Files
@ r11504:4c9004317ccb
Branch filter:
Location: cpp/openttd-patchpack/source/src/rail.h
r11504:4c9004317ccb
8.8 KiB
text/x-c
(svn r15870) -Codechange: New widgets for the autoreplace window.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | /* $Id$ */
/** @file rail.h Rail specific functions. */
#ifndef RAIL_H
#define RAIL_H
#include "rail_type.h"
#include "track_type.h"
#include "vehicle_type.h"
#include "gfx_type.h"
#include "core/bitmath_func.hpp"
#include "economy_func.h"
#include "slope_type.h"
enum RailTypeFlag {
RTF_CATENARY = 0, ///< Set if the rail type should have catenary drawn
};
enum RailTypeFlags {
RTFB_NONE = 0,
RTFB_CATENARY = 1 << RTF_CATENARY,
};
DECLARE_ENUM_AS_BIT_SET(RailTypeFlags);
/** Offsets from base sprite for fence sprites. These are in the order of
* the sprites in the original data files.
*/
enum RailFenceOffset {
RFO_FLAT_X,
RFO_FLAT_Y,
RFO_FLAT_VERT,
RFO_FLAT_HORZ,
RFO_SLOPE_SW,
RFO_SLOPE_SE,
RFO_SLOPE_NE,
RFO_SLOPE_NW,
};
/** This struct contains all the info that is needed to draw and construct tracks.
*/
struct RailtypeInfo {
/** Struct containing the main sprites. @note not all sprites are listed, but only
* the ones used directly in the code */
struct {
SpriteID track_y; ///< single piece of rail in Y direction, with ground
SpriteID track_ns; ///< two pieces of rail in North and South corner (East-West direction)
SpriteID ground; ///< ground sprite for a 3-way switch
SpriteID single_y; ///< single piece of rail in Y direction, without ground
SpriteID single_x; ///< single piece of rail in X direction
SpriteID single_n; ///< single piece of rail in the northern corner
SpriteID single_s; ///< single piece of rail in the southern corner
SpriteID single_e; ///< single piece of rail in the eastern corner
SpriteID single_w; ///< single piece of rail in the western corner
SpriteID single_sloped;///< single piecs of rail for slopes
SpriteID crossing; ///< level crossing, rail in X direction
SpriteID tunnel; ///< tunnel sprites base
} base_sprites;
/** struct containing the sprites for the rail GUI. @note only sprites referred to
* directly in the code are listed */
struct {
SpriteID build_ns_rail; ///< button for building single rail in N-S direction
SpriteID build_x_rail; ///< button for building single rail in X direction
SpriteID build_ew_rail; ///< button for building single rail in E-W direction
SpriteID build_y_rail; ///< button for building single rail in Y direction
SpriteID auto_rail; ///< button for the autorail construction
SpriteID build_depot; ///< button for building depots
SpriteID build_tunnel; ///< button for building a tunnel
SpriteID convert_rail; ///< button for converting rail
} gui_sprites;
struct {
CursorID rail_ns; ///< Cursor for building rail in N-S direction
CursorID rail_swne; ///< Cursor for building rail in X direction
CursorID rail_ew; ///< Cursor for building rail in E-W direction
CursorID rail_nwse; ///< Cursor for building rail in Y direction
CursorID autorail; ///< Cursor for autorail tool
CursorID depot; ///< Cursor for building a depot
CursorID tunnel; ///< Cursor for building a tunnel
CursorID convert; ///< Cursor for converting track
} cursor;
struct {
StringID toolbar_caption;
StringID menu_text;
StringID build_caption;
StringID replace_text;
StringID new_loco;
} strings;
/** sprite number difference between a piece of track on a snowy ground and the corresponding one on normal ground */
SpriteID snow_offset;
/** bitmask to the OTHER railtypes on which an engine of THIS railtype generates power */
RailTypes powered_railtypes;
/** bitmask to the OTHER railtypes on which an engine of THIS railtype can physically travel */
RailTypes compatible_railtypes;
/**
* Offset between the current railtype and normal rail. This means that:<p>
* 1) All the sprites in a railset MUST be in the same order. This order
* is determined by normal rail. Check sprites 1005 and following for this order<p>
* 2) The position where the railtype is loaded must always be the same, otherwise
* the offset will fail.
* @note: Something more flexible might be desirable in the future.
*/
SpriteID total_offset;
/**
* Bridge offset
*/
SpriteID bridge_offset;
/**
* Offset to add to ground sprite when drawing custom waypoints / stations
*/
byte custom_ground_offset;
/**
* Multiplier for curve maximum speed advantage
*/
byte curve_speed;
/**
* Bit mask of rail type flags
*/
RailTypeFlags flags;
/**
* Cost multiplier for building this rail type
*/
uint8 cost_multiplier;
/**
* Unique 32 bit rail type identifier
*/
RailTypeLabel label;
};
/**
* Returns a pointer to the Railtype information for a given railtype
* @param railtype the rail type which the information is requested for
* @return The pointer to the RailtypeInfo
*/
static inline const RailtypeInfo *GetRailTypeInfo(RailType railtype)
{
extern RailtypeInfo _railtypes[RAILTYPE_END];
assert(railtype < RAILTYPE_END);
return &_railtypes[railtype];
}
/**
* Checks if an engine of the given RailType can drive on a tile with a given
* RailType. This would normally just be an equality check, but for electric
* rails (which also support non-electric engines).
* @return Whether the engine can drive on this tile.
* @param enginetype The RailType of the engine we are considering.
* @param tiletype The RailType of the tile we are considering.
*/
static inline bool IsCompatibleRail(RailType enginetype, RailType tiletype)
{
return HasBit(GetRailTypeInfo(enginetype)->compatible_railtypes, tiletype);
}
/**
* Checks if an engine of the given RailType got power on a tile with a given
* RailType. This would normally just be an equality check, but for electric
* rails (which also support non-electric engines).
* @return Whether the engine got power on this tile.
* @param enginetype The RailType of the engine we are considering.
* @param tiletype The RailType of the tile we are considering.
*/
static inline bool HasPowerOnRail(RailType enginetype, RailType tiletype)
{
return HasBit(GetRailTypeInfo(enginetype)->powered_railtypes, tiletype);
}
/**
* Returns the cost of building the specified railtype.
* @param railtype The railtype being built.
* @return The cost multiplier.
*/
static inline Money RailBuildCost(RailType railtype)
{
assert(railtype < RAILTYPE_END);
return (_price.build_rail * GetRailTypeInfo(railtype)->cost_multiplier) >> 3;
}
/**
* Calculates the cost of rail conversion
* @param from The railtype we are converting from
* @param to The railtype we are converting to
* @return Cost per TrackBit
*/
static inline Money RailConvertCost(RailType from, RailType to)
{
/* rail -> el. rail
* calculate the price as 5 / 4 of (cost build el. rail) - (cost build rail)
* (the price of workers to get to place is that 1/4)
*/
if (HasPowerOnRail(from, to)) {
Money cost = ((RailBuildCost(to) - RailBuildCost(from)) * 5) >> 2;
if (cost != 0) return cost;
}
/* el. rail -> rail
* calculate the price as 1 / 4 of (cost build el. rail) - (cost build rail)
* (the price of workers is 1 / 4 + price of copper sold to a recycle center)
*/
if (HasPowerOnRail(to, from)) {
Money cost = (RailBuildCost(from) - RailBuildCost(to)) >> 2;
if (cost != 0) return cost;
}
/* make the price the same as remove + build new type */
return RailBuildCost(to) + _price.remove_rail;
}
Vehicle *UpdateTrainPowerProc(Vehicle *v, void *data);
void DrawTrainDepotSprite(int x, int y, int image, RailType railtype);
void DrawDefaultWaypointSprite(int x, int y, RailType railtype);
Vehicle *EnsureNoTrainOnTrackProc(Vehicle *v, void *data);
int TicksToLeaveDepot(const Vehicle *v);
Foundation GetRailFoundation(Slope tileh, TrackBits bits);
/**
* Finds out if a company has a certain railtype available
* @param company the company in question
* @param railtype requested RailType
* @return true if company has requested RailType available
*/
bool HasRailtypeAvail(const CompanyID company, const RailType railtype);
/**
* Validate functions for rail building.
* @param rail the railtype to check.
* @return true if the current company may build the rail.
*/
bool ValParamRailtype(const RailType rail);
/**
* Returns the "best" railtype a company can build.
* As the AI doesn't know what the BEST one is, we have our own priority list
* here. When adding new railtypes, modify this function
* @param company the company "in action"
* @return The "best" railtype a company has available
*/
RailType GetBestRailtype(const CompanyID company);
/**
* Get the rail types the given company can build.
* @param company the company to get the rail types for.
* @return the rail types.
*/
RailTypes GetCompanyRailtypes(const CompanyID c);
/**
* Get the rail type for a given label.
* @param label the railtype label.
* @return the railtype.
*/
RailType GetRailTypeByLabel(RailTypeLabel label);
/**
* Reset all rail type information to its default values.
*/
void ResetRailTypes();
#endif /* RAIL_H */
|