Files @ r4548:6a33e364fba5
Branch filter:

Location: cpp/openttd-patchpack/source/yapf/unittest/test_yapf.h

rubidium
(svn r6380) -Codechange: unify all ways to quit OTTD.
This means that in the intro menu the 'Quit' button immediatelly quits
and the 'Quit' in the menu of the normal game and scenario editor
immediatelly quits when the 'autosave_on_exit' patch is turned on.
This is the same way as the OS/window manager initiated quits, like
alt-F4 and the 'x' in the (OS/window manager drawn) title bar of OTTD.
/* $Id$ */

#include "../yapf_base.hpp"

struct CYapfMap1
{
	enum {xMax = 32, yMax = 68};
	static int MapZ(int x, int y)
	{
		static const char *z1[yMax] = {
			"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000001000000000000000000000000000000000000000000000000000000A",
			"A000000000001000000000000000000000000000000000000000000000000000000A",
			"A000033333333333000000000000000000000000000000000000000000000000000A",
			"A000030000000000000000000000000000000000000000000000000000000000000A",
			"A000030000000000000000000000000000000000000000000000000000000000000A",
			"A000030000000000000000000000000000000000000000000000000000000000000A",
			"A000030000000000000000000000000000000000000000000000000000000000000A",
			"A000030000000000000000000000000000000000000000000000000000000000000A",
			"A210030000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A011333323333333233333333333333333333333333333333333333333333000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A210030000000000000000000000000000000000000000000000000000003000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A000230000000000000000000000000000000000000000000000000000003000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A000000000000000000000000000003333333333333333333333333333333000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
		};

		static const char *z2[yMax] = {
			"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A003333333333333333333333333333333333333333333333333300000000000000A",
			"A003000000001000000000000000000000000000000000000000300000000000000A",
			"A003000000001000000000000000000000000000000000000000300000000000000A",
			"A003333333333333333333333333333333333333300000000000300000000000000A",
			"A000030000000000000000000000000000000000300000000000300000000000000A",
			"A000030000000000000000000000000000000000333333333333300000000000000A",
			"A000030000000000000000000000000000000000300000000000000000000000000A",
			"A000030000000000000000000000000000000000300000000000000000000000000A",
			"A000030000000000000000000000000000000000300000000000000000000000000A",
			"A210030000000000000000000000000000000000300000000000000000000000000A",
			"A000000000000000000000000000000000000000333300000000000000000000000A",
			"A000000000000000000000000000000000000000000300000000000000000000000A",
			"A000000000000000000000000000000000000000000300000000000000000000000A",
			"A000000000000000000000000000000000000000000300000000000000000000000A",
			"A012333323333333233333333333333333333333333333333333333333333000000A",
			"A000030000000000000000000000000000000000000000000000000000003000000A",
			"A000030000000000000000000000000000000000000000000000000300003000000A",
			"A000030000000000000000000000000000000000000000000000000300003000000A",
			"A210030000000000000000000000000000000000000000000000000330003000000A",
			"A000030000000000000000000000000000000000000000000000000300003000000A",
			"A000030000000000000000000000000000000000000000000000000300003000000A",
			"A000230000000000000000000000000000000000000000000000000300003000000A",
			"A000030000000000000000000000000000000000000000000000000300003000000A",
			"A000030000000000000000000000000000000000000000000000000300003000000A",
			"A000030000000000000000000000000000000000000000000000000300003000000A",
			"A000000000000000000000000000003333333333333333333333333333333000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"A000000000000000000000000000000000000000000000000000000000000000000A",
			"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
		};

		static const char **z = z1;

		if (x >= 0 && x < xMax && y >= 0 && y < yMax) {
			int ret = z[x][y];
			return ret;
		}
		return z[0][0];
	}
};

struct CNodeKey1 {
	int            m_x;
	int            m_y;
	Trackdir       m_td;
	DiagDirection  m_exitdir;

	CNodeKey1() : m_x(0), m_y(0), m_td(INVALID_TRACKDIR) {}

	int CalcHash() const {return m_x | (m_y << 5) | (m_td << 10);}
	bool operator == (const CNodeKey1& other) const {return (m_x == other.m_x) && (m_y == other.m_y) && (m_td == other.m_td);}
};

struct CNodeKey2 : public CNodeKey1
{
	int CalcHash() const {return m_x | (m_y << 5) | (m_exitdir << 10);}
	bool operator == (const CNodeKey1& other) const {return (m_x == other.m_x) && (m_y == other.m_y) && (m_exitdir == other.m_exitdir);}
};

template <class Tkey_>
struct CTestYapfNodeT {
	typedef Tkey_ Key;
	typedef CTestYapfNodeT<Tkey_> Node;

	Tkey_           m_key;
	CTestYapfNodeT *m_parent;
	int             m_cost;
	int             m_estimate;
	CTestYapfNodeT *m_next;

	CTestYapfNodeT(CTestYapfNodeT* parent = NULL) : m_parent(parent), m_cost(0), m_estimate(0), m_next(NULL) {}

	const Tkey_& GetKey() const {return m_key;}
	int GetCost() {return m_cost;}
	int GetCostEstimate() {return m_estimate;}
	bool operator < (const CTestYapfNodeT& other) const {return m_estimate < other.m_estimate;}
	CTestYapfNodeT* GetHashNext() {return m_next;}
	void SetHashNext(CTestYapfNodeT* next) {m_next = next;}
};

typedef CTestYapfNodeT<CNodeKey1> CYapfNode1;
typedef CTestYapfNodeT<CNodeKey2> CYapfNode2;

template <class Types>
struct CYapfTestBaseT
{
	typedef typename Types::Tpf Tpf;              ///< the pathfinder class (derived from THIS class)
	typedef typename Types::NodeList::Titem Node; ///< this will be our node type
	typedef typename Node::Key Key;               ///< key to hash tables
	typedef typename Types::Map Map;

	int m_x1, m_y1;
	int m_x2, m_y2;
	Trackdir m_td1;

	CYapfTestBaseT()
		: m_x1(0), m_y1(0), m_x2(0), m_y2(0), m_td1(INVALID_TRACKDIR)
	{
	}

	void Set(int x1, int y1, int x2, int y2, Trackdir td1)
	{
		m_x1 = x1;
		m_y1 = y1;
		m_x2 = x2;
		m_y2 = y2;
		m_td1 = td1;
	}

	/// to access inherited path finder
	Tpf& Yapf() {return *static_cast<Tpf*>(this);}
	FORCEINLINE char TransportTypeChar() const {return 'T';}

	/** Called by YAPF to move from the given node to the next tile. For each
	*   reachable trackdir on the new tile creates new node, initializes it
	*   and adds it to the open list by calling Yapf().AddNewNode(n) */
	FORCEINLINE void PfFollowNode(Node& org)
	{
		int x_org = org.m_key.m_x;
		int y_org = org.m_key.m_y;
		int z_org = Map::MapZ(x_org, y_org);
		DiagDirection exitdir = TrackdirToExitdir(org.m_key.m_td);

		TileIndexDiffC diff = TileIndexDiffCByDir(exitdir);
		int x_new = x_org + diff.x;
		int y_new = y_org + diff.y;
		int z_new = Map::MapZ(x_new, y_new);

		int z_diff = z_new - z_org;
		if (abs(z_diff) > 1) return;

		TrackdirBits trackdirs = DiagdirReachesTrackdirs(exitdir);
		TrackdirBits trackdirs90 = TrackdirCrossesTrackdirs(org.m_key.m_td);
		trackdirs &= (TrackdirBits)~(int)trackdirs90;

		while (trackdirs != TRACKDIR_BIT_NONE) {
			Trackdir td_new = (Trackdir)FindFirstBit2x64(trackdirs);
			trackdirs = (TrackdirBits)KillFirstBit2x64(trackdirs);

			Node& n = Yapf().CreateNewNode();
			n.m_key.m_x  =  x_new;
			n.m_key.m_y  =  y_new;
			n.m_key.m_td = td_new;
			n.m_key.m_exitdir = TrackdirToExitdir(n.m_key.m_td);
			n.m_parent   = &org;
			Yapf().AddNewNode(n);
		}
	}

	/// Called when YAPF needs to place origin nodes into open list
	FORCEINLINE void PfSetStartupNodes()
	{
		Node& n1 = Yapf().CreateNewNode();
		n1.m_key.m_x = m_x1;
		n1.m_key.m_y = m_y1;
		n1.m_key.m_td = m_td1;
		n1.m_key.m_exitdir = TrackdirToExitdir(n1.m_key.m_td);
		Yapf().AddStartupNode(n1);
	}

	/** Called by YAPF to calculate the cost from the origin to the given node.
	*   Calculates only the cost of given node, adds it to the parent node cost
	*   and stores the result into Node::m_cost member */
	FORCEINLINE bool PfCalcCost(Node& n)
	{
		// base tile cost depending on distance
		int c = IsDiagonalTrackdir(n.m_key.m_td) ? 10 : 7;
		// additional penalty for curve
		if (n.m_parent != NULL && n.m_key.m_td != n.m_parent->m_key.m_td) c += 3;
		// z-difference cost
		int z_new = Map::MapZ(n.m_key.m_x, n.m_key.m_y);
		int z_old = Map::MapZ(n.m_parent->m_key.m_x, n.m_parent->m_key.m_y);
		if (z_new > z_old) n.m_cost += (z_new - z_old) * 10;
		// apply it
		n.m_cost = n.m_parent->m_cost + c;
		return true;
	}

	/** Called by YAPF to calculate cost estimate. Calculates distance to the destination
	*   adds it to the actual cost from origin and stores the sum to the Node::m_estimate */
	FORCEINLINE bool PfCalcEstimate(Node& n)
	{
		int dx = abs(n.m_key.m_x - m_x2);
		int dy = abs(n.m_key.m_y - m_y2);
		int dd = min(dx, dy);
		int dxy = abs(dx - dy);
		int d = 14 * dd + 10 * dxy;
		n.m_estimate = n.m_cost + d /*+ d / 4*/;
		return true;
	}

	/// Called by YAPF to detect if node ends in the desired destination
	FORCEINLINE bool PfDetectDestination(Node& n)
	{
		bool bDest = (n.m_key.m_x == m_x2) && (n.m_key.m_y == m_y2);
		return bDest;
	}

	static int stTestAstar(bool silent)
	{
		Tpf pf;
		pf.Set(3, 3, 20, 56, TRACKDIR_X_NE);
		int ret = pf.TestAstar(silent);
		return ret;
	}

	int TestAstar(bool silent)
	{
		CPerformanceTimer pc;

		pc.Start();
		bool bRet = Yapf().FindPath(NULL);
		pc.Stop();

		if (!bRet) return 1;

		typedef CFixedSizeArrayT<int, 1024> Row;
		typedef CFixedSizeArrayT<Row, 1024> Box;

		Box box;
		{
			for (int x = 0; x < Map::xMax; x++) {
				Row& row = box.Add();
				for (int y = 0; y < Map::yMax; y++) {
					row.Add() = Map::MapZ(x, y);
				}
			}
		}
		int nPathTiles = 0;
		{
			for (Node* pNode = &Yapf().GetBestNode(); pNode != NULL; pNode = pNode->m_parent) {
				box[pNode->m_key.m_x][pNode->m_key.m_y] = '.';
				nPathTiles++;
			}
		}
		{
			printf("\n\n");
			for (int x = 0; x < Map::xMax; x++) {
				for (int y = 0; y < Map::yMax; y++) {
					printf("%c", box[x][y]);
				}
				printf("\n");
			}
		}

		{
			printf("\n");
			printf("Path Tiles:    %6d\n", nPathTiles);
//			printf("Closed nodes:  %6d\n", pf.m_nodes.ClosedCount());
//			printf("Open nodes:    %6d\n", pf.m_nodes.OpenCount());
//			printf("A-star rounds: %6d\n", pf.m_num_steps);
		}
		int total_time = pc.Get(1000000);
		if (total_time != 0)
			printf("Total time:    %6d us\n", pc.Get(1000000));

		printf("\n");

		{
			int nCnt = Yapf().m_nodes.TotalCount();
			for (int i = 0; i < nCnt; i++) {
				Node& n = Yapf().m_nodes.ItemAt(i);
				int& z = box[n.m_key.m_x][n.m_key.m_y];
				z = (z < 'a') ? 'a' : (z + 1);
			}
		}
		{
			for (int x = 0; x < Map::xMax; x++) {
				for (int y = 0; y < Map::yMax; y++) {
					printf("%c", box[x][y]);
				}
				printf("\n");
			}
		}

		return 0;
	}
};

struct CDummy1 {};
struct CDummy2 {};
struct CDummy3 {};

template <class Tpf_, class Tnode_list, class Tmap>
struct CYapf_TypesT
{
	typedef CYapf_TypesT<Tpf_, Tnode_list, Tmap> Types;

	typedef Tpf_                              Tpf;
	typedef Tnode_list                        NodeList;
	typedef Tmap                              Map;
	typedef CYapfBaseT<Types>                 PfBase;
	typedef CYapfTestBaseT<Types>             PfFollow;
	typedef CDummy1                           PfOrigin;
	typedef CDummy2                           PfDestination;
	typedef CYapfSegmentCostCacheNoneT<Types> PfCache;
	typedef CDummy3                           PfCost;
};

typedef CNodeList_HashTableT<CYapfNode1, 12, 16> CNodeList1;
typedef CNodeList_HashTableT<CYapfNode2, 12, 16> CNodeList2;

struct CTestYapf1
	: public CYapfT<CYapf_TypesT<CTestYapf1, CNodeList1, CYapfMap1> >
{
};

struct CTestYapf2
	: public CYapfT<CYapf_TypesT<CTestYapf2, CNodeList2, CYapfMap1> >
{
};