Files
@ r11271:48b80f15ebd1
Branch filter:
Location: cpp/openttd-patchpack/source/src/articulated_vehicles.cpp
r11271:48b80f15ebd1
10.6 KiB
text/x-c
(svn r15625) -Codechange: remove unneeded assert
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | /* $Id$ */
/** @file articulated_vehicles.cpp Implementation of articulated vehicles. */
#include "stdafx.h"
#include "train.h"
#include "roadveh.h"
#include "aircraft.h"
#include "newgrf_engine.h"
#include "vehicle_func.h"
static const uint MAX_ARTICULATED_PARTS = 100; ///< Maximum of articulated parts per vehicle, i.e. when to abort calling the articulated vehicle callback.
uint CountArticulatedParts(EngineID engine_type, bool purchase_window)
{
if (!HasBit(EngInfo(engine_type)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return 0;
/* If we can't allocate a vehicle now, we can't allocate it in the command
* either, so it doesn't matter how many articulated parts there are. */
if (!Vehicle::CanAllocateItem()) return 0;
Vehicle *v = NULL;;
if (!purchase_window) {
v = new InvalidVehicle();
v->engine_type = engine_type;
}
uint i;
for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine_type, v);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
}
delete v;
return i - 1;
}
/**
* Returns the default (non-refitted) capacity of a specific EngineID.
* @param engine the EngineID of iterest
* @param type the type of the engine
* @param cargo_type returns the default cargo type, if needed
* @return capacity
*/
static inline uint16 GetVehicleDefaultCapacity(EngineID engine, VehicleType type, CargoID *cargo_type)
{
const Engine *e = GetEngine(engine);
CargoID cargo = (e->CanCarryCargo() ? e->GetDefaultCargoType() : (CargoID)CT_INVALID);
if (cargo_type != NULL) *cargo_type = cargo;
if (cargo == CT_INVALID) return 0;
switch (type) {
case VEH_TRAIN:
return GetEngineProperty(engine, 0x14, e->u.rail.capacity) + (e->u.rail.railveh_type == RAILVEH_MULTIHEAD ? e->u.rail.capacity : 0);
case VEH_ROAD:
return GetEngineProperty(engine, 0x0F, e->u.road.capacity);
case VEH_SHIP:
return GetEngineProperty(engine, 0x0D, e->u.ship.capacity);
case VEH_AIRCRAFT:
return AircraftDefaultCargoCapacity(cargo, &e->u.air);
default: NOT_REACHED();
}
}
/**
* Returns all cargos a vehicle can carry.
* @param engine the EngineID of iterest
* @param type the type of the engine
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit set of CargoIDs
*/
static inline uint32 GetAvailableVehicleCargoTypes(EngineID engine, VehicleType type, bool include_initial_cargo_type)
{
uint32 cargos = 0;
CargoID initial_cargo_type;
if (GetVehicleDefaultCapacity(engine, type, &initial_cargo_type) > 0) {
if (type != VEH_SHIP || ShipVehInfo(engine)->refittable) {
const EngineInfo *ei = EngInfo(engine);
cargos = ei->refit_mask;
}
if (include_initial_cargo_type && initial_cargo_type < NUM_CARGO) SetBit(cargos, initial_cargo_type);
}
return cargos;
}
uint16 *GetCapacityOfArticulatedParts(EngineID engine, VehicleType type)
{
static uint16 capacity[NUM_CARGO];
memset(capacity, 0, sizeof(capacity));
CargoID cargo_type;
uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, type, &cargo_type);
if (cargo_type < NUM_CARGO) capacity[cargo_type] = cargo_capacity;
if (type != VEH_TRAIN && type != VEH_ROAD) return capacity;
if (!HasBit(EngInfo(engine)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return capacity;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine, NULL);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
EngineID artic_engine = GetNewEngineID(GetEngineGRF(engine), type, GB(callback, 0, 7));
cargo_capacity = GetVehicleDefaultCapacity(artic_engine, type, &cargo_type);
if (cargo_type < NUM_CARGO) capacity[cargo_type] += cargo_capacity;
}
return capacity;
}
/**
* Checks whether any of the articulated parts is refittable
* @param engine the first part
* @return true if refittable
*/
bool IsArticulatedVehicleRefittable(EngineID engine)
{
if (IsEngineRefittable(engine)) return true;
const Engine *e = GetEngine(engine);
if (e->type != VEH_TRAIN && e->type != VEH_ROAD) return false;
if (!HasBit(e->info.callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return false;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine, NULL);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
EngineID artic_engine = GetNewEngineID(GetEngineGRF(engine), e->type, GB(callback, 0, 7));
if (IsEngineRefittable(artic_engine)) return true;
}
return false;
}
/**
* Ors the refit_masks of all articulated parts.
* @param engine the first part
* @param type the vehicle type
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit mask of CargoIDs which are a refit option for at least one articulated part
*/
uint32 GetUnionOfArticulatedRefitMasks(EngineID engine, VehicleType type, bool include_initial_cargo_type)
{
uint32 cargos = GetAvailableVehicleCargoTypes(engine, type, include_initial_cargo_type);
if (type != VEH_TRAIN && type != VEH_ROAD) return cargos;
if (!HasBit(EngInfo(engine)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return cargos;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine, NULL);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
EngineID artic_engine = GetNewEngineID(GetEngineGRF(engine), type, GB(callback, 0, 7));
cargos |= GetAvailableVehicleCargoTypes(artic_engine, type, include_initial_cargo_type);
}
return cargos;
}
/**
* Ands the refit_masks of all articulated parts.
* @param engine the first part
* @param type the vehicle type
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
*/
uint32 GetIntersectionOfArticulatedRefitMasks(EngineID engine, VehicleType type, bool include_initial_cargo_type)
{
uint32 cargos = UINT32_MAX;
uint32 veh_cargos = GetAvailableVehicleCargoTypes(engine, type, include_initial_cargo_type);
if (veh_cargos != 0) cargos &= veh_cargos;
if (type != VEH_TRAIN && type != VEH_ROAD) return cargos;
if (!HasBit(EngInfo(engine)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return cargos;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine, NULL);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
EngineID artic_engine = GetNewEngineID(GetEngineGRF(engine), type, GB(callback, 0, 7));
veh_cargos = GetAvailableVehicleCargoTypes(artic_engine, type, include_initial_cargo_type);
if (veh_cargos != 0) cargos &= veh_cargos;
}
return cargos;
}
/**
* Tests if all parts of an articulated vehicle are refitted to the same cargo.
* Note: Vehicles not carrying anything are ignored
* @param v the first vehicle in the chain
* @param cargo_type returns the common CargoID if needed. (CT_INVALID if no part is carrying something or they are carrying different things)
* @return true if some parts are carrying different cargos, false if all parts are carrying the same (nothing is also the same)
*/
bool IsArticulatedVehicleCarryingDifferentCargos(const Vehicle *v, CargoID *cargo_type)
{
CargoID first_cargo = CT_INVALID;
do {
if (v->cargo_cap > 0 && v->cargo_type != CT_INVALID) {
if (first_cargo == CT_INVALID) first_cargo = v->cargo_type;
if (first_cargo != v->cargo_type) {
if (cargo_type != NULL) *cargo_type = CT_INVALID;
return true;
}
}
switch (v->type) {
case VEH_TRAIN:
v = (EngineHasArticPart(v) ? GetNextArticPart(v) : NULL);
break;
case VEH_ROAD:
v = (RoadVehHasArticPart(v) ? v->Next() : NULL);
break;
default:
v = NULL;
break;
}
} while (v != NULL);
if (cargo_type != NULL) *cargo_type = first_cargo;
return false;
}
void AddArticulatedParts(Vehicle **vl, VehicleType type)
{
const Vehicle *v = vl[0];
Vehicle *u = vl[0];
if (!HasBit(EngInfo(v->engine_type)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, v->engine_type, v);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) return;
/* Attempt to use pre-allocated vehicles until they run out. This can happen
* if the callback returns different values depending on the cargo type. */
u->SetNext(vl[i]);
if (u->Next() == NULL) return;
Vehicle *previous = u;
u = u->Next();
EngineID engine_type = GetNewEngineID(GetEngineGRF(v->engine_type), type, GB(callback, 0, 7));
bool flip_image = HasBit(callback, 7);
/* get common values from first engine */
u->direction = v->direction;
u->owner = v->owner;
u->tile = v->tile;
u->x_pos = v->x_pos;
u->y_pos = v->y_pos;
u->z_pos = v->z_pos;
u->build_year = v->build_year;
u->vehstatus = v->vehstatus & ~VS_STOPPED;
u->cargo_subtype = 0;
u->max_speed = 0;
u->max_age = 0;
u->engine_type = engine_type;
u->value = 0;
u->subtype = 0;
u->cur_image = 0xAC2;
u->random_bits = VehicleRandomBits();
const Engine *e_artic = GetEngine(engine_type);
switch (type) {
default: NOT_REACHED();
case VEH_TRAIN:
u = new (u) Train();
previous->SetNext(u);
u->u.rail.track = v->u.rail.track;
u->u.rail.railtype = v->u.rail.railtype;
u->u.rail.first_engine = v->engine_type;
u->spritenum = e_artic->u.rail.image_index;
if (e_artic->CanCarryCargo()) {
u->cargo_type = e_artic->GetDefaultCargoType();
u->cargo_cap = e_artic->u.rail.capacity; // Callback 36 is called when the consist is finished
} else {
u->cargo_type = v->cargo_type; // Needed for livery selection
u->cargo_cap = 0;
}
SetArticulatedPart(u);
break;
case VEH_ROAD:
u = new (u) RoadVehicle();
previous->SetNext(u);
u->u.road.first_engine = v->engine_type;
u->u.road.cached_veh_length = GetRoadVehLength(u);
u->u.road.state = RVSB_IN_DEPOT;
u->u.road.roadtype = v->u.road.roadtype;
u->u.road.compatible_roadtypes = v->u.road.compatible_roadtypes;
u->spritenum = e_artic->u.road.image_index;
if (e_artic->CanCarryCargo()) {
u->cargo_type = e_artic->GetDefaultCargoType();
u->cargo_cap = e_artic->u.road.capacity; // Callback 36 is called when the consist is finished
} else {
u->cargo_type = v->cargo_type; // Needed for livery selection
u->cargo_cap = 0;
}
SetRoadVehArticPart(u);
break;
}
if (flip_image) u->spritenum++;
VehiclePositionChanged(u);
}
}
|