Files
@ r23917:50c2317ea357
Branch filter:
Location: cpp/openttd-patchpack/source/src/pathfinder/npf/queue.cpp
r23917:50c2317ea357
13.2 KiB
text/x-c
Cleanup: Removed SVN headers
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 | /*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file queue.cpp Implementation of the #BinaryHeap/#Hash. */
#include "../../stdafx.h"
#include "../../core/alloc_func.hpp"
#include "queue.h"
#include "../../safeguards.h"
/*
* Binary Heap
* For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
*/
const int BinaryHeap::BINARY_HEAP_BLOCKSIZE_BITS = 10; ///< The number of elements that will be malloc'd at a time.
const int BinaryHeap::BINARY_HEAP_BLOCKSIZE = 1 << BinaryHeap::BINARY_HEAP_BLOCKSIZE_BITS;
const int BinaryHeap::BINARY_HEAP_BLOCKSIZE_MASK = BinaryHeap::BINARY_HEAP_BLOCKSIZE - 1;
/**
* Clears the queue, by removing all values from it. Its state is
* effectively reset. If free_items is true, each of the items cleared
* in this way are free()'d.
*/
void BinaryHeap::Clear(bool free_values)
{
/* Free all items if needed and free all but the first blocks of memory */
uint i;
uint j;
for (i = 0; i < this->blocks; i++) {
if (this->elements[i] == nullptr) {
/* No more allocated blocks */
break;
}
/* For every allocated block */
if (free_values) {
for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) {
/* For every element in the block */
if ((this->size >> BINARY_HEAP_BLOCKSIZE_BITS) == i &&
(this->size & BINARY_HEAP_BLOCKSIZE_MASK) == j) {
break; // We're past the last element
}
free(this->elements[i][j].item);
}
}
if (i != 0) {
/* Leave the first block of memory alone */
free(this->elements[i]);
this->elements[i] = nullptr;
}
}
this->size = 0;
this->blocks = 1;
}
/**
* Frees the queue, by reclaiming all memory allocated by it. After
* this it is no longer usable. If free_items is true, any remaining
* items are free()'d too.
*/
void BinaryHeap::Free(bool free_values)
{
uint i;
this->Clear(free_values);
for (i = 0; i < this->blocks; i++) {
if (this->elements[i] == nullptr) break;
free(this->elements[i]);
}
free(this->elements);
}
/**
* Pushes an element into the queue, at the appropriate place for the queue.
* Requires the queue pointer to be of an appropriate type, of course.
*/
bool BinaryHeap::Push(void *item, int priority)
{
if (this->size == this->max_size) return false;
assert(this->size < this->max_size);
if (this->elements[this->size >> BINARY_HEAP_BLOCKSIZE_BITS] == nullptr) {
/* The currently allocated blocks are full, allocate a new one */
assert((this->size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
this->elements[this->size >> BINARY_HEAP_BLOCKSIZE_BITS] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
this->blocks++;
}
/* Add the item at the end of the array */
this->GetElement(this->size + 1).priority = priority;
this->GetElement(this->size + 1).item = item;
this->size++;
/* Now we are going to check where it belongs. As long as the parent is
* bigger, we switch with the parent */
{
BinaryHeapNode temp;
int i;
int j;
i = this->size;
while (i > 1) {
/* Get the parent of this object (divide by 2) */
j = i / 2;
/* Is the parent bigger than the current, switch them */
if (this->GetElement(i).priority <= this->GetElement(j).priority) {
temp = this->GetElement(j);
this->GetElement(j) = this->GetElement(i);
this->GetElement(i) = temp;
i = j;
} else {
/* It is not, we're done! */
break;
}
}
}
return true;
}
/**
* Deletes the item from the queue. priority should be specified if
* known, which speeds up the deleting for some queue's. Should be -1
* if not known.
*/
bool BinaryHeap::Delete(void *item, int priority)
{
uint i = 0;
/* First, we try to find the item.. */
do {
if (this->GetElement(i + 1).item == item) break;
i++;
} while (i < this->size);
/* We did not find the item, so we return false */
if (i == this->size) return false;
/* Now we put the last item over the current item while decreasing the size of the elements */
this->size--;
this->GetElement(i + 1) = this->GetElement(this->size + 1);
/* Now the only thing we have to do, is resort it..
* On place i there is the item to be sorted.. let's start there */
{
uint j;
BinaryHeapNode temp;
/* Because of the fact that Binary Heap uses array from 1 to n, we need to
* increase i by 1
*/
i++;
for (;;) {
j = i;
/* Check if we have 2 children */
if (2 * j + 1 <= this->size) {
/* Is this child smaller than the parent? */
if (this->GetElement(j).priority >= this->GetElement(2 * j).priority) i = 2 * j;
/* Yes, we _need_ to use i here, not j, because we want to have the smallest child
* This way we get that straight away! */
if (this->GetElement(i).priority >= this->GetElement(2 * j + 1).priority) i = 2 * j + 1;
/* Do we have one child? */
} else if (2 * j <= this->size) {
if (this->GetElement(j).priority >= this->GetElement(2 * j).priority) i = 2 * j;
}
/* One of our children is smaller than we are, switch */
if (i != j) {
temp = this->GetElement(j);
this->GetElement(j) = this->GetElement(i);
this->GetElement(i) = temp;
} else {
/* None of our children is smaller, so we stay here.. stop :) */
break;
}
}
}
return true;
}
/**
* Pops the first element from the queue. What exactly is the first element,
* is defined by the exact type of queue.
*/
void *BinaryHeap::Pop()
{
void *result;
if (this->size == 0) return nullptr;
/* The best item is always on top, so give that as result */
result = this->GetElement(1).item;
/* And now we should get rid of this item... */
this->Delete(this->GetElement(1).item, this->GetElement(1).priority);
return result;
}
/**
* Initializes a binary heap and allocates internal memory for maximum of
* max_size elements
*/
void BinaryHeap::Init(uint max_size)
{
this->max_size = max_size;
this->size = 0;
/* We malloc memory in block of BINARY_HEAP_BLOCKSIZE
* It autosizes when it runs out of memory */
this->elements = CallocT<BinaryHeapNode*>((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1);
this->elements[0] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
this->blocks = 1;
}
/* Because we don't want anyone else to bother with our defines */
#undef BIN_HEAP_ARR
/*
* Hash
*/
/**
* Builds a new hash in an existing struct. Make sure that hash() always
* returns a hash less than num_buckets! Call delete_hash after use
*/
void Hash::Init(Hash_HashProc *hash, uint num_buckets)
{
/* Allocate space for the Hash, the buckets and the bucket flags */
uint i;
/* Ensure the size won't overflow. */
CheckAllocationConstraints(sizeof(*this->buckets) + sizeof(*this->buckets_in_use), num_buckets);
this->hash = hash;
this->size = 0;
this->num_buckets = num_buckets;
this->buckets = (HashNode*)MallocT<byte>(num_buckets * (sizeof(*this->buckets) + sizeof(*this->buckets_in_use)));
this->buckets_in_use = (bool*)(this->buckets + num_buckets);
for (i = 0; i < num_buckets; i++) this->buckets_in_use[i] = false;
}
/**
* Deletes the hash and cleans up. Only cleans up memory allocated by new_Hash
* & friends. If free is true, it will call free() on all the values that
* are left in the hash.
*/
void Hash::Delete(bool free_values)
{
uint i;
/* Iterate all buckets */
for (i = 0; i < this->num_buckets; i++) {
if (this->buckets_in_use[i]) {
HashNode *node;
/* Free the first value */
if (free_values) free(this->buckets[i].value);
node = this->buckets[i].next;
while (node != nullptr) {
HashNode *prev = node;
node = node->next;
/* Free the value */
if (free_values) free(prev->value);
/* Free the node */
free(prev);
}
}
}
free(this->buckets);
/* No need to free buckets_in_use, it is always allocated in one
* malloc with buckets */
}
#ifdef HASH_STATS
void Hash::PrintStatistics() const
{
uint used_buckets = 0;
uint max_collision = 0;
uint max_usage = 0;
uint usage[200];
uint i;
for (i = 0; i < lengthof(usage); i++) usage[i] = 0;
for (i = 0; i < this->num_buckets; i++) {
uint collision = 0;
if (this->buckets_in_use[i]) {
const HashNode *node;
used_buckets++;
for (node = &this->buckets[i]; node != nullptr; node = node->next) collision++;
if (collision > max_collision) max_collision = collision;
}
if (collision >= lengthof(usage)) collision = lengthof(usage) - 1;
usage[collision]++;
if (collision > 0 && usage[collision] >= max_usage) {
max_usage = usage[collision];
}
}
printf(
"---\n"
"Hash size: %d\n"
"Nodes used: %d\n"
"Non empty buckets: %d\n"
"Max collision: %d\n",
this->num_buckets, this->size, used_buckets, max_collision
);
printf("{ ");
for (i = 0; i <= max_collision; i++) {
if (usage[i] > 0) {
printf("%d:%d ", i, usage[i]);
#if 0
if (i > 0) {
uint j;
for (j = 0; j < usage[i] * 160 / 800; j++) putchar('#');
}
printf("\n");
#endif
}
}
printf ("}\n");
}
#endif
/**
* Cleans the hash, but keeps the memory allocated
*/
void Hash::Clear(bool free_values)
{
uint i;
#ifdef HASH_STATS
if (this->size > 2000) this->PrintStatistics();
#endif
/* Iterate all buckets */
for (i = 0; i < this->num_buckets; i++) {
if (this->buckets_in_use[i]) {
HashNode *node;
this->buckets_in_use[i] = false;
/* Free the first value */
if (free_values) free(this->buckets[i].value);
node = this->buckets[i].next;
while (node != nullptr) {
HashNode *prev = node;
node = node->next;
if (free_values) free(prev->value);
free(prev);
}
}
}
this->size = 0;
}
/**
* Finds the node that that saves this key pair. If it is not
* found, returns nullptr. If it is found, *prev is set to the
* node before the one found, or if the node found was the first in the bucket
* to nullptr. If it is not found, *prev is set to the last HashNode in the
* bucket, or nullptr if it is empty. prev can also be nullptr, in which case it is
* not used for output.
*/
HashNode *Hash::FindNode(uint key1, uint key2, HashNode** prev_out) const
{
uint hash = this->hash(key1, key2);
HashNode *result = nullptr;
/* Check if the bucket is empty */
if (!this->buckets_in_use[hash]) {
if (prev_out != nullptr) *prev_out = nullptr;
result = nullptr;
/* Check the first node specially */
} else if (this->buckets[hash].key1 == key1 && this->buckets[hash].key2 == key2) {
/* Save the value */
result = this->buckets + hash;
if (prev_out != nullptr) *prev_out = nullptr;
/* Check all other nodes */
} else {
HashNode *prev = this->buckets + hash;
HashNode *node;
for (node = prev->next; node != nullptr; node = node->next) {
if (node->key1 == key1 && node->key2 == key2) {
/* Found it */
result = node;
break;
}
prev = node;
}
if (prev_out != nullptr) *prev_out = prev;
}
return result;
}
/**
* Deletes the value with the specified key pair from the hash and returns
* that value. Returns nullptr when the value was not present. The value returned
* is _not_ free()'d!
*/
void *Hash::DeleteValue(uint key1, uint key2)
{
void *result;
HashNode *prev; // Used as output var for below function call
HashNode *node = this->FindNode(key1, key2, &prev);
if (node == nullptr) {
/* not found */
result = nullptr;
} else if (prev == nullptr) {
/* It is in the first node, we can't free that one, so we free
* the next one instead (if there is any)*/
/* Save the value */
result = node->value;
if (node->next != nullptr) {
HashNode *next = node->next;
/* Copy the second to the first */
*node = *next;
/* Free the second */
free(next);
} else {
/* This was the last in this bucket
* Mark it as empty */
uint hash = this->hash(key1, key2);
this->buckets_in_use[hash] = false;
}
} else {
/* It is in another node
* Save the value */
result = node->value;
/* Link previous and next nodes */
prev->next = node->next;
/* Free the node */
free(node);
}
if (result != nullptr) this->size--;
return result;
}
/**
* Sets the value associated with the given key pair to the given value.
* Returns the old value if the value was replaced, nullptr when it was not yet present.
*/
void *Hash::Set(uint key1, uint key2, void *value)
{
HashNode *prev;
HashNode *node = this->FindNode(key1, key2, &prev);
if (node != nullptr) {
/* Found it */
void *result = node->value;
node->value = value;
return result;
}
/* It is not yet present, let's add it */
if (prev == nullptr) {
/* The bucket is still empty */
uint hash = this->hash(key1, key2);
this->buckets_in_use[hash] = true;
node = this->buckets + hash;
} else {
/* Add it after prev */
node = MallocT<HashNode>(1);
prev->next = node;
}
node->next = nullptr;
node->key1 = key1;
node->key2 = key2;
node->value = value;
this->size++;
return nullptr;
}
/**
* Gets the value associated with the given key pair, or nullptr when it is not
* present.
*/
void *Hash::Get(uint key1, uint key2) const
{
HashNode *node = this->FindNode(key1, key2, nullptr);
return (node != nullptr) ? node->value : nullptr;
}
|