Files
@ r13786:6205ecbdf2fa
Branch filter:
Location: cpp/openttd-patchpack/source/src/ai/api/ai_road.cpp
r13786:6205ecbdf2fa
21.2 KiB
text/x-c
(svn r18322) -Codechange: remove the WDP duplication; no need to tell the same twice.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | /* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file ai_road.cpp Implementation of AIRoad. */
#include "ai_map.hpp"
#include "ai_station.hpp"
#include "ai_cargo.hpp"
#include "../../station_base.h"
#include "../../command_type.h"
#include "../../company_func.h"
#include "../../script/squirrel_helper_type.hpp"
/* static */ AIRoad::RoadVehicleType AIRoad::GetRoadVehicleTypeForCargo(CargoID cargo_type)
{
return AICargo::HasCargoClass(cargo_type, AICargo::CC_PASSENGERS) ? ROADVEHTYPE_BUS : ROADVEHTYPE_TRUCK;
}
/* static */ bool AIRoad::IsRoadTile(TileIndex tile)
{
if (!::IsValidTile(tile)) return false;
return (::IsTileType(tile, MP_ROAD) && ::GetRoadTileType(tile) != ROAD_TILE_DEPOT) ||
IsDriveThroughRoadStationTile(tile);
}
/* static */ bool AIRoad::IsRoadDepotTile(TileIndex tile)
{
if (!::IsValidTile(tile)) return false;
return ::IsTileType(tile, MP_ROAD) && ::GetRoadTileType(tile) == ROAD_TILE_DEPOT &&
(::RoadTypeToRoadTypes((::RoadType)GetCurrentRoadType()) & ::GetRoadTypes(tile)) != 0;
}
/* static */ bool AIRoad::IsRoadStationTile(TileIndex tile)
{
if (!::IsValidTile(tile)) return false;
return ::IsRoadStopTile(tile) && (::RoadTypeToRoadTypes((::RoadType)GetCurrentRoadType()) & ::GetRoadTypes(tile)) != 0;
}
/* static */ bool AIRoad::IsDriveThroughRoadStationTile(TileIndex tile)
{
if (!::IsValidTile(tile)) return false;
return ::IsDriveThroughStopTile(tile) && (::RoadTypeToRoadTypes((::RoadType)GetCurrentRoadType()) & ::GetRoadTypes(tile)) != 0;
}
/* static */ bool AIRoad::IsRoadTypeAvailable(RoadType road_type)
{
return ::HasRoadTypesAvail(_current_company, ::RoadTypeToRoadTypes((::RoadType)road_type));
}
/* static */ AIRoad::RoadType AIRoad::GetCurrentRoadType()
{
return (RoadType)AIObject::GetRoadType();
}
/* static */ void AIRoad::SetCurrentRoadType(RoadType road_type)
{
if (!IsRoadTypeAvailable(road_type)) return;
AIObject::SetRoadType((::RoadType)road_type);
}
/* static */ bool AIRoad::HasRoadType(TileIndex tile, RoadType road_type)
{
if (!AIMap::IsValidTile(tile)) return false;
if (!IsRoadTypeAvailable(road_type)) return false;
return ::GetAnyRoadBits(tile, (::RoadType)road_type, false) != ROAD_NONE;
}
/* static */ bool AIRoad::AreRoadTilesConnected(TileIndex t1, TileIndex t2)
{
if (!::IsValidTile(t1)) return false;
if (!::IsValidTile(t2)) return false;
if (!IsRoadTypeAvailable(GetCurrentRoadType())) return false;
/* Tiles not neighbouring */
if ((abs((int)::TileX(t1) - (int)::TileX(t2)) + abs((int)::TileY(t1) - (int)::TileY(t2))) != 1) return false;
RoadBits r1 = ::GetAnyRoadBits(t1, AIObject::GetRoadType());
RoadBits r2 = ::GetAnyRoadBits(t2, AIObject::GetRoadType());
uint dir_1 = (::TileX(t1) == ::TileX(t2)) ? (::TileY(t1) < ::TileY(t2) ? 2 : 0) : (::TileX(t1) < ::TileX(t2) ? 1 : 3);
uint dir_2 = 2 ^ dir_1;
DisallowedRoadDirections drd2 = IsNormalRoadTile(t2) ? GetDisallowedRoadDirections(t2) : DRD_NONE;
return HasBit(r1, dir_1) && HasBit(r2, dir_2) && drd2 != DRD_BOTH && drd2 != (dir_1 > dir_2 ? DRD_SOUTHBOUND : DRD_NORTHBOUND);
}
/* Helper functions for AIRoad::CanBuildConnectedRoadParts(). */
/**
* Check whether the given existing bits the start and end part can be build.
* As the function assumes the bits being build on a slope that does not
* allow level foundations all of the existing parts will always be in
* a straight line. This also needs to hold for the start and end parts,
* otherwise it is for sure not valid. Finally a check will be done to
* determine whether the existing road parts match the to-be-build parts.
* As they can only be placed in one direction, just checking the start
* part with the first existing part is enough.
* @param existing The existing road parts.
* @param start The part that should be build first.
* @param end The part that will be build second.
* @return True if and only if the road bits can be build.
*/
static bool CheckAutoExpandedRoadBits(const Array *existing, int32 start, int32 end)
{
return (start + end == 0) && (existing->size == 0 || existing->array[0] == start || existing->array[0] == end);
}
/**
* Lookup function for building road parts when building on slopes is disabled.
* @param slope The slope of the tile to examine.
* @param existing The existing road parts.
* @param start The part that should be build first.
* @param end The part that will be build second.
* @return 0 when the build parts do not connect, 1 when they do connect once
* they are build or 2 when building the first part automatically
* builds the second part.
*/
static int32 LookupWithoutBuildOnSlopes(::Slope slope, const Array *existing, int32 start, int32 end)
{
switch (slope) {
/* Flat slopes can always be build. */
case SLOPE_FLAT:
return 1;
/* Only 4 of the slopes can be build upon. Testing the existing bits is
* necessary because these bits can be something else when the settings
* in the game have been changed.
*/
case SLOPE_NE: case SLOPE_SW:
return (CheckAutoExpandedRoadBits(existing, start, end) && (start == 1 || end == 1)) ? (existing->size == 0 ? 2 : 1) : 0;
case SLOPE_SE: case SLOPE_NW:
return (CheckAutoExpandedRoadBits(existing, start, end) && (start != 1 && end != 1)) ? (existing->size == 0 ? 2 : 1) : 0;
/* Any other tile cannot be built on. */
default:
return 0;
}
}
/**
* Rotate a neighbour bit a single time clockwise.
* @param neighbour The neighbour.
* @return The rotate neighbour data.
*/
static int32 RotateNeighbour(int32 neighbour)
{
switch (neighbour) {
case -2: return -1;
case -1: return 2;
case 1: return -2;
case 2: return 1;
default: NOT_REACHED();
}
}
/**
* Convert a neighbour to a road bit representation for easy internal use.
* @param neighbour The neighbour.
* @return The bits representing the direction.
*/
static RoadBits NeighbourToRoadBits(int32 neighbour)
{
switch (neighbour) {
case -2: return ROAD_NW;
case -1: return ROAD_NE;
case 2: return ROAD_SE;
case 1: return ROAD_SW;
default: NOT_REACHED();
}
}
/**
* Lookup function for building road parts when building on slopes is enabled.
* @param slope The slope of the tile to examine.
* @param existing The existing neighbours.
* @param start The part that should be build first.
* @param end The part that will be build second.
* @return 0 when the build parts do not connect, 1 when they do connect once
* they are build or 2 when building the first part automatically
* builds the second part.
*/
static int32 LookupWithBuildOnSlopes(::Slope slope, Array *existing, int32 start, int32 end)
{
if (::IsSteepSlope(slope)) {
switch (slope) {
/* On steep slopes one can only build straight roads that will be
* automatically expanded to a straight road. Just check that the existing
* road parts are in the same direction. */
case SLOPE_STEEP_S:
case SLOPE_STEEP_W:
case SLOPE_STEEP_N:
case SLOPE_STEEP_E:
return CheckAutoExpandedRoadBits(existing, start, end) ? (existing->size == 0 ? 2 : 1) : 0;
/* All other slopes are invalid slopes!. */
default:
return -1;
}
}
/* The slope is not steep. Furthermore lots of slopes are generally the
* same but are only rotated. So to reduce the amount of lookup work that
* needs to be done the data is made uniform. This means rotating the
* existing parts and updating the slope. */
static const ::Slope base_slopes[] = {
SLOPE_FLAT, SLOPE_W, SLOPE_W, SLOPE_SW,
SLOPE_W, SLOPE_EW, SLOPE_SW, SLOPE_WSE,
SLOPE_W, SLOPE_SW, SLOPE_EW, SLOPE_WSE,
SLOPE_SW, SLOPE_WSE, SLOPE_WSE};
static const byte base_rotates[] = {0, 0, 1, 0, 2, 0, 1, 0, 3, 3, 2, 3, 2, 2, 1};
if (slope >= (::Slope)lengthof(base_slopes)) {
/* This slope is an invalid slope, so ignore it. */
return -1;
}
byte base_rotate = base_rotates[slope];
slope = base_slopes[slope];
/* Some slopes don't need rotating, so return early when we know we do
* not need to rotate. */
switch (slope) {
case SLOPE_FLAT:
/* Flat slopes can always be build. */
return 1;
case SLOPE_EW:
case SLOPE_WSE:
/* A slope similar to a SLOPE_EW or SLOPE_WSE will always cause
* foundations which makes them accessible from all sides. */
return 1;
case SLOPE_W:
case SLOPE_SW:
/* A slope for which we need perform some calculations. */
break;
default:
/* An invalid slope. */
return -1;
}
/* Now perform the actual rotation. */
for (int j = 0; j < base_rotate; j++) {
for (int i = 0; i < existing->size; i++) {
existing->array[i] = RotateNeighbour(existing->array[i]);
}
start = RotateNeighbour(start);
end = RotateNeighbour(end);
}
/* Create roadbits out of the data for easier handling. */
RoadBits start_roadbits = NeighbourToRoadBits(start);
RoadBits new_roadbits = start_roadbits | NeighbourToRoadBits(end);
RoadBits existing_roadbits = ROAD_NONE;
for (int i = 0; i < existing->size; i++) {
existing_roadbits |= NeighbourToRoadBits(existing->array[i]);
}
switch (slope) {
case SLOPE_W:
/* A slope similar to a SLOPE_W. */
switch (new_roadbits) {
case ROAD_N:
case ROAD_E:
case ROAD_S:
/* Cannot build anything with a turn from the low side. */
return 0;
case ROAD_X:
case ROAD_Y:
/* A 'sloped' tile is going to be build. */
if ((existing_roadbits | new_roadbits) != new_roadbits) {
/* There is already a foundation on the tile, or at least
* another slope that is not compatible with the new one. */
return 0;
}
/* If the start is in the low part, it is automatically
* building the second part too. */
return ((start_roadbits & ROAD_E) && !(existing_roadbits & ROAD_W)) ? 2 : 1;
default:
/* Roadbits causing a foundation are going to be build.
* When the existing roadbits are slopes (the lower bits
* are used), this cannot be done. */
if ((existing_roadbits | new_roadbits) == new_roadbits) return 1;
return (existing_roadbits & ROAD_E) ? 0 : 1;
}
case SLOPE_SW:
/* A slope similar to a SLOPE_SW. */
switch (new_roadbits) {
case ROAD_N:
case ROAD_E:
/* Cannot build anything with a turn from the low side. */
return 0;
case ROAD_X:
/* A 'sloped' tile is going to be build. */
if ((existing_roadbits | new_roadbits) != new_roadbits) {
/* There is already a foundation on the tile, or at least
* another slope that is not compatible with the new one. */
return 0;
}
/* If the start is in the low part, it is automatically
* building the second part too. */
return ((start_roadbits & ROAD_NE) && !(existing_roadbits & ROAD_SW)) ? 2 : 1;
default:
/* Roadbits causing a foundation are going to be build.
* When the existing roadbits are slopes (the lower bits
* are used), this cannot be done. */
return (existing_roadbits & ROAD_NE) ? 0 : 1;
}
default:
NOT_REACHED();
}
}
/**
* Normalise all input data so we can easily handle it without needing
* to call the API lots of times or create large if-elseif-elseif-else
* constructs.
* In this case it means that a TileXY(0, -1) becomes -2 and TileXY(0, 1)
* becomes 2. TileXY(-1, 0) and TileXY(1, 0) stay respectively -1 and 1.
* Any other value means that it is an invalid tile offset.
* @param tile The tile to normalise.
* @return True if and only if the tile offset is valid.
*/
static bool NormaliseTileOffset(int32 *tile)
{
if (*tile == 1 || *tile == -1) return true;
if (*tile == ::TileDiffXY(0, -1)) {
*tile = -2;
return true;
}
if (*tile == ::TileDiffXY(0, 1)) {
*tile = 2;
return true;
}
return false;
}
/* static */ int32 AIRoad::CanBuildConnectedRoadParts(AITile::Slope slope_, Array *existing, TileIndex start_, TileIndex end_)
{
::Slope slope = (::Slope)slope_;
int32 start = start_;
int32 end = end_;
/* The start tile and end tile cannot be the same tile either. */
if (start == end) return -1;
for (int i = 0; i < existing->size; i++) {
if (!NormaliseTileOffset(&existing->array[i])) return -1;
}
if (!NormaliseTileOffset(&start)) return -1;
if (!NormaliseTileOffset(&end)) return -1;
/* Without build on slopes the characteristics are vastly different, so use
* a different helper function (one that is much simpler). */
return _settings_game.construction.build_on_slopes ? LookupWithBuildOnSlopes(slope, existing, start, end) : LookupWithoutBuildOnSlopes(slope, existing, start, end);
}
/* static */ int32 AIRoad::CanBuildConnectedRoadPartsHere(TileIndex tile, TileIndex start, TileIndex end)
{
if (!::IsValidTile(tile) || !::IsValidTile(start) || !::IsValidTile(end)) return -1;
if (::DistanceManhattan(tile, start) != 1 || ::DistanceManhattan(tile, end) != 1) return -1;
/* ROAD_NW ROAD_SW ROAD_SE ROAD_NE */
static const TileIndex neighbours[] = {::TileDiffXY(0, -1), ::TileDiffXY(1, 0), ::TileDiffXY(0, 1), ::TileDiffXY(-1, 0)};
Array *existing = (Array*)alloca(sizeof(Array) + lengthof(neighbours) * sizeof(int32));
existing->size = 0;
::RoadBits rb = ::ROAD_NONE;
if (::IsNormalRoadTile(tile)) {
rb = ::GetAllRoadBits(tile);
} else {
for (::RoadType rt = ::ROADTYPE_BEGIN; rt < ::ROADTYPE_END; rt++) rb |= ::GetAnyRoadBits(tile, rt);
}
for (uint i = 0; i < lengthof(neighbours); i++) {
if (HasBit(rb, i)) existing->array[existing->size++] = neighbours[i];
}
return AIRoad::CanBuildConnectedRoadParts(AITile::GetSlope(tile), existing, start - tile, end - tile);
}
/**
* Check whether one can reach (possibly by building) a road piece the center
* of the neighbouring tile. This includes roads and (drive through) stations.
* @param rts The road type we want to know reachability for
* @param start_tile The tile to "enter" the neighbouring tile.
* @param neighbour The direction to the neighbouring tile to "enter".
* @return true if and only if the tile is reachable.
*/
static bool NeighbourHasReachableRoad(::RoadTypes rts, TileIndex start_tile, DiagDirection neighbour)
{
TileIndex neighbour_tile = ::TileAddByDiagDir(start_tile, neighbour);
if ((rts & ::GetRoadTypes(neighbour_tile)) == 0) return false;
switch (::GetTileType(neighbour_tile)) {
case MP_ROAD:
return (::GetRoadTileType(neighbour_tile) != ROAD_TILE_DEPOT);
case MP_STATION:
if (::IsDriveThroughStopTile(neighbour_tile)) {
return (::DiagDirToAxis(neighbour) == ::DiagDirToAxis(::GetRoadStopDir(neighbour_tile)));
}
return false;
default:
return false;
}
}
/* static */ int32 AIRoad::GetNeighbourRoadCount(TileIndex tile)
{
if (!::IsValidTile(tile)) return false;
if (!IsRoadTypeAvailable(GetCurrentRoadType())) return false;
::RoadTypes rts = ::RoadTypeToRoadTypes((::RoadType)GetCurrentRoadType());
int32 neighbour = 0;
if (TileX(tile) > 0 && NeighbourHasReachableRoad(rts, tile, DIAGDIR_NE)) neighbour++;
if (NeighbourHasReachableRoad(rts, tile, DIAGDIR_SE)) neighbour++;
if (NeighbourHasReachableRoad(rts, tile, DIAGDIR_SW)) neighbour++;
if (TileY(tile) > 0 && NeighbourHasReachableRoad(rts, tile, DIAGDIR_NW)) neighbour++;
return neighbour;
}
/* static */ TileIndex AIRoad::GetRoadDepotFrontTile(TileIndex depot)
{
if (!IsRoadDepotTile(depot)) return INVALID_TILE;
return depot + ::TileOffsByDiagDir(::GetRoadDepotDirection(depot));
}
/* static */ TileIndex AIRoad::GetRoadStationFrontTile(TileIndex station)
{
if (!IsRoadStationTile(station)) return INVALID_TILE;
return station + ::TileOffsByDiagDir(::GetRoadStopDir(station));
}
/* static */ TileIndex AIRoad::GetDriveThroughBackTile(TileIndex station)
{
if (!IsDriveThroughRoadStationTile(station)) return INVALID_TILE;
return station + ::TileOffsByDiagDir(::ReverseDiagDir(::GetRoadStopDir(station)));
}
/* static */ bool AIRoad::_BuildRoadInternal(TileIndex start, TileIndex end, bool one_way, bool full)
{
EnforcePrecondition(false, start != end);
EnforcePrecondition(false, ::IsValidTile(start));
EnforcePrecondition(false, ::IsValidTile(end));
EnforcePrecondition(false, ::TileX(start) == ::TileX(end) || ::TileY(start) == ::TileY(end));
EnforcePrecondition(false, !one_way || AIObject::GetRoadType() == ::ROADTYPE_ROAD);
EnforcePrecondition(false, IsRoadTypeAvailable(GetCurrentRoadType()));
return AIObject::DoCommand(end, start, (::TileY(start) != ::TileY(end) ? 4 : 0) | (((start < end) == !full) ? 1 : 2) | (AIObject::GetRoadType() << 3) | ((one_way ? 1 : 0) << 5), CMD_BUILD_LONG_ROAD);
}
/* static */ bool AIRoad::BuildRoad(TileIndex start, TileIndex end)
{
return _BuildRoadInternal(start, end, false, false);
}
/* static */ bool AIRoad::BuildOneWayRoad(TileIndex start, TileIndex end)
{
return _BuildRoadInternal(start, end, true, false);
}
/* static */ bool AIRoad::BuildRoadFull(TileIndex start, TileIndex end)
{
return _BuildRoadInternal(start, end, false, true);
}
/* static */ bool AIRoad::BuildOneWayRoadFull(TileIndex start, TileIndex end)
{
return _BuildRoadInternal(start, end, true, true);
}
/* static */ bool AIRoad::BuildRoadDepot(TileIndex tile, TileIndex front)
{
EnforcePrecondition(false, tile != front);
EnforcePrecondition(false, ::IsValidTile(tile));
EnforcePrecondition(false, ::IsValidTile(front));
EnforcePrecondition(false, ::TileX(tile) == ::TileX(front) || ::TileY(tile) == ::TileY(front));
EnforcePrecondition(false, IsRoadTypeAvailable(GetCurrentRoadType()));
uint entrance_dir = (::TileX(tile) == ::TileX(front)) ? (::TileY(tile) < ::TileY(front) ? 1 : 3) : (::TileX(tile) < ::TileX(front) ? 2 : 0);
return AIObject::DoCommand(tile, entrance_dir | (AIObject::GetRoadType() << 2), 0, CMD_BUILD_ROAD_DEPOT);
}
/* static */ bool AIRoad::_BuildRoadStationInternal(TileIndex tile, TileIndex front, RoadVehicleType road_veh_type, bool drive_through, StationID station_id)
{
EnforcePrecondition(false, tile != front);
EnforcePrecondition(false, ::IsValidTile(tile));
EnforcePrecondition(false, ::IsValidTile(front));
EnforcePrecondition(false, ::TileX(tile) == ::TileX(front) || ::TileY(tile) == ::TileY(front));
EnforcePrecondition(false, station_id == AIStation::STATION_NEW || station_id == AIStation::STATION_JOIN_ADJACENT || AIStation::IsValidStation(station_id));
EnforcePrecondition(false, road_veh_type == ROADVEHTYPE_BUS || road_veh_type == ROADVEHTYPE_TRUCK);
EnforcePrecondition(false, IsRoadTypeAvailable(GetCurrentRoadType()));
uint entrance_dir;
if (drive_through) {
entrance_dir = ::TileY(tile) != ::TileY(front);
} else {
entrance_dir = (::TileX(tile) == ::TileX(front)) ? (::TileY(tile) < ::TileY(front) ? 1 : 3) : (::TileX(tile) < ::TileX(front) ? 2 : 0);
}
uint p2 = station_id == AIStation::STATION_JOIN_ADJACENT ? 0 : 32;
p2 |= drive_through ? 2 : 0;
p2 |= road_veh_type == ROADVEHTYPE_TRUCK ? 1 : 0;
p2 |= ::RoadTypeToRoadTypes(AIObject::GetRoadType()) << 2;
p2 |= (AIStation::IsValidStation(station_id) ? station_id : INVALID_STATION) << 16;
return AIObject::DoCommand(tile, entrance_dir, p2, CMD_BUILD_ROAD_STOP);
}
/* static */ bool AIRoad::BuildRoadStation(TileIndex tile, TileIndex front, RoadVehicleType road_veh_type, StationID station_id)
{
return _BuildRoadStationInternal(tile, front, road_veh_type, false, station_id);
}
/* static */ bool AIRoad::BuildDriveThroughRoadStation(TileIndex tile, TileIndex front, RoadVehicleType road_veh_type, StationID station_id)
{
return _BuildRoadStationInternal(tile, front, road_veh_type, true, station_id);
}
/* static */ bool AIRoad::RemoveRoad(TileIndex start, TileIndex end)
{
EnforcePrecondition(false, ::IsValidTile(start));
EnforcePrecondition(false, ::IsValidTile(end));
EnforcePrecondition(false, ::TileX(start) == ::TileX(end) || ::TileY(start) == ::TileY(end));
EnforcePrecondition(false, IsRoadTypeAvailable(GetCurrentRoadType()));
return AIObject::DoCommand(end, start, (::TileY(start) != ::TileY(end) ? 4 : 0) | (start < end ? 1 : 2) | (AIObject::GetRoadType() << 3), CMD_REMOVE_LONG_ROAD);
}
/* static */ bool AIRoad::RemoveRoadFull(TileIndex start, TileIndex end)
{
EnforcePrecondition(false, ::IsValidTile(start));
EnforcePrecondition(false, ::IsValidTile(end));
EnforcePrecondition(false, ::TileX(start) == ::TileX(end) || ::TileY(start) == ::TileY(end));
EnforcePrecondition(false, IsRoadTypeAvailable(GetCurrentRoadType()));
return AIObject::DoCommand(end, start, (::TileY(start) != ::TileY(end) ? 4 : 0) | (start < end ? 2 : 1) | (AIObject::GetRoadType() << 3), CMD_REMOVE_LONG_ROAD);
}
/* static */ bool AIRoad::RemoveRoadDepot(TileIndex tile)
{
EnforcePrecondition(false, ::IsValidTile(tile));
EnforcePrecondition(false, IsTileType(tile, MP_ROAD))
EnforcePrecondition(false, GetRoadTileType(tile) == ROAD_TILE_DEPOT);
return AIObject::DoCommand(tile, 0, 0, CMD_LANDSCAPE_CLEAR);
}
/* static */ bool AIRoad::RemoveRoadStation(TileIndex tile)
{
EnforcePrecondition(false, ::IsValidTile(tile));
EnforcePrecondition(false, IsTileType(tile, MP_STATION));
EnforcePrecondition(false, IsRoadStop(tile));
return AIObject::DoCommand(tile, 0, GetRoadStopType(tile), CMD_REMOVE_ROAD_STOP);
}
|