Files @ r3708:4caec5a8faca
Branch filter:

Location: cpp/openttd-patchpack/source/npf.c

peter1138
(svn r4651) - NewGRF: support loading of catenary sprites from NewGRF files. This actually works by replacing our hardcoded sprites.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
/* $Id$ */

#include "stdafx.h"
#include "openttd.h"
#include "bridge_map.h"
#include "debug.h"
#include "functions.h"
#include "npf.h"
#include "aystar.h"
#include "macros.h"
#include "pathfind.h"
#include "station.h"
#include "station_map.h"
#include "tile.h"
#include "depot.h"
#include "tunnel_map.h"
#include "network.h"

static AyStar _npf_aystar;

/* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
 * the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
 */
#define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH)
static const uint _trackdir_length[TRACKDIR_END] = {
	NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH,
	0, 0,
	NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
};

/**
 * Calculates the minimum distance traveled to get from t0 to t1 when only
 * using tracks (ie, only making 45 degree turns). Returns the distance in the
 * NPF scale, ie the number of full tiles multiplied by NPF_TILE_LENGTH to
 * prevent rounding.
 */
static uint NPFDistanceTrack(TileIndex t0, TileIndex t1)
{
	const uint dx = abs(TileX(t0) - TileX(t1));
	const uint dy = abs(TileY(t0) - TileY(t1));

	const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */
	/* OPTIMISATION:
	 * Original: diagTracks = max(dx, dy) - min(dx,dy);
	 * Proof:
	 * (dx+dy) - straightTracks  == (min + max) - straightTracks = min + max - 2 * min = max - min */
	const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */

	/* Don't factor out NPF_TILE_LENGTH below, this will round values and lose
	 * precision */
	return diagTracks * NPF_TILE_LENGTH + straightTracks * NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH;
}


#if 0
static uint NTPHash(uint key1, uint key2)
{
	/* This function uses the old hash, which is fixed on 10 bits (1024 buckets) */
	return PATHFIND_HASH_TILE(key1);
}
#endif

/**
 * Calculates a hash value for use in the NPF.
 * @param key1	The TileIndex of the tile to hash
 * @param key1	The Trackdir of the track on the tile.
 *
 * @todo	Think of a better hash.
 */
static uint NPFHash(uint key1, uint key2)
{
	/* TODO: think of a better hash? */
	uint part1 = TileX(key1) & NPF_HASH_HALFMASK;
	uint part2 = TileY(key1) & NPF_HASH_HALFMASK;

	assert(IsValidTrackdir(key2));
	assert(IsValidTile(key1));
	return ((part1 << NPF_HASH_HALFBITS | part2) + (NPF_HASH_SIZE * key2 / TRACKDIR_END)) % NPF_HASH_SIZE;
}

static int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
	return 0;
}

/* Calcs the tile of given station that is closest to a given tile
 * for this we assume the station is a rectangle,
 * as defined by its top tile (st->train_tile) and its width/height (st->trainst_w, st->trainst_h)
 */
static TileIndex CalcClosestStationTile(StationID station, TileIndex tile)
{
	const Station* st = GetStation(station);

	uint minx = TileX(st->train_tile);  // topmost corner of station
	uint miny = TileY(st->train_tile);
	uint maxx = minx + st->trainst_w - 1; // lowermost corner of station
	uint maxy = miny + st->trainst_h - 1;
	uint x;
	uint y;

	// we are going the aim for the x coordinate of the closest corner
	// but if we are between those coordinates, we will aim for our own x coordinate
	x = clamp(TileX(tile), minx, maxx);

	// same for y coordinate, see above comment
	y = clamp(TileY(tile), miny, maxy);

	// return the tile of our target coordinates
	return TileXY(x, y);
}

/* Calcs the heuristic to the target station or tile. For train stations, it
 * takes into account the direction of approach.
 */
static int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
	NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
	NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
	TileIndex from = current->tile;
	TileIndex to = fstd->dest_coords;
	uint dist;

	// for train-stations, we are going to aim for the closest station tile
	if (as->user_data[NPF_TYPE] == TRANSPORT_RAIL && fstd->station_index != INVALID_STATION)
		to = CalcClosestStationTile(fstd->station_index, from);

	if (as->user_data[NPF_TYPE] == TRANSPORT_ROAD) {
		/* Since roads only have diagonal pieces, we use manhattan distance here */
		dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
	} else {
		/* Ships and trains can also go diagonal, so the minimum distance is shorter */
		dist = NPFDistanceTrack(from, to);
	}

	DEBUG(npf, 4)("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);

	if (dist < ftd->best_bird_dist) {
		ftd->best_bird_dist = dist;
		ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
	}
	return dist;
}


/* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
 * get here, either getting it from the current choice or from the parent's
 * choice */
static void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent)
{
	if (parent->path.parent == NULL) {
		Trackdir trackdir = (Trackdir)current->direction;
		/* This is a first order decision, so we'd better save the
		 * direction we chose */
		current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
		DEBUG(npf, 6)("Saving trackdir: 0x%X", trackdir);
	} else {
		/* We've already made the decision, so just save our parent's decision */
		current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
	}
}

/* Will return the cost of the tunnel. If it is an entry, it will return the
 * cost of that tile. If the tile is an exit, it will return the tunnel length
 * including the exit tile. Requires that this is a Tunnel tile */
static uint NPFTunnelCost(AyStarNode* current)
{
	DiagDirection exitdir = TrackdirToExitdir((Trackdir)current->direction);
	TileIndex tile = current->tile;
	if (GetTunnelDirection(tile) == ReverseDiagDir(exitdir)) {
		/* We just popped out if this tunnel, since were
		 * facing the tunnel exit */
		FindLengthOfTunnelResult flotr;
		flotr = FindLengthOfTunnel(tile, ReverseDiagDir(exitdir));
		return flotr.length * NPF_TILE_LENGTH;
		//TODO: Penalty for tunnels?
	} else {
		/* We are entering the tunnel, the enter tile is just a
		 * straight track */
		return NPF_TILE_LENGTH;
	}
}

static uint NPFSlopeCost(AyStarNode* current)
{
	TileIndex next = current->tile + TileOffsByDir(TrackdirToExitdir(current->direction));
	int x,y;
	int8 z1,z2;

	x = TileX(current->tile) * TILE_SIZE;
	y = TileY(current->tile) * TILE_SIZE;
	/* get the height of the center of the current tile */
	z1 = GetSlopeZ(x+TILE_HEIGHT, y+TILE_HEIGHT);

	x = TileX(next) * TILE_SIZE;
	y = TileY(next) * TILE_SIZE;
	/* get the height of the center of the next tile */
	z2 = GetSlopeZ(x+TILE_HEIGHT, y+TILE_HEIGHT);

	if (z2 - z1 > 1) {
		/* Slope up */
		return _patches.npf_rail_slope_penalty;
	}
	return 0;
	/* Should we give a bonus for slope down? Probably not, we
	 * could just substract that bonus from the penalty, because
	 * there is only one level of steepness... */
}

/**
 * Mark tiles by mowing the grass when npf debug level >= 1.
 * Will not work for multiplayer games, since it can (will) cause desyncs.
 */
static void NPFMarkTile(TileIndex tile)
{
#ifdef NO_DEBUG_MESSAGES
	return;
#else
	if (_debug_npf_level < 1 || _networking) return;
	switch (GetTileType(tile)) {
		case MP_RAILWAY:
			/* DEBUG: mark visited tiles by mowing the grass under them ;-) */
			if (!IsTileDepotType(tile, TRANSPORT_RAIL)) {
				SetRailGroundType(tile, RAIL_GROUND_BARREN);
				MarkTileDirtyByTile(tile);
			}
			break;

		case MP_STREET:
			if (!IsTileDepotType(tile, TRANSPORT_ROAD)) {
				SetGroundType(tile, RGT_BARREN);
				MarkTileDirtyByTile(tile);
			}
			break;

		default:
			break;
	}
#endif
}

static int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
	//TileIndex tile = current->tile;
	int32 cost = 0;
	Trackdir trackdir = (Trackdir)current->direction;

	cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */

	if (IsBuoyTile(current->tile) && IsDiagonalTrackdir(trackdir))
		cost += _patches.npf_buoy_penalty; /* A small penalty for going over buoys */

	if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction))
		cost += _patches.npf_water_curve_penalty;

	/* TODO More penalties? */

	return cost;
}

/* Determine the cost of this node, for road tracks */
static int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
	TileIndex tile = current->tile;
	int32 cost = 0;

	/* Determine base length */
	switch (GetTileType(tile)) {
		case MP_TUNNELBRIDGE:
			if (IsTunnel(tile)) {
				cost = NPFTunnelCost(current);
			} else {
				cost = NPF_TILE_LENGTH;
			}
			break;

		case MP_STREET:
			cost = NPF_TILE_LENGTH;
			/* Increase the cost for level crossings */
			if (IsLevelCrossing(tile))
				cost += _patches.npf_crossing_penalty;
			break;

		default:
			break;
	}

	/* Determine extra costs */

	/* Check for slope */
	cost += NPFSlopeCost(current);

	/* Check for turns. Road vehicles only really drive diagonal, turns are
	 * represented by non-diagonal tracks */
	if (!IsDiagonalTrackdir(current->direction))
		cost += _patches.npf_road_curve_penalty;

	NPFMarkTile(tile);
	DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
	return cost;
}


/* Determine the cost of this node, for railway tracks */
static int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
	TileIndex tile = current->tile;
	Trackdir trackdir = (Trackdir)current->direction;
	int32 cost = 0;
	/* HACK: We create a OpenListNode manually, so we can call EndNodeCheck */
	OpenListNode new_node;

	/* Determine base length */
	switch (GetTileType(tile)) {
		case MP_TUNNELBRIDGE:
			if (IsTunnel(tile)) {
				cost = NPFTunnelCost(current);
				break;
			}
			/* Fall through if above if is false, it is a bridge
			 * then. We treat that as ordinary rail */

		case MP_RAILWAY:
			cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
			break;

		case MP_STREET: /* Railway crossing */
			cost = NPF_TILE_LENGTH;
			break;

		case MP_STATION:
			/* We give a station tile a penalty. Logically we would only want to give
			 * station tiles that are not our destination this penalty. This would
			 * discourage trains to drive through busy stations. But, we can just
			 * give any station tile a penalty, because every possible route will get
			 * this penalty exactly once, on its end tile (if it's a station) and it
			 * will therefore not make a difference. */
			cost = NPF_TILE_LENGTH + _patches.npf_rail_station_penalty;
			break;

		default:
			break;
	}

	/* Determine extra costs */

	/* Check for signals */
	if (IsTileType(tile, MP_RAILWAY) && HasSignalOnTrackdir(tile, trackdir)) {
		/* Ordinary track with signals */
		if (GetSignalStateByTrackdir(tile, trackdir) == SIGNAL_STATE_RED) {
			/* Signal facing us is red */
			if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
				/* Penalize the first signal we
				 * encounter, if it is red */

				/* Is this a presignal exit or combo? */
				SignalType sigtype = GetSignalType(tile);
				if (sigtype == SIGTYPE_EXIT || sigtype == SIGTYPE_COMBO) {
					/* Penalise exit and combo signals differently (heavier) */
					cost += _patches.npf_rail_firstred_exit_penalty;
				} else {
					cost += _patches.npf_rail_firstred_penalty;
				}
			}
			/* Record the state of this signal */
			NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true);
		} else {
			/* Record the state of this signal */
			NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false);
		}
		NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true);
	}

	/* Penalise the tile if it is a target tile and the last signal was
	 * red */
	/* HACK: We create a new_node here so we can call EndNodeCheck. Ugly as hell
	 * of course... */
	new_node.path.node = *current;
	if (as->EndNodeCheck(as, &new_node) == AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED))
		cost += _patches.npf_rail_lastred_penalty;

	/* Check for slope */
	cost += NPFSlopeCost(current);

	/* Check for turns */
	if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction))
		cost += _patches.npf_rail_curve_penalty;
	//TODO, with realistic acceleration, also the amount of straight track between
	//      curves should be taken into account, as this affects the speed limit.

	/* Check for reverse in depot */
	if (IsTileDepotType(tile, TRANSPORT_RAIL) && as->EndNodeCheck(as, &new_node) != AYSTAR_FOUND_END_NODE) {
		/* Penalise any depot tile that is not the last tile in the path. This
		 * _should_ penalise every occurence of reversing in a depot (and only
		 * that) */
		cost += _patches.npf_rail_depot_reverse_penalty;
	}

	/* Check for occupied track */
	//TODO

	NPFMarkTile(tile);
	DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
	return cost;
}

/* Will find any depot */
static int32 NPFFindDepot(AyStar* as, OpenListNode *current)
{
	TileIndex tile = current->path.node.tile;

	/* It's not worth caching the result with NPF_FLAG_IS_TARGET here as below,
	 * since checking the cache not that much faster than the actual check */
	if (IsTileDepotType(tile, as->user_data[NPF_TYPE])) {
		return AYSTAR_FOUND_END_NODE;
	} else {
		return AYSTAR_DONE;
	}
}

/* Will find a station identified using the NPFFindStationOrTileData */
static int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current)
{
	NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
	AyStarNode *node = &current->path.node;
	TileIndex tile = node->tile;

	/* If GetNeighbours said we could get here, we assume the station type
	 * is correct */
	if (
		(fstd->station_index == INVALID_STATION && tile == fstd->dest_coords) || /* We've found the tile, or */
		(IsTileType(tile, MP_STATION) && GetStationIndex(tile) == fstd->station_index) /* the station */
	) {
		return AYSTAR_FOUND_END_NODE;
	} else {
		return AYSTAR_DONE;
	}
}

/* To be called when current contains the (shortest route to) the target node.
 * Will fill the contents of the NPFFoundTargetData using
 * AyStarNode[NPF_TRACKDIR_CHOICE].
 */
static void NPFSaveTargetData(AyStar* as, OpenListNode* current)
{
	NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
	ftd->best_trackdir = (Trackdir)current->path.node.user_data[NPF_TRACKDIR_CHOICE];
	ftd->best_path_dist = current->g;
	ftd->best_bird_dist = 0;
	ftd->node = current->path.node;
}

/**
 * Finds out if a given player's vehicles are allowed to enter a given tile.
 * @param owner    The owner of the vehicle.
 * @param tile     The tile that is about to be entered.
 * @param enterdir The direction from which the vehicle wants to enter the tile.
 * @return         true if the vehicle can enter the tile.
 * @todo           This function should be used in other places than just NPF,
 *                 maybe moved to another file too.
 */
static bool VehicleMayEnterTile(Owner owner, TileIndex tile, DiagDirection enterdir)
{
	if (IsTileType(tile, MP_RAILWAY) ||           /* Rail tile (also rail depot) */
			IsRailwayStationTile(tile) ||               /* Rail station tile */
			IsTileDepotType(tile, TRANSPORT_ROAD) ||  /* Road depot tile */
			IsRoadStopTile(tile) ||                /* Road station tile */
			IsTileDepotType(tile, TRANSPORT_WATER)) { /* Water depot tile */
		return IsTileOwner(tile, owner); /* You need to own these tiles entirely to use them */
	}

	switch (GetTileType(tile)) {
		case MP_STREET:
			/* rail-road crossing : are we looking at the railway part? */
			if (IsLevelCrossing(tile) &&
					DiagDirToAxis(enterdir) != GetCrossingRoadAxis(tile)) {
				return IsTileOwner(tile, owner); /* Railway needs owner check, while the street is public */
			}
			break;

		case MP_TUNNELBRIDGE:
			if ((IsTunnel(tile) && GetTunnelTransportType(tile) == TRANSPORT_RAIL) ||
					(IsBridge(tile) && (
						(
							IsBridgeRamp(tile) &&
							GetBridgeTransportType(tile) == TRANSPORT_RAIL
						) || (
							IsBridgeMiddle(tile) &&
							IsTransportUnderBridge(tile) &&
							GetTransportTypeUnderBridge(tile) == TRANSPORT_RAIL &&
							GetBridgeAxis(tile) != DiagDirToAxis(enterdir)
						)
					))) {
				return IsTileOwner(tile, owner);
			}
			break;

		default:
			break;
	}

	return true; /* no need to check */
}

/* Will just follow the results of GetTileTrackStatus concerning where we can
 * go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
 * an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
 * entry and exit are neighbours. Will fill
 * AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and
 * copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */
static void NPFFollowTrack(AyStar* aystar, OpenListNode* current)
{
	Trackdir src_trackdir = (Trackdir)current->path.node.direction;
	TileIndex src_tile = current->path.node.tile;
	DiagDirection src_exitdir = TrackdirToExitdir(src_trackdir);
	TileIndex dst_tile = INVALID_TILE;
	int i;
	TrackdirBits trackdirbits, ts;
	TransportType type = aystar->user_data[NPF_TYPE];
	/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
	aystar->num_neighbours = 0;
	DEBUG(npf, 4)("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);

	/* Find dest tile */
	if (IsTunnelTile(src_tile) && GetTunnelDirection(src_tile) == src_exitdir) {
		/* This is a tunnel. We know this tunnel is our type,
		 * otherwise we wouldn't have got here. It is also facing us,
		 * so we should skip it's body */
		dst_tile = GetOtherTunnelEnd(src_tile);
	} else if (type != TRANSPORT_WATER && (IsRoadStopTile(src_tile) || IsTileDepotType(src_tile, type))) {
		/* This is a road station or a train or road depot. We can enter and exit
		 * those from one side only. Trackdirs don't support that (yet), so we'll
		 * do this here. */

		DiagDirection exitdir;
		/* Find out the exit direction first */
		if (IsRoadStopTile(src_tile)) {
			exitdir = GetRoadStopDir(src_tile);
		} else { /* Train or road depot */
			exitdir = GetDepotDirection(src_tile, type);
		}

		/* Let's see if were headed the right way into the depot */
		if (src_trackdir == DiagdirToDiagTrackdir(ReverseDiagDir(exitdir))) {
			/* We are headed inwards. We cannot go through the back of the depot.
			 * For rail, we can now reverse. Reversing for road vehicles is never
			 * useful, since you cannot take paths you couldn't take before
			 * reversing (as with rail). */
			if (type == TRANSPORT_RAIL) {
				/* We can only reverse here, so we'll not consider this direction, but
				 * jump ahead to the reverse direction.  It would be nicer to return
				 * one neighbour here (the reverse trackdir of the one we are
				 * considering now) and then considering that one to return the tracks
				 * outside of the depot. But, because the code layout is cleaner this
				 * way, we will just pretend we are reversed already */
				src_trackdir = ReverseTrackdir(src_trackdir);
				dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(exitdir));
			} else {
				dst_tile = INVALID_TILE; /* Road vehicle heading inwards: dead end */
			}
		} else {
			dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(exitdir));
		}
	} else {
		/* This a normal tile, a bridge, a tunnel exit, etc. */
		dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(TrackdirToExitdir(src_trackdir)));
	}
	if (dst_tile == INVALID_TILE) {
		/* We reached the border of the map */
		/* TODO Nicer control flow for this */
		return;
	}

	/* I can't enter a tunnel entry/exit tile from a tile above the tunnel. Note
	 * that I can enter the tunnel from a tile below the tunnel entrance. This
	 * solves the problem of vehicles wanting to drive off a tunnel entrance */
	if (IsTunnelTile(dst_tile) && GetTileZ(dst_tile) < GetTileZ(src_tile)) {
		return;
	}

	/* check correct rail type (mono, maglev, etc) */
	if (type == TRANSPORT_RAIL) {
		RailType dst_type = GetTileRailType(dst_tile, src_trackdir);
		if (!HASBIT(aystar->user_data[NPF_RAILTYPES], dst_type))
			return;
	}

	/* Check the owner of the tile */
	if (!VehicleMayEnterTile(aystar->user_data[NPF_OWNER], dst_tile, TrackdirToExitdir(src_trackdir))) {
		return;
	}

	/* Determine available tracks */
	if (type != TRANSPORT_WATER && (IsRoadStopTile(dst_tile) || IsTileDepotType(dst_tile, type))){
		/* Road stations and road and train depots return 0 on GTTS, so we have to do this by hand... */
		DiagDirection exitdir;
		if (IsRoadStopTile(dst_tile)) {
			exitdir = GetRoadStopDir(dst_tile);
		} else { /* Road or train depot */
			exitdir = GetDepotDirection(dst_tile, type);
		}
		/* Find the trackdirs that are available for a depot or station with this
		 * orientation. They are only "inwards", since we are reaching this tile
		 * from some other tile. This prevents vehicles driving into depots from
		 * the back */
		ts = TrackdirToTrackdirBits(DiagdirToDiagTrackdir(ReverseDiagDir(exitdir)));
	} else {
		ts = GetTileTrackStatus(dst_tile, type);
	}
	trackdirbits = ts & TRACKDIR_BIT_MASK; /* Filter out signal status and the unused bits */

	DEBUG(npf, 4)("Next node: (%d, %d) [%d], possible trackdirs: 0x%X", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirbits);
	/* Select only trackdirs we can reach from our current trackdir */
	trackdirbits &= TrackdirReachesTrackdirs(src_trackdir);
	if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */
		trackdirbits &= ~TrackdirCrossesTrackdirs(src_trackdir);

	DEBUG(npf,6)("After filtering: (%d, %d), possible trackdirs: 0x%X", TileX(dst_tile), TileY(dst_tile), trackdirbits);

	i = 0;
	/* Enumerate possible track */
	while (trackdirbits != 0) {
		Trackdir dst_trackdir;
		dst_trackdir =  FindFirstBit2x64(trackdirbits);
		trackdirbits = KillFirstBit2x64(trackdirbits);
		DEBUG(npf, 5)("Expanded into trackdir: %d, remaining trackdirs: 0x%X", dst_trackdir, trackdirbits);

		/* Check for oneway signal against us */
		if (IsTileType(dst_tile, MP_RAILWAY) && GetRailTileType(dst_tile) == RAIL_TYPE_SIGNALS) {
			if (HasSignalOnTrackdir(dst_tile, ReverseTrackdir(dst_trackdir)) && !HasSignalOnTrackdir(dst_tile, dst_trackdir))
				// if one way signal not pointing towards us, stop going in this direction.
				break;
		}
		{
			/* We've found ourselves a neighbour :-) */
			AyStarNode* neighbour = &aystar->neighbours[i];
			neighbour->tile = dst_tile;
			neighbour->direction = dst_trackdir;
			/* Save user data */
			neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
			NPFFillTrackdirChoice(neighbour, current);
		}
		i++;
	}
	aystar->num_neighbours = i;
}

/*
 * Plan a route to the specified target (which is checked by target_proc),
 * from start1 and if not NULL, from start2 as well. The type of transport we
 * are checking is in type. reverse_penalty is applied to all routes that
 * originate from the second start node.
 * When we are looking for one specific target (optionally multiple tiles), we
 * should use a good heuristic to perform aystar search. When we search for
 * multiple targets that are spread around, we should perform a breadth first
 * search by specifiying CalcZero as our heuristic.
 */
static NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner, RailTypeMask railtypes, uint reverse_penalty)
{
	int r;
	NPFFoundTargetData result;

	/* Initialize procs */
	_npf_aystar.CalculateH = heuristic_proc;
	_npf_aystar.EndNodeCheck = target_proc;
	_npf_aystar.FoundEndNode = NPFSaveTargetData;
	_npf_aystar.GetNeighbours = NPFFollowTrack;
	if (type == TRANSPORT_RAIL)
		_npf_aystar.CalculateG = NPFRailPathCost;
	else if (type == TRANSPORT_ROAD)
		_npf_aystar.CalculateG = NPFRoadPathCost;
	else if (type == TRANSPORT_WATER)
		_npf_aystar.CalculateG = NPFWaterPathCost;
	else
		assert(0);

	/* Initialize Start Node(s) */
	start1->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
	start1->user_data[NPF_NODE_FLAGS] = 0;
	_npf_aystar.addstart(&_npf_aystar, start1, 0);
	if (start2) {
		start2->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
		start2->user_data[NPF_NODE_FLAGS] = 0;
		NPFSetFlag(start2, NPF_FLAG_REVERSE, true);
		_npf_aystar.addstart(&_npf_aystar, start2, reverse_penalty);
	}

	/* Initialize result */
	result.best_bird_dist = (uint)-1;
	result.best_path_dist = (uint)-1;
	result.best_trackdir = INVALID_TRACKDIR;
	_npf_aystar.user_path = &result;

	/* Initialize target */
	_npf_aystar.user_target = target;

	/* Initialize user_data */
	_npf_aystar.user_data[NPF_TYPE] = type;
	_npf_aystar.user_data[NPF_OWNER] = owner;
	_npf_aystar.user_data[NPF_RAILTYPES] = railtypes;

	/* GO! */
	r = AyStarMain_Main(&_npf_aystar);
	assert(r != AYSTAR_STILL_BUSY);

	if (result.best_bird_dist != 0) {
		if (target != NULL) {
			DEBUG(npf, 1) ("Could not find route to tile 0x%X from 0x%X.", target->dest_coords, start1->tile);
		} else {
			/* Assumption: target == NULL, so we are looking for a depot */
			DEBUG(npf, 1) ("Could not find route to a depot from tile 0x%X.", start1->tile);
		}

	}
	return result;
}

NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailTypeMask railtypes)
{
	AyStarNode start1;
	AyStarNode start2;

	start1.tile = tile1;
	start2.tile = tile2;
	/* We set this in case the target is also the start tile, we will just
	 * return a not found then */
	start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
	start1.direction = trackdir1;
	start2.direction = trackdir2;
	start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;

	return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner, railtypes, 0);
}

NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailTypeMask railtypes)
{
	return NPFRouteToStationOrTileTwoWay(tile, trackdir, INVALID_TILE, 0, target, type, owner, railtypes);
}

NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, TransportType type, Owner owner, RailTypeMask railtypes, uint reverse_penalty)
{
	AyStarNode start1;
	AyStarNode start2;

	start1.tile = tile1;
	start2.tile = tile2;
	/* We set this in case the target is also the start tile, we will just
	 * return a not found then */
	start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
	start1.direction = trackdir1;
	start2.direction = trackdir2;
	start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;

	/* perform a breadth first search. Target is NULL,
	 * since we are just looking for any depot...*/
	return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), NULL, NPFFindDepot, NPFCalcZero, type, owner, railtypes, reverse_penalty);
}

NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailTypeMask railtypes)
{
	return NPFRouteToDepotBreadthFirstTwoWay(tile, trackdir, INVALID_TILE, 0, type, owner, railtypes, 0);
}

NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailTypeMask railtypes)
{
	/* Okay, what we're gonna do. First, we look at all depots, calculate
	 * the manhatten distance to get to each depot. We then sort them by
	 * distance. We start by trying to plan a route to the closest, then
	 * the next closest, etc. We stop when the best route we have found so
	 * far, is shorter than the manhattan distance. This will obviously
	 * always find the closest depot. It will probably be most efficient
	 * for ships, since the heuristic will not be to far off then. I hope.
	 */
	Queue depots;
	int r;
	NPFFoundTargetData best_result;
	NPFFoundTargetData result;
	NPFFindStationOrTileData target;
	AyStarNode start;
	Depot* current;
	Depot *depot;

	init_InsSort(&depots);
	/* Okay, let's find all depots that we can use first */
	FOR_ALL_DEPOTS(depot) {
		/* Check if this is really a valid depot, it is of the needed type and
		 * owner */
		if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner))
			/* If so, let's add it to the queue, sorted by distance */
			depots.push(&depots, depot, DistanceManhattan(tile, depot->xy));
	}

	/* Now, let's initialise the aystar */

	/* Initialize procs */
	_npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic;
	_npf_aystar.EndNodeCheck = NPFFindStationOrTile;
	_npf_aystar.FoundEndNode = NPFSaveTargetData;
	_npf_aystar.GetNeighbours = NPFFollowTrack;
	if (type == TRANSPORT_RAIL)
		_npf_aystar.CalculateG = NPFRailPathCost;
	else if (type == TRANSPORT_ROAD)
		_npf_aystar.CalculateG = NPFRoadPathCost;
	else if (type == TRANSPORT_WATER)
		_npf_aystar.CalculateG = NPFWaterPathCost;
	else
		assert(0);

	/* Initialize target */
	target.station_index = INVALID_STATION; /* We will initialize dest_coords inside the loop below */
	_npf_aystar.user_target = &target;

	/* Initialize user_data */
	_npf_aystar.user_data[NPF_TYPE] = type;
	_npf_aystar.user_data[NPF_OWNER] = owner;

	/* Initialize Start Node */
	start.tile = tile;
	start.direction = trackdir; /* We will initialize user_data inside the loop below */

	/* Initialize Result */
	_npf_aystar.user_path = &result;
	best_result.best_path_dist = (uint)-1;
	best_result.best_bird_dist = (uint)-1;

	/* Just iterate the depots in order of increasing distance */
	while ((current = depots.pop(&depots))) {
		/* Check to see if we already have a path shorter than this
		 * depot's manhattan distance. HACK: We call DistanceManhattan
		 * again, we should probably modify the queue to give us that
		 * value... */
		if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist)
			break;

		/* Initialize Start Node */
		/* We set this in case the target is also the start tile, we will just
		 * return a not found then */
		start.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
		start.user_data[NPF_NODE_FLAGS] = 0;
		_npf_aystar.addstart(&_npf_aystar, &start, 0);

		/* Initialize result */
		result.best_bird_dist = (uint)-1;
		result.best_path_dist = (uint)-1;
		result.best_trackdir = INVALID_TRACKDIR;

		/* Initialize target */
		target.dest_coords = current->xy;

		/* GO! */
		r = AyStarMain_Main(&_npf_aystar);
		assert(r != AYSTAR_STILL_BUSY);

		/* This depot is closer */
		if (result.best_path_dist < best_result.best_path_dist)
			best_result = result;
	}
	if (result.best_bird_dist != 0) {
		DEBUG(npf, 1) ("Could not find route to any depot from tile 0x%X.", tile);
	}
	return best_result;
}

void InitializeNPF(void)
{
	init_AyStar(&_npf_aystar, NPFHash, NPF_HASH_SIZE);
	_npf_aystar.loops_per_tick = 0;
	_npf_aystar.max_path_cost = 0;
	//_npf_aystar.max_search_nodes = 0;
	/* We will limit the number of nodes for now, until we have a better
	 * solution to really fix performance */
	_npf_aystar.max_search_nodes = _patches.npf_max_search_nodes;
}

void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v)
{
	/* Ships don't really reach their stations, but the tile in front. So don't
	 * save the station id for ships. For roadvehs we don't store it either,
	 * because multistop depends on vehicles actually reaching the exact
	 * dest_tile, not just any stop of that station.
	 * So only for train orders to stations we fill fstd->station_index, for all
	 * others only dest_coords */
	if (v->current_order.type == OT_GOTO_STATION && v->type == VEH_Train) {
		fstd->station_index = v->current_order.station;
		/* Let's take the closest tile of the station as our target for trains */
		fstd->dest_coords = CalcClosestStationTile(v->current_order.station, v->tile);
	} else {
		fstd->dest_coords = v->dest_tile;
		fstd->station_index = INVALID_STATION;
	}
}