Files @ r25827:5a9ded1a0c1a
Branch filter:

Location: cpp/openttd-patchpack/source/src/tilearea.cpp

Patric Stout
Feature: allow the use of STUN to connect client and server together

This method doesn't require port-forwarding to be used, and works for
most common NAT routers in home setups. But, for sure it doesn't work
for all setups, and not everyone will be able to use this.
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file tilearea.cpp Handling of tile areas. */

#include "stdafx.h"

#include "tilearea_type.h"

#include "safeguards.h"

/**
 * Construct this tile area based on two points.
 * @param start the start of the area
 * @param end   the end of the area
 */
OrthogonalTileArea::OrthogonalTileArea(TileIndex start, TileIndex end)
{
	assert(start < MapSize());
	assert(end < MapSize());

	uint sx = TileX(start);
	uint sy = TileY(start);
	uint ex = TileX(end);
	uint ey = TileY(end);

	if (sx > ex) Swap(sx, ex);
	if (sy > ey) Swap(sy, ey);

	this->tile = TileXY(sx, sy);
	this->w    = ex - sx + 1;
	this->h    = ey - sy + 1;
}

/**
 * Add a single tile to a tile area; enlarge if needed.
 * @param to_add The tile to add
 */
void OrthogonalTileArea::Add(TileIndex to_add)
{
	if (this->tile == INVALID_TILE) {
		this->tile = to_add;
		this->w = 1;
		this->h = 1;
		return;
	}

	uint sx = TileX(this->tile);
	uint sy = TileY(this->tile);
	uint ex = sx + this->w - 1;
	uint ey = sy + this->h - 1;

	uint ax = TileX(to_add);
	uint ay = TileY(to_add);

	sx = std::min(ax, sx);
	sy = std::min(ay, sy);
	ex = std::max(ax, ex);
	ey = std::max(ay, ey);

	this->tile = TileXY(sx, sy);
	this->w    = ex - sx + 1;
	this->h    = ey - sy + 1;
}

/**
 * Does this tile area intersect with another?
 * @param ta the other tile area to check against.
 * @return true if they intersect.
 */
bool OrthogonalTileArea::Intersects(const OrthogonalTileArea &ta) const
{
	if (ta.w == 0 || this->w == 0) return false;

	assert(ta.w != 0 && ta.h != 0 && this->w != 0 && this->h != 0);

	uint left1   = TileX(this->tile);
	uint top1    = TileY(this->tile);
	uint right1  = left1 + this->w - 1;
	uint bottom1 = top1  + this->h - 1;

	uint left2   = TileX(ta.tile);
	uint top2    = TileY(ta.tile);
	uint right2  = left2 + ta.w - 1;
	uint bottom2 = top2  + ta.h - 1;

	return !(
			left2   > right1  ||
			right2  < left1   ||
			top2    > bottom1 ||
			bottom2 < top1
		);
}

/**
 * Does this tile area contain a tile?
 * @param tile Tile to test for.
 * @return True if the tile is inside the area.
 */
bool OrthogonalTileArea::Contains(TileIndex tile) const
{
	if (this->w == 0) return false;

	assert(this->w != 0 && this->h != 0);

	uint left   = TileX(this->tile);
	uint top    = TileY(this->tile);
	uint tile_x = TileX(tile);
	uint tile_y = TileY(tile);

	return IsInsideBS(tile_x, left, this->w) && IsInsideBS(tile_y, top, this->h);
}

/**
 * Expand a tile area by rad tiles in each direction, keeping within map bounds.
 * @param rad Number of tiles to expand
 * @return The OrthogonalTileArea.
 */
OrthogonalTileArea &OrthogonalTileArea::Expand(int rad)
{
	int x = TileX(this->tile);
	int y = TileY(this->tile);

	int sx = std::max<int>(x - rad, 0);
	int sy = std::max<int>(y - rad, 0);
	int ex = std::min<int>(x + this->w + rad, MapSizeX());
	int ey = std::min<int>(y + this->h + rad, MapSizeY());

	this->tile = TileXY(sx, sy);
	this->w    = ex - sx;
	this->h    = ey - sy;
	return *this;
}

/**
 * Clamp the tile area to map borders.
 */
void OrthogonalTileArea::ClampToMap()
{
	assert(this->tile < MapSize());
	this->w = std::min<int>(this->w, MapSizeX() - TileX(this->tile));
	this->h = std::min<int>(this->h, MapSizeY() - TileY(this->tile));
}

/**
 * Returns an iterator to the beginning of the tile area.
 * @return The OrthogonalTileIterator.
 */
OrthogonalTileIterator OrthogonalTileArea::begin() const
{
	return OrthogonalTileIterator(*this);
}

/**
 * Returns an iterator to the end of the tile area.
 * @return The OrthogonalTileIterator.
 */
OrthogonalTileIterator OrthogonalTileArea::end() const
{
	return OrthogonalTileIterator(OrthogonalTileArea());
}

/**
 * Create a diagonal tile area from two corners.
 * @param start First corner of the area.
 * @param end Second corner of the area.
 */
DiagonalTileArea::DiagonalTileArea(TileIndex start, TileIndex end) : tile(start)
{
	assert(start < MapSize());
	assert(end < MapSize());

	/* Unfortunately we can't find a new base and make all a and b positive because
	 * the new base might be a "flattened" corner where there actually is no single
	 * tile. If we try anyway the result is either inaccurate ("one off" half of the
	 * time) or the code gets much more complex;
	 *
	 * We also need to increment/decrement a and b here to have one-past-end semantics
	 * for a and b, just the way the orthogonal tile area does it for w and h. */

	this->a = TileY(end) + TileX(end) - TileY(start) - TileX(start);
	this->b = TileY(end) - TileX(end) - TileY(start) + TileX(start);
	if (this->a > 0) {
		this->a++;
	} else {
		this->a--;
	}

	if (this->b > 0) {
		this->b++;
	} else {
		this->b--;
	}
}

/**
 * Does this tile area contain a tile?
 * @param tile Tile to test for.
 * @return True if the tile is inside the area.
 */
bool DiagonalTileArea::Contains(TileIndex tile) const
{
	int a = TileY(tile) + TileX(tile);
	int b = TileY(tile) - TileX(tile);

	int start_a = TileY(this->tile) + TileX(this->tile);
	int start_b = TileY(this->tile) - TileX(this->tile);

	int end_a = start_a + this->a;
	int end_b = start_b + this->b;

	/* Swap if necessary, preserving the "one past end" semantics. */
	if (start_a > end_a) {
		int tmp = start_a;
		start_a = end_a + 1;
		end_a = tmp + 1;
	}
	if (start_b > end_b) {
		int tmp = start_b;
		start_b = end_b + 1;
		end_b = tmp + 1;
	}

	return (a >= start_a && a < end_a && b >= start_b && b < end_b);
}

/**
 * Move ourselves to the next tile in the rectangle on the map.
 */
TileIterator &DiagonalTileIterator::operator++()
{
	assert(this->tile != INVALID_TILE);

	/* Determine the next tile, while clipping at map borders */
	bool new_line = false;
	do {
		/* Iterate using the rotated coordinates. */
		if (this->a_max == 1 || this->a_max == -1) {
			/* Special case: Every second column has zero length, skip them completely */
			this->a_cur = 0;
			if (this->b_max > 0) {
				this->b_cur = std::min(this->b_cur + 2, this->b_max);
			} else {
				this->b_cur = std::max(this->b_cur - 2, this->b_max);
			}
		} else {
			/* Every column has at least one tile to process */
			if (this->a_max > 0) {
				this->a_cur += 2;
				new_line = this->a_cur >= this->a_max;
			} else {
				this->a_cur -= 2;
				new_line = this->a_cur <= this->a_max;
			}
			if (new_line) {
				/* offset of initial a_cur: one tile in the same direction as a_max
				 * every second line.
				 */
				this->a_cur = abs(this->a_cur) % 2 ? 0 : (this->a_max > 0 ? 1 : -1);

				if (this->b_max > 0) {
					++this->b_cur;
				} else {
					--this->b_cur;
				}
			}
		}

		/* And convert the coordinates back once we've gone to the next tile. */
		uint x = this->base_x + (this->a_cur - this->b_cur) / 2;
		uint y = this->base_y + (this->b_cur + this->a_cur) / 2;
		/* Prevent wrapping around the map's borders. */
		this->tile = x >= MapSizeX() || y >= MapSizeY() ? INVALID_TILE : TileXY(x, y);
	} while (this->tile > MapSize() && this->b_max != this->b_cur);

	if (this->b_max == this->b_cur) this->tile = INVALID_TILE;
	return *this;
}