Files
@ r28541:42e13f513738
Branch filter:
Location: cpp/openttd-patchpack/source/src/mixer.cpp
r28541:42e13f513738
6.9 KiB
text/x-c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | /*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file mixer.cpp Mixing of sound samples. */
#include "stdafx.h"
#include <mutex>
#include <atomic>
#include "core/math_func.hpp"
#include "framerate_type.h"
#include "mixer.h"
#include "settings_type.h"
#include "safeguards.h"
struct MixerChannel {
/* pointer to allocated buffer memory */
int8_t *memory;
/* current position in memory */
uint32_t pos;
uint32_t frac_pos;
uint32_t frac_speed;
uint32_t samples_left;
/* Mixing volume */
int volume_left;
int volume_right;
bool is16bit;
};
static std::atomic<uint8_t> _active_channels;
static MixerChannel _channels[8];
static uint32_t _play_rate = 11025;
static uint32_t _max_size = UINT_MAX;
static MxStreamCallback _music_stream = nullptr;
static std::mutex _music_stream_mutex;
static std::atomic<uint8_t> _effect_vol;
/**
* The theoretical maximum volume for a single sound sample. Multiple sound
* samples should not exceed this limit as it will sound too loud. It also
* stops overflowing when too many sounds are played at the same time, which
* causes an even worse sound quality.
*/
static const int MAX_VOLUME = 32767;
/**
* Perform the rate conversion between the input and output.
* @param b the buffer to read the data from
* @param frac_pos the position from the begin of the buffer till the next element
* @tparam T the size of the buffer (8 or 16 bits)
* @return the converted value.
*/
template <typename T>
static int RateConversion(T *b, int frac_pos)
{
return ((b[0] * ((1 << 16) - frac_pos)) + (b[1] * frac_pos)) >> 16;
}
template <typename T>
static void mix_int16(MixerChannel *sc, int16_t *buffer, uint samples, uint8_t effect_vol)
{
/* Shift required to get sample value into range for the data type. */
const uint SHIFT = sizeof(T) * CHAR_BIT;
if (samples > sc->samples_left) samples = sc->samples_left;
sc->samples_left -= samples;
assert(samples > 0);
const T *b = (const T *)sc->memory + sc->pos;
uint32_t frac_pos = sc->frac_pos;
uint32_t frac_speed = sc->frac_speed;
int volume_left = sc->volume_left * effect_vol / 255;
int volume_right = sc->volume_right * effect_vol / 255;
if (frac_speed == 0x10000) {
/* Special case when frac_speed is 0x10000 */
do {
buffer[0] = Clamp(buffer[0] + (*b * volume_left >> SHIFT), -MAX_VOLUME, MAX_VOLUME);
buffer[1] = Clamp(buffer[1] + (*b * volume_right >> SHIFT), -MAX_VOLUME, MAX_VOLUME);
b++;
buffer += 2;
} while (--samples > 0);
} else {
do {
int data = RateConversion(b, frac_pos);
buffer[0] = Clamp(buffer[0] + (data * volume_left >> SHIFT), -MAX_VOLUME, MAX_VOLUME);
buffer[1] = Clamp(buffer[1] + (data * volume_right >> SHIFT), -MAX_VOLUME, MAX_VOLUME);
buffer += 2;
frac_pos += frac_speed;
b += frac_pos >> 16;
frac_pos &= 0xffff;
} while (--samples > 0);
}
sc->frac_pos = frac_pos;
sc->pos = b - (const T *)sc->memory;
}
static void MxCloseChannel(uint8_t channel_index)
{
_active_channels.fetch_and(~(1 << channel_index), std::memory_order_release);
}
void MxMixSamples(void *buffer, uint samples)
{
PerformanceMeasurer framerate(PFE_SOUND);
static uint last_samples = 0;
if (samples != last_samples) {
framerate.SetExpectedRate((double)_play_rate / samples);
last_samples = samples;
}
/* Clear the buffer */
memset(buffer, 0, sizeof(int16_t) * 2 * samples);
{
std::lock_guard<std::mutex> lock{ _music_stream_mutex };
/* Fetch music if a sampled stream is available */
if (_music_stream) _music_stream((int16_t*)buffer, samples);
}
/* Apply simple x^3 scaling to master effect volume. This increases the
* perceived difference in loudness to better match expectations. effect_vol
* is expected to be in the range 0-127 hence the division by 127 * 127 to
* get back into range. */
uint8_t effect_vol_setting = _effect_vol.load(std::memory_order_relaxed);
uint8_t effect_vol = (effect_vol_setting *
effect_vol_setting *
effect_vol_setting) / (127 * 127);
/* Mix each channel */
uint8_t active = _active_channels.load(std::memory_order_acquire);
for (uint8_t idx : SetBitIterator(active)) {
MixerChannel *mc = &_channels[idx];
if (mc->is16bit) {
mix_int16<int16_t>(mc, (int16_t*)buffer, samples, effect_vol);
} else {
mix_int16<int8_t>(mc, (int16_t*)buffer, samples, effect_vol);
}
if (mc->samples_left == 0) MxCloseChannel(idx);
}
}
MixerChannel *MxAllocateChannel()
{
uint8_t currently_active = _active_channels.load(std::memory_order_acquire);
uint8_t available = ~currently_active;
if (available == 0) return nullptr;
uint8_t channel_index = FindFirstBit(available);
MixerChannel *mc = &_channels[channel_index];
free(mc->memory);
mc->memory = nullptr;
return mc;
}
void MxSetChannelRawSrc(MixerChannel *mc, int8_t *mem, size_t size, uint rate, bool is16bit)
{
mc->memory = mem;
mc->frac_pos = 0;
mc->pos = 0;
mc->frac_speed = (rate << 16) / _play_rate;
if (is16bit) size /= 2;
/* adjust the magnitude to prevent overflow */
while (size >= _max_size) {
size >>= 1;
rate = (rate >> 1) + 1;
}
mc->samples_left = (uint)size * _play_rate / rate;
mc->is16bit = is16bit;
}
/**
* Set volume and pan parameters for a sound.
* @param mc MixerChannel to set
* @param volume Volume level for sound, range is 0..16384
* @param pan Pan position for sound, range is 0..1
*/
void MxSetChannelVolume(MixerChannel *mc, uint volume, float pan)
{
/* Use sinusoidal pan to maintain overall sound power level regardless
* of position. */
mc->volume_left = (uint)(sin((1.0 - pan) * M_PI / 2.0) * volume);
mc->volume_right = (uint)(sin(pan * M_PI / 2.0) * volume);
}
void MxActivateChannel(MixerChannel *mc)
{
uint8_t channel_index = mc - _channels;
_active_channels.fetch_or((1 << channel_index), std::memory_order_release);
}
/**
* Set source of PCM music
* @param music_callback Function that will be called to fill sample buffers with music data.
* @return Sample rate of mixer, which the buffers supplied to the callback must be rendered at.
*/
uint32_t MxSetMusicSource(MxStreamCallback music_callback)
{
std::lock_guard<std::mutex> lock{ _music_stream_mutex };
_music_stream = music_callback;
return _play_rate;
}
bool MxInitialize(uint rate)
{
std::lock_guard<std::mutex> lock{ _music_stream_mutex };
_play_rate = rate;
_max_size = UINT_MAX / _play_rate;
_music_stream = nullptr; /* rate may have changed, any music source is now invalid */
return true;
}
void SetEffectVolume(uint8_t volume)
{
_effect_vol.store(volume, std::memory_order_relaxed);
}
|