else to bother with our defines
#undef BIN_HEAP_ARR
/*
* Hash
*/
void init_Hash(Hash* h, Hash_HashProc* hash, int num_buckets) {
/* Allocate space for the Hash, the buckets and the bucket flags */
int i;
assert(h);
#ifdef HASH_DEBUG
debug("Allocated hash: %p", h);
#endif
h->hash = hash;
h->size = 0;
h->num_buckets = num_buckets;
h->buckets = malloc(num_buckets * (sizeof(HashNode) + sizeof(bool)));
#ifdef HASH_DEBUG
debug("Buckets = %p", h->buckets);
#endif
h->buckets_in_use = (bool*)(h->buckets + num_buckets);
h->freeh = false;
for (i=0;i<num_buckets;i++)
h->buckets_in_use[i] = false;
}
Hash* new_Hash(Hash_HashProc* hash, int num_buckets) {
Hash* h = malloc(sizeof(Hash));
init_Hash(h, hash, num_buckets);
h->freeh = true;
return h;
}
void delete_Hash(Hash* h, bool free_values) {
uint i;
/* Iterate all buckets */
for (i=0;i<h->num_buckets;i++)
{
if (h->buckets_in_use[i]) {
HashNode* node;
/* Free the first value */
if (free_values)
free(h->buckets[i].value);
node = h->buckets[i].next;
while (node != NULL) {
HashNode* prev = node;
node = node->next;
/* Free the value */
if (free_values)
free(prev->value);
/* Free the node */
free(prev);
}
}
}
free(h->buckets);
/* No need to free buckets_in_use, it is always allocated in one
* malloc with buckets */
#ifdef HASH_DEBUG
debug("Freeing Hash: %p", h);
#endif
if (h->freeh)
free(h);
}
void clear_Hash(Hash* h, bool free_values)
{
uint i;
HashNode* node;
/* Iterate all buckets */
for (i=0;i<h->num_buckets;i++)
{
if (h->buckets_in_use[i]) {
h->buckets_in_use[i] = false;
/* Free the first value */
if (free_values)
free(h->buckets[i].value);
node = h->buckets[i].next;
while (node != NULL) {
HashNode* prev = node;
node = node->next;
if (free_values)
free(prev->value);
free(prev);
}
}
}
h->size = 0;
}
/* Finds the node that that saves this key pair. If it is not
* found, returns NULL. If it is found, *prev is set to the
* node before the one found, or if the node found was the first in the bucket
* to NULL. If it is not found, *prev is set to the last HashNode in the
* bucket, or NULL if it is empty. prev can also be NULL, in which case it is
* not used for output.
*/
HashNode* Hash_FindNode(Hash* h, uint key1, uint key2, HashNode** prev_out) {
uint hash = h->hash(key1, key2);
HashNode* result = NULL;
#ifdef HASH_DEBUG
debug("Looking for %u, %u", key1, key2);
#endif
/* Check if the bucket is empty */
if (!h->buckets_in_use[hash]) {
if (prev_out)
*prev_out = NULL;
result = NULL;
/* Check the first node specially */
} else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
/* Save the value */
result = h->buckets + hash;
if (prev_out)
*prev_out = NULL;
#ifdef HASH_DEBUG
debug("Found in first node: %p", result);
#endif
/* Check all other nodes */
} else {
HashNode* prev = h->buckets + hash;
HashNode* node = prev->next;
while (node != NULL) {
if (node->key1 == key1 && node->key2 == key2) {
/* Found it */
result = node;
#ifdef HASH_DEBUG
debug("Found in other node: %p", result);
#endif
break;
}
prev = node;
node = node->next;
}
if (prev_out)
*prev_out = prev;
}
#ifdef HASH_DEBUG
if (result == NULL)
debug("Not found");
#endif
return result;
}
void* Hash_Delete(Hash* h, uint key1, uint key2) {
void* result;
HashNode* prev; /* Used as output var for below function call */
HashNode* node = Hash_FindNode(h, key1, key2, &prev);
if (node == NULL) {
/* not found */
result = NULL;
} else if (prev == NULL) {
/* It is in the first node, we can't free that one, so we free
* the next one instead (if there is any)*/
/* Save the value */
result = node->value;
if (node->next != NULL) {
HashNode* next = node->next;
/* Copy the second to the first */
*node = *next;
/* Free the second */
#ifndef NOFREE
free(next);
#endif
} else {
/* This was the last in this bucket */
/* Mark it as empty */
uint hash = h->hash(key1, key2);
h->buckets_in_use[hash] = false;
}
} else {
/* It is in another node */
/* Save the value */
result = node->value;
/* Link previous and next nodes */
prev->next = node->next;
/* Free the node */
#ifndef NOFREE
free(node);
#endif
}
if (result != NULL)
h->size--;
return result;
}
void* Hash_Set(Hash* h, uint key1, uint key2, void* value) {
HashNode* prev;
HashNode* node = Hash_FindNode(h, key1, key2, &prev);
void* result = NULL;
if (node != NULL) {
/* Found it */
result = node->value;
node->value = value;
return result;
}
/* It is not yet present, let's add it */
if (prev == NULL) {
/* The bucket is still empty */
uint hash = h->hash(key1, key2);
h->buckets_in_use[hash] = true;
node = h->buckets + hash;
} else {
/* Add it after prev */
node = malloc(sizeof(HashNode));
prev->next = node;
}
node->next = NULL;
node->key1 = key1;
node->key2 = key2;
node->value = value;
h->size++;
return NULL;
}
void* Hash_Get(Hash* h, uint key1, uint key2) {
HashNode* node = Hash_FindNode(h, key1, key2, NULL);
#ifdef HASH_DEBUG
debug("Found node: %p", node);
#endif
if (node == NULL) {
/* Node not found */
return NULL;
} else {
return node->value;
}
}
uint Hash_Size(Hash* h) {
return h->size;
}
|