Files
@ r24422:3fa67b2abcd2
Branch filter:
Location: cpp/openttd-patchpack/source/src/blitter/32bpp_sse2.cpp
r24422:3fa67b2abcd2
5.1 KiB
text/x-c
Fix: change the working-dir searchpath when using '-c'
Basically, with '-c' you now create a sandbox. It will still use
your personal-dir and global-dir to find files you installed there,
but all new files are stored with a base folder identical to the
folder the configuration is in.
This is a bit of an old bug, that we many have tried to solve in
various of different ways. The code has grown sufficiently complex
that it is hard to see what consequences of actions are. This is
in my opinion the most harmless solution, while increasing the
usefulness of the '-c' flag.
In essence, the problem was that empty folders were always created
in the directory where the configuration was, but as that directory
wasn't added to any searchpath, files weren't stored there, unless
by accident it was a folder already on the searchpath. For example,
if you do './openttd -c local.cfg', it did work as expected. But
in the more generic variant, it did not.
With this patch, you can run './openttd -c /new/folder/local.cfg',
and it will create and prepare that folder to receive new files.
'content_download' is also stored in the directory the
configuration is in; this was already the case. Important to
note that there is only one search-path for 'content_download'.
In other words, when using '-c', it will not look in '~/.openttd'
inside the 'content_download' folder.
Basically, with '-c' you now create a sandbox. It will still use
your personal-dir and global-dir to find files you installed there,
but all new files are stored with a base folder identical to the
folder the configuration is in.
This is a bit of an old bug, that we many have tried to solve in
various of different ways. The code has grown sufficiently complex
that it is hard to see what consequences of actions are. This is
in my opinion the most harmless solution, while increasing the
usefulness of the '-c' flag.
In essence, the problem was that empty folders were always created
in the directory where the configuration was, but as that directory
wasn't added to any searchpath, files weren't stored there, unless
by accident it was a folder already on the searchpath. For example,
if you do './openttd -c local.cfg', it did work as expected. But
in the more generic variant, it did not.
With this patch, you can run './openttd -c /new/folder/local.cfg',
and it will create and prepare that folder to receive new files.
'content_download' is also stored in the directory the
configuration is in; this was already the case. Important to
note that there is only one search-path for 'content_download'.
In other words, when using '-c', it will not look in '~/.openttd'
inside the 'content_download' folder.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | /*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file 32bpp_sse2.cpp Implementation of the SSE2 32 bpp blitter. */
#ifdef WITH_SSE
#include "../stdafx.h"
#include "../zoom_func.h"
#include "../settings_type.h"
#include "32bpp_sse2.hpp"
#include "32bpp_sse_func.hpp"
#include "../safeguards.h"
/** Instantiation of the SSE2 32bpp blitter factory. */
static FBlitter_32bppSSE2 iFBlitter_32bppSSE2;
Sprite *Blitter_32bppSSE_Base::Encode(const SpriteLoader::Sprite *sprite, AllocatorProc *allocator)
{
/* First uint32 of a line = the number of transparent pixels from the left.
* Second uint32 of a line = the number of transparent pixels from the right.
* Then all RGBA then all MV.
*/
ZoomLevel zoom_min = ZOOM_LVL_NORMAL;
ZoomLevel zoom_max = ZOOM_LVL_NORMAL;
if (sprite->type != ST_FONT) {
zoom_min = _settings_client.gui.zoom_min;
zoom_max = _settings_client.gui.zoom_max;
if (zoom_max == zoom_min) zoom_max = ZOOM_LVL_MAX;
}
/* Calculate sizes and allocate. */
SpriteData sd;
memset(&sd, 0, sizeof(sd));
uint all_sprites_size = 0;
for (ZoomLevel z = zoom_min; z <= zoom_max; z++) {
const SpriteLoader::Sprite *src_sprite = &sprite[z];
sd.infos[z].sprite_width = src_sprite->width;
sd.infos[z].sprite_offset = all_sprites_size;
sd.infos[z].sprite_line_size = sizeof(Colour) * src_sprite->width + sizeof(uint32) * META_LENGTH;
const uint rgba_size = sd.infos[z].sprite_line_size * src_sprite->height;
sd.infos[z].mv_offset = all_sprites_size + rgba_size;
const uint mv_size = sizeof(MapValue) * src_sprite->width * src_sprite->height;
all_sprites_size += rgba_size + mv_size;
}
Sprite *dst_sprite = (Sprite *) allocator(sizeof(Sprite) + sizeof(SpriteData) + all_sprites_size);
dst_sprite->height = sprite->height;
dst_sprite->width = sprite->width;
dst_sprite->x_offs = sprite->x_offs;
dst_sprite->y_offs = sprite->y_offs;
memcpy(dst_sprite->data, &sd, sizeof(SpriteData));
/* Copy colours and determine flags. */
bool has_remap = false;
bool has_anim = false;
bool has_translucency = false;
for (ZoomLevel z = zoom_min; z <= zoom_max; z++) {
const SpriteLoader::Sprite *src_sprite = &sprite[z];
const SpriteLoader::CommonPixel *src = (const SpriteLoader::CommonPixel *) src_sprite->data;
Colour *dst_rgba_line = (Colour *) &dst_sprite->data[sizeof(SpriteData) + sd.infos[z].sprite_offset];
MapValue *dst_mv = (MapValue *) &dst_sprite->data[sizeof(SpriteData) + sd.infos[z].mv_offset];
for (uint y = src_sprite->height; y != 0; y--) {
Colour *dst_rgba = dst_rgba_line + META_LENGTH;
for (uint x = src_sprite->width; x != 0; x--) {
if (src->a != 0) {
dst_rgba->a = src->a;
if (src->a != 0 && src->a != 255) has_translucency = true;
dst_mv->m = src->m;
if (src->m != 0) {
/* Do some accounting for flags. */
has_remap = true;
if (src->m >= PALETTE_ANIM_START) has_anim = true;
/* Get brightest value (or default brightness if it's a black pixel). */
const uint8 rgb_max = max(src->r, max(src->g, src->b));
dst_mv->v = (rgb_max == 0) ? Blitter_32bppBase::DEFAULT_BRIGHTNESS : rgb_max;
/* Pre-convert the mapping channel to a RGB value. */
const Colour colour = AdjustBrightneSSE(Blitter_32bppBase::LookupColourInPalette(src->m), dst_mv->v);
dst_rgba->r = colour.r;
dst_rgba->g = colour.g;
dst_rgba->b = colour.b;
} else {
dst_rgba->r = src->r;
dst_rgba->g = src->g;
dst_rgba->b = src->b;
dst_mv->v = Blitter_32bppBase::DEFAULT_BRIGHTNESS;
}
} else {
dst_rgba->data = 0;
*(uint16*) dst_mv = 0;
}
dst_rgba++;
dst_mv++;
src++;
}
/* Count the number of transparent pixels from the left. */
dst_rgba = dst_rgba_line + META_LENGTH;
uint32 nb_pix_transp = 0;
for (uint x = src_sprite->width; x != 0; x--) {
if (dst_rgba->a == 0) nb_pix_transp++;
else break;
dst_rgba++;
}
(*dst_rgba_line).data = nb_pix_transp;
Colour *nb_right = dst_rgba_line + 1;
dst_rgba_line = (Colour*) ((byte*) dst_rgba_line + sd.infos[z].sprite_line_size);
/* Count the number of transparent pixels from the right. */
dst_rgba = dst_rgba_line - 1;
nb_pix_transp = 0;
for (uint x = src_sprite->width; x != 0; x--) {
if (dst_rgba->a == 0) nb_pix_transp++;
else break;
dst_rgba--;
}
(*nb_right).data = nb_pix_transp;
}
}
/* Store sprite flags. */
sd.flags = SF_NONE;
if (has_translucency) sd.flags |= SF_TRANSLUCENT;
if (!has_remap) sd.flags |= SF_NO_REMAP;
if (!has_anim) sd.flags |= SF_NO_ANIM;
memcpy(dst_sprite->data, &sd, sizeof(SpriteData));
return dst_sprite;
}
#endif /* WITH_SSE */
|