Files @ r1648:720d51a7e71e
Branch filter:

Location: cpp/openttd-patchpack/source/npf.c

darkvater
(svn r2152) - Fix: Chatbar in MP games is now on-top of the news window.
- CodeChange: Introduction of SendWindowMessage() where a window can send another window a message (ala windows style msg, wparam, lparam). Messages can be sent by windowclass and by windowpointer.
- CodeChange: IsVitalWindow() simplifies a lot of checks for window handling that need to know what windows it can close, or be on top of, etc.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
#include "stdafx.h"
#include "ttd.h"
#include "debug.h"
#include "npf.h"
#include "aystar.h"
#include "macros.h"
#include "pathfind.h"
#include "station.h"
#include "tile.h"
#include "depot.h"

AyStar _train_find_station;
AyStar _train_find_depot;
AyStar _road_find_station;
AyStar _road_find_depot;
AyStar _npf_aystar;

/* Maps a trackdir to the bit that stores its status in the map arrays, in the
 * direction along with the trackdir */
const byte _signal_along_trackdir[14] = {
	0x80, 0x80, 0x80, 0x20, 0x40, 0x10, 0, 0,
	0x40, 0x40, 0x40, 0x10, 0x80, 0x20
};

/* Maps a trackdir to the bit that stores its status in the map arrays, in the
 * direction against the trackdir */
const byte _signal_against_trackdir[14] = {
	0x40, 0x40, 0x40, 0x10, 0x80, 0x20, 0, 0,
	0x80, 0x80, 0x80, 0x20, 0x40, 0x10
};

/* Maps a trackdir to the trackdirs that can be reached from it (ie, when
 * entering the next tile */
const uint16 _trackdir_reaches_trackdirs[14] = {
	0x1009, 0x0016, 0x1009, 0x0016, 0x0520, 0x0016, 0, 0,
	0x0520, 0x2A00, 0x2A00, 0x0520, 0x2A00, 0x1009
};

/* Maps a trackdir to all trackdirs that make 90 deg turns with it. */
const uint16 _trackdir_crosses_trackdirs[14] = {
	0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C, 0, 0,
	0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C
};

/* Maps a track to all tracks that make 90 deg turns with it. */
const byte _track_crosses_tracks[6] = {
	0x2, /* Track 1 -> Track 2 */
	0x1, /* Track 2 -> Track 1 */
	0x30, /* Upper -> Left | Right */
	0x30, /* Lower -> Left | Right */
	0x0C, /* Left -> Upper | Lower */
	0x0C, /* Right -> Upper | Lower */
};

/* Maps a trackdir to the (4-way) direction the tile is exited when following
 * that trackdir */
const byte _trackdir_to_exitdir[14] = {
	0,1,0,1,2,1, 0,0,
	2,3,3,2,3,0,
};

const byte _track_exitdir_to_trackdir[6][4] = {
	{0,    0xff, 8,    0xff},
	{0xff, 1,    0xff, 9},
	{2,    0xff, 0xff, 10},
	{0xff, 3,    11,   0xf},
	{0xff, 0xff, 4,    12},
	{13,   5,    0xff, 0xff}
};

const byte _track_direction_to_trackdir[6][8] = {
	{0xff, 0,    0xff, 0xff, 0xff, 8,    0xff, 0xff},
	{0xff, 0xff, 0xff, 1,    0xff, 0xff, 0xff, 9},
	{0xff, 0xff, 2,    0xff, 0xff, 0xff, 10,   0xff},
	{0xff, 0xff, 3,    0xff, 0xff, 0xff, 11,   0xff},
	{12,   0xff, 0xff, 0xff, 4,    0xff, 0xff, 0xff},
	{13,   0xff, 0xff, 0xff, 5,    0xff, 0xff, 0xff}
};

const byte _dir_to_diag_trackdir[4] = {
	0, 1, 8, 9,
};

const byte _reverse_dir[4] = {
	2, 3, 0, 1
};

const byte _reverse_trackdir[14] = {
	8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
	0, 1, 2,  3,  4,  5
};

/* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
 * the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
 */
#define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * 0.7071)
static const uint _trackdir_length[14] = {
	NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH,
	0, 0,
	NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
};

uint NTPHash(uint key1, uint key2)
{
	return PATHFIND_HASH_TILE(key1);
}

int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent) {
	return 0;
}

/* Calcs the tile of given station that is closest to a given tile
 * for this we assume the station is a rectangle,
 * as defined by its top tile (st->train_tile) and its width/height (st->trainst_w, st->trainst_h)
 */
TileIndex CalcClosestStationTile(int station, TileIndex tile) {
	const Station* st = GetStation(station);

	int x1,x2,x3,tx;
	int y1,y2,y3,ty;

	x1 = TileX(st->train_tile);  y1 = TileY(st->train_tile);  // topmost corner of station
	x2 = x1 + st->trainst_w - 1; y2 = y1 + st->trainst_h - 1; // lowermost corner of station
	x3 = TileX(tile);            y3 = TileY(tile);            // tile we take the distance from

	// we are going the aim for the x coordinate of the closest corner
	// but if we are between those coordinates, we will aim for our own x coordinate
	if (x3 < x1)
		tx = x1;
	else if (x3 > x2)
		tx = x2;
	else
		tx = x3;

	// same for y coordinate, see above comment
	if (y3 < y1)
		ty = y1;
	else if (y3 > y2)
		ty = y2;
	else
		ty = y3;

	// return the tile of our target coordinates
	return TILE_XY(tx,ty);
};

/* Calcs the heuristic to the target tile (using NPFFindStationOrTileData).
 * If the target is a station, the heuristic is probably "wrong"! Normally
 * this shouldn't matter, but if it turns out to be a problem, we could use
 * the heuristic below?
 * Afterthis  will save the heuristic into NPFFoundTargetData if it is the
 * smallest until now. It will then also save
 * AyStarNode.user_data[NPF_TRACKDIR_CHOICE] in best_trackdir
 */
int32 NPFCalcTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) {
	NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
	NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
	TileIndex from = current->tile;
	TileIndex to = fstd->dest_coords;
	uint dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;

	if (dist < ftd->best_bird_dist) {
		ftd->best_bird_dist = dist;
		ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
	}
#ifdef NPF_DEBUG
	debug("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
#endif
	return dist;
}

/* Calcs the heuristic to the target station or tile. Almost the same as above
 * function, but calculates the distance to train stations with
 * CalcClosestStationTile instead. So is somewhat more correct for stations
 * (truly optimistic), but this added correctness is not really required we
 * believe (matthijs & Hackykid)
 */
int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) {
	NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
	NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
	TileIndex from = current->tile;
	TileIndex to = fstd->dest_coords;
	uint dist;

	// for train-stations, we are going to aim for the closest station tile
	if ((as->user_data[NPF_TYPE] == TRANSPORT_RAIL) && (fstd->station_index != -1))
		to = CalcClosestStationTile(fstd->station_index, from);

	dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;

	if (dist < ftd->best_bird_dist) {
		ftd->best_bird_dist = dist;
		ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
	}
#ifdef NPF_DEBUG
	debug("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
#endif
	return dist;
}


/* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
 * get here, either getting it from the current choice or from the parent's
 * choice */
void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent)
{
	if (parent->path.parent == NULL) {
		byte trackdir = current->direction;
		/* This is a first order decision, so we'd better save the
		 * direction we chose */
		current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
#ifdef NPF_DEBUG
		debug("Saving trackdir: %#x", trackdir);
#endif
	} else {
		/* We've already made the decision, so just save our parent's
		 * decision */
		current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
	}

}

/* Will return the cost of the tunnel. If it is an entry, it will return the
 * cost of that tile. If the tile is an exit, it will return the tunnel length
 * including the exit tile. Requires that this is a Tunnel tile */
uint NPFTunnelCost(AyStarNode* current) {
	byte exitdir = _trackdir_to_exitdir[current->direction];
	TileIndex tile = current->tile;
	if ( (uint)(_map5[tile] & 3) == _reverse_dir[exitdir]) {
		/* We just popped out if this tunnel, since were
		 * facing the tunnel exit */
		FindLengthOfTunnelResult flotr;
		flotr = FindLengthOfTunnel(tile, _reverse_dir[exitdir]);
		return flotr.length * NPF_TILE_LENGTH;
		//TODO: Penalty for tunnels?
	} else {
		/* We are entering the tunnel, the enter tile is just a
		 * straight track */
		return NPF_TILE_LENGTH;
	}
}

uint NPFSlopeCost(AyStarNode* current) {
	TileIndex next = current->tile + TileOffsByDir(_trackdir_to_exitdir[current->direction]);
	int x,y;
	int8 z1,z2;

	x = TileX(current->tile) * 16;
	y = TileY(current->tile) * 16;
	z1 = GetSlopeZ(x+8, y+8);

	x = TileX(next) * 16;
	y = TileY(next) * 16;
	z2 = GetSlopeZ(x+8, y+8);

	if ((z2 - z1) > 1) {
		/* Slope up */
		return _patches.npf_rail_slope_penalty;
	}
	return 0;
	/* Should we give a bonus for slope down? Probably not, we
	 * could just substract that bonus from the penalty, because
	 * there is only one level of steepness... */
}

void NPFMarkTile(TileIndex tile) {
	switch(GetTileType(tile)) {
		case MP_RAILWAY:
		case MP_STREET:
			/* DEBUG: mark visited tiles by mowing the grass under them
			 * ;-) */
			_map2[tile] &= ~15;
			MarkTileDirtyByTile(tile);
			break;
		default:
			break;
	}
}

int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
	//TileIndex tile = current->tile;
	int32 cost = 0;
	byte trackdir = current->direction;

	cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */

	/* TODO Penalties? */

	return cost;
}

/* Determine the cost of this node, for road tracks */
int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
	TileIndex tile = current->tile;
	int32 cost = 0;
	/* Determine base length */
	switch (GetTileType(tile)) {
		case MP_TUNNELBRIDGE:
			if ((_map5[tile] & 0xF0)==0) {
				cost = NPFTunnelCost(current);
				break;
			}
			/* Fall through if above if is false, it is a bridge
			 * then. We treat that as ordinary rail */
		case MP_STREET:
			cost = NPF_TILE_LENGTH;
			break;
		default:
			break;
	}

	/* Determine extra costs */

	/* Check for slope */
	cost += NPFSlopeCost(current);

	/* Check for turns */
	//TODO

#ifdef NPF_MARKROUTE
	NPFMarkTile(tile);
#endif
#ifdef NPF_DEBUG
	debug("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
#endif
	return cost;
}


/* Determine the cost of this node, for railway tracks */
int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
	TileIndex tile = current->tile;
	byte trackdir = current->direction;
	int32 cost = 0;
	OpenListNode new_node;

	/* Determine base length */
	switch (GetTileType(tile)) {
		case MP_TUNNELBRIDGE:
			if ((_map5[tile] & 0xF0)==0) {
				cost = NPFTunnelCost(current);
				break;
			}
			/* Fall through if above if is false, it is a bridge
			 * then. We treat that as ordinary rail */
		case MP_RAILWAY:
			cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
			break;
		case MP_STREET: /* Railway crossing */
			cost = NPF_TILE_LENGTH;
			break;
		case MP_STATION:
			/* We give a station tile a penalty. Logically we would only
					* want to give station tiles that are not our destination
					* this penalty. This would discourage trains to drive through
					* busy stations. But, we can just give any station tile a
					* penalty, because every possible route will get this penalty
					* exactly once, on its end tile (if it's a station) and it
			* will therefore not make a difference. */
			cost = NPF_TILE_LENGTH + _patches.npf_rail_station_penalty;
			break;
		default:
			break;
	}

	/* Determine extra costs */

	/* Check for signals */
	if (IsTileType(tile, MP_RAILWAY) && (_map5[tile] & 0xC0) == 0x40 && (_map3_lo[tile] & _signal_along_trackdir[trackdir]) != 0) {
		/* Ordinary track with signals */
		if ((_map2[tile] & _signal_along_trackdir[trackdir]) == 0) {
			/* Signal facing us is red */
			if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
				/* Penalize the first signal we
				 * encounter, if it is red */

				/* Is this a presignal exit or combo? */
				if ((_map3_hi[tile] & 0x3) == 0x2 || (_map3_hi[tile] & 0x3) == 0x3)
					/* Penalise exit and combo signals differently (heavier) */
					cost += _patches.npf_rail_firstred_exit_penalty;
				else
					cost += _patches.npf_rail_firstred_penalty;
			}
			/* Record the state of this signal */
			NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true);
		} else {
			/* Record the state of this signal */
			NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false);
		}
		NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true);
	}

	/* Penalise the tile if it is a target tile and the last signal was
	 * red */
	new_node.path.node = *current;
	if (as->EndNodeCheck(as, &new_node)==AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED))
		cost += _patches.npf_rail_lastred_penalty;

	/* Check for slope */
	cost += NPFSlopeCost(current);

	/* Check for turns */
	if (current->direction != parent->path.node.direction)
		cost += _patches.npf_rail_curve_penalty;
	//TODO, with realistic acceleration, also the amount of straight track between
	//      curves should be taken into account, as this affects the speed limit.

	/* Check for occupied track */
	//TODO

#ifdef NPF_MARKROUTE
	NPFMarkTile(tile);
#endif
#ifdef NPF_DEBUG
	debug("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
#endif
	return cost;
}

/* Will find any depot */
int32 NPFFindDepot(AyStar* as, OpenListNode *current) {
	TileIndex tile = current->path.node.tile;
	if (IsTileDepotType(tile, as->user_data[NPF_TYPE]))
		return AYSTAR_FOUND_END_NODE;
	else
		return AYSTAR_DONE;
}

/* Will find a station identified using the NPFFindStationOrTileData */
int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current) {
	NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
	AyStarNode *node = &current->path.node;
	TileIndex tile = node->tile;

	/* See if we checked this before */
	if (NPFGetFlag(node, NPF_FLAG_TARGET_CHECKED))
		return NPFGetFlag(node, NPF_FLAG_IS_TARGET);
	/* We're gonna check this now and store the result, let's mark that */
	NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, true);

	/* If GetNeighbours said we could get here, we assume the station type
	 * is correct */
	if (
		(fstd->station_index == -1 && tile == fstd->dest_coords) || /* We've found the tile, or */
		(IsTileType(tile, MP_STATION) && _map2[tile] == fstd->station_index) /* the station */
	) {
		NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, true);
		return AYSTAR_FOUND_END_NODE;
	} else {
		NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, false);
		return AYSTAR_DONE;
	}
}

/* To be called when current contains the (shortest route to) the target node.
 * Will fill the contents of the NPFFoundTargetData using
 * AyStarNode[NPF_TRACKDIR_CHOICE].
 */
void NPFSaveTargetData(AyStar* as, OpenListNode* current) {
	NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
	ftd->best_trackdir = current->path.node.user_data[NPF_TRACKDIR_CHOICE];
	ftd->best_path_dist = current->g;
	ftd->best_bird_dist = 0;
	ftd->node = current->path.node;
}

/* Will just follow the results of GetTileTrackStatus concerning where we can
 * go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
 * an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
 * entry and exit are neighbours. Will fill
 * AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and
 * copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */
void NPFFollowTrack(AyStar* aystar, OpenListNode* current) {
	byte src_trackdir = current->path.node.direction;
	TileIndex src_tile = current->path.node.tile;
	byte src_exitdir = _trackdir_to_exitdir[src_trackdir];
	FindLengthOfTunnelResult flotr;
	TileIndex dst_tile;
	int i = 0;
	uint trackdirs, ts;
	TransportType type = aystar->user_data[NPF_TYPE];
	/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
	aystar->num_neighbours = 0;
#ifdef NPF_DEBUG
	debug("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);
#endif

	/* Find dest tile */
	if (IsTileType(src_tile, MP_TUNNELBRIDGE) && (_map5[src_tile] & 0xF0)==0 && (_map5[src_tile] & 3) == src_exitdir) {
		/* This is a tunnel. We know this tunnel is our type,
		 * otherwise we wouldn't have got here. It is also facing us,
		 * so we should skip it's body */
		flotr = FindLengthOfTunnel(src_tile, src_exitdir);
		dst_tile = flotr.tile;
	} else {
		if (IsTileDepotType(src_tile, type)){
			/* This is a road station or a train or road depot. We can enter and exit
			 * those from one side only. Trackdirs don't support that (yet), so we'll
			 * do this here. */

			byte exitdir;
			/* Find out the exit direction first */
			if (IsRoadStationTile(src_tile))
				exitdir = GetRoadStationDir(src_tile);
			else /* Train or road depot. Direction is stored the same for both, in map5 */
				exitdir = _map5[src_tile] & 3; /* Extract the direction from the map */

			/* Let's see if were headed the right way */
			if (src_trackdir != _dir_to_diag_trackdir[exitdir])
				/* We are headed inwards. We can only reverse here, so we'll not
				 * consider this direction, but jump ahead to the reverse direction.
				 * It would be nicer to return one neighbour here (the reverse
				 * trackdir of the one we are considering now) and then considering
				 * that one to return the tracks outside of the depot. But, because
				 * the code layout is cleaner this way, we will just pretend we are
				 * reversed already */
				src_trackdir = _reverse_trackdir[src_trackdir];
		}
		/* This a normal tile, a bridge, a tunnel exit, etc. */
		dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(_trackdir_to_exitdir[src_trackdir]));
		if (dst_tile == INVALID_TILE) {
			/* We reached the border of the map */
			/* TODO Nicer control flow for this */
			return;
		}
	}

	// TODO: check correct rail type (mono, maglev, etc)

	/* Check the owner of the tile */
	if (
		IsTileType(dst_tile, MP_RAILWAY) /* Rail tile */
		|| IsTileDepotType(dst_tile, TRANSPORT_ROAD) /* Road depot tile */
		|| IsTileType(dst_tile, MP_STATION) /* Station tile */
		|| IsTileDepotType(dst_tile, TRANSPORT_WATER) /* Water depot tile */
	) /* TODO: Crossings, tunnels and bridges are "public" now */
		/* The above cases are "private" tiles, we need to check the owner */
		if (!IsTileOwner(dst_tile, aystar->user_data[NPF_OWNER]))
			return;

	/* Determine available tracks */
	if (type == TRANSPORT_ROAD && (IsRoadStationTile(dst_tile) || IsTileDepotType(dst_tile, TRANSPORT_ROAD))){
		/* Road stations and depots return 0 on GTTS, so we have to do this by hand... */
		byte exitdir;
		if (IsRoadStationTile(dst_tile))
			exitdir = GetRoadStationDir(dst_tile);
		else /* Road depot */
			/* Find the trackdirs that are available for a depot with this orientation. They are in both directions */
			exitdir = _map5[dst_tile] & 3; /* Extract the direction from the map */
			ts = (1 << _dir_to_diag_trackdir[exitdir])
			     | (1 << _dir_to_diag_trackdir[_reverse_dir[exitdir]]);
	} else {
		ts = GetTileTrackStatus(dst_tile, type);
	}
	trackdirs = ts & 0x3F3F; /* Filter out signal status and the unused bits */

#ifdef NPF_DEBUG
	debug("Next node: (%d, %d) [%d], possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirs);
#endif
	/* Select only trackdirs we can reach from our current trackdir */
	trackdirs &= _trackdir_reaches_trackdirs[src_trackdir];
	if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */
		trackdirs &= ~_trackdir_crosses_trackdirs[src_trackdir];
#ifdef NPF_DEBUG
	debug("After filtering: (%d, %d), possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), trackdirs);
#endif

	/* Enumerate possible track */
	while (trackdirs != 0) {
		byte dst_trackdir;
		dst_trackdir =  FindFirstBit2x64(trackdirs);
		trackdirs = KillFirstBit2x64(trackdirs);
#ifdef NPF_DEBUG
		debug("Expanded into trackdir: %d, remaining trackdirs: %#x", dst_trackdir, trackdirs);
#endif

		/* Check for oneway signal against us */
		if (IsTileType(dst_tile, MP_RAILWAY) && (_map5[dst_tile]&0xC0) == 0x40) {
			// the tile has a signal
			byte signal_present = _map3_lo[dst_tile];
			if (!(signal_present & _signal_along_trackdir[dst_trackdir])) {
				// if one way signal not pointing towards us, stop going in this direction.
				if (signal_present & _signal_against_trackdir[dst_trackdir])
					break;
			}
		}
		{
			/* We've found ourselves a neighbour :-) */
			AyStarNode* neighbour = &aystar->neighbours[i];
			neighbour->tile = dst_tile;
			neighbour->direction = dst_trackdir;
			/* Save user data */
			neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
			NPFFillTrackdirChoice(neighbour, current);
		}
		i++;
	}
	aystar->num_neighbours = i;
}

/*
 * Plan a route to the specified target (which is checked by target_proc),
 * from start1 and if not NULL, from start2 as well. The type of transport we
 * are checking is in type.
 * When we are looking for one specific target (optionally multiple tiles), we
 * should use a good heuristic to perform aystar search. When we search for
 * multiple targets that are spread around, we should perform a breadth first
 * search by specifiying CalcZero as our heuristic.
 */
NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner) {
	int r;
	NPFFoundTargetData result;

	/* Initialize procs */
	_npf_aystar.CalculateH = heuristic_proc;
	_npf_aystar.EndNodeCheck = target_proc;
	_npf_aystar.FoundEndNode = NPFSaveTargetData;
	_npf_aystar.GetNeighbours = NPFFollowTrack;
	if (type == TRANSPORT_RAIL)
		_npf_aystar.CalculateG = NPFRailPathCost;
	else if (type == TRANSPORT_ROAD)
		_npf_aystar.CalculateG = NPFRoadPathCost;
	else if (type == TRANSPORT_WATER)
		_npf_aystar.CalculateG = NPFWaterPathCost;
	else
		assert(0);

	/* Initialize Start Node(s) */
	start1->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
	start1->user_data[NPF_NODE_FLAGS] = 0;
	_npf_aystar.addstart(&_npf_aystar, start1);
	if (start2) {
		start2->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
		start2->user_data[NPF_NODE_FLAGS] = 0;
		NPFSetFlag(start2, NPF_FLAG_REVERSE, true);
		_npf_aystar.addstart(&_npf_aystar, start2);
	}

	/* Initialize result */
	result.best_bird_dist = (uint)-1;
	result.best_path_dist = (uint)-1;
	result.best_trackdir = 0xff;
	_npf_aystar.user_path = &result;

	/* Initialize target */
	_npf_aystar.user_target = target;

	/* Initialize user_data */
	_npf_aystar.user_data[NPF_TYPE] = type;
	_npf_aystar.user_data[NPF_OWNER] = owner;

	/* GO! */
	r = AyStarMain_Main(&_npf_aystar);
	assert(r != AYSTAR_STILL_BUSY);

	if (result.best_bird_dist != 0) {
		if (target) {
			DEBUG(misc, 1) ("NPF: Could not find route to 0x%x from 0x%x.", target->dest_coords, start1->tile);
		} else {
			/* Assumption: target == NULL, so we are looking for a depot */
			DEBUG(misc, 1) ("NPF: Could not find route to a depot from 0x%x.", start1->tile);
		}

	}
	return result;
}

NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
	AyStarNode start1;
	AyStarNode start2;

	start1.tile = tile1;
	start2.tile = tile2;
	start1.direction = trackdir1;
	start2.direction = trackdir2;

	return NPFRouteInternal(&start1, &start2, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner);
}

NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, byte trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
	AyStarNode start;

	assert(tile != 0);

	start.tile = tile;
	start.direction = trackdir;
	/* We set this in case the target is also the start tile, we will just
	 * return a not found then */
	start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;

	return NPFRouteInternal(&start, NULL, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner);
}

NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
	AyStarNode start;

	start.tile = tile;
	start.direction = trackdir;
	/* We set this in case the target is also the start tile, we will just
	 * return a not found then */
	start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;

	/* perform a breadth first search. Target is NULL,
	 * since we are just looking for any depot...*/
	return NPFRouteInternal(&start, NULL, NULL, NPFFindDepot, NPFCalcZero, type, owner);
}

NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
	/* Okay, what we're gonna do. First, we look at all depots, calculate
	 * the manhatten distance to get to each depot. We then sort them by
	 * distance. We start by trying to plan a route to the closest, then
	 * the next closest, etc. We stop when the best route we have found so
	 * far, is shorter than the manhattan distance. This will obviously
	 * always find the closest depot. It will probably be most efficient
	 * for ships, since the heuristic will not be to far off then. I hope.
	 */
	Queue depots;
	int r;
	NPFFoundTargetData best_result;
	NPFFoundTargetData result;
	NPFFindStationOrTileData target;
	AyStarNode start;
	Depot* current;
	Depot *depot;

	init_InsSort(&depots);
	/* Okay, let's find all depots that we can use first */
	FOR_ALL_DEPOTS(depot) {
		/* Check if this is really a valid depot, it is of the needed type and
		 * owner */
		if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner))
			/* If so, let's add it to the queue, sorted by distance */
			depots.push(&depots, depot, DistanceManhattan(tile, depot->xy));
	}

	/* Now, let's initialise the aystar */

	/* Initialize procs */
	_npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic;
	_npf_aystar.EndNodeCheck = NPFFindStationOrTile;
	_npf_aystar.FoundEndNode = NPFSaveTargetData;
	_npf_aystar.GetNeighbours = NPFFollowTrack;
	if (type == TRANSPORT_RAIL)
		_npf_aystar.CalculateG = NPFRailPathCost;
	else if (type == TRANSPORT_ROAD)
		_npf_aystar.CalculateG = NPFRoadPathCost;
	else if (type == TRANSPORT_WATER)
		_npf_aystar.CalculateG = NPFWaterPathCost;
	else
		assert(0);

	/* Initialize target */
	target.station_index = -1; /* We will initialize dest_coords inside the loop below */
	_npf_aystar.user_target = &target;

	/* Initialize user_data */
	_npf_aystar.user_data[NPF_TYPE] = type;
	_npf_aystar.user_data[NPF_OWNER] = owner;

	/* Initialize Start Node */
	start.tile = tile;
	start.direction = trackdir; /* We will initialize user_data inside the loop below */

	/* Initialize Result */
	_npf_aystar.user_path = &result;
	best_result.best_path_dist = (uint)-1;
	best_result.best_bird_dist = (uint)-1;

	/* Just iterate the depots in order of increasing distance */
	while ((current = depots.pop(&depots))) {
		/* Check to see if we already have a path shorter than this
		 * depot's manhattan distance. HACK: We call DistanceManhattan
		 * again, we should probably modify the queue to give us that
		 * value... */
		if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist)
			break;

		/* Initialize Start Node */
		/* We set this in case the target is also the start tile, we will just
		 * return a not found then */
		start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
		start.user_data[NPF_NODE_FLAGS] = 0;
		_npf_aystar.addstart(&_npf_aystar, &start);

		/* Initialize result */
		result.best_bird_dist = (uint)-1;
		result.best_path_dist = (uint)-1;
		result.best_trackdir = 0xff;

		/* Initialize target */
		target.dest_coords = current->xy;

		/* GO! */
		r = AyStarMain_Main(&_npf_aystar);
		assert(r != AYSTAR_STILL_BUSY);

		/* This depot is closer */
		if (result.best_path_dist < best_result.best_path_dist)
			best_result = result;
	}
	if (result.best_bird_dist != 0) {
		DEBUG(misc, 1) ("NPF: Could not find route to any depot from 0x%x.", tile);
	}
	return best_result;
}

void InitializeNPF(void)
{
	init_AyStar(&_npf_aystar, NTPHash, 1024);
	_npf_aystar.loops_per_tick = 0;
	_npf_aystar.max_path_cost = 0;
	_npf_aystar.max_search_nodes = 0;
#if 0
	init_AyStar(&_train_find_station, NTPHash, 1024);
	init_AyStar(&_train_find_depot, NTPHash, 1024);
	init_AyStar(&_road_find_station, NTPHash, 1024);
	init_AyStar(&_road_find_depot, NTPHash, 1024);

	_train_find_station.loops_per_tick = 0;
	_train_find_depot.loops_per_tick = 0;
	_road_find_station.loops_per_tick = 0;
	_road_find_depot.loops_per_tick = 0;

	_train_find_station.max_path_cost = 0;
	_train_find_depot.max_path_cost = 0;
	_road_find_station.max_path_cost = 0;
	_road_find_depot.max_path_cost = 0;

	_train_find_station.max_search_nodes = 0;
	_train_find_depot.max_search_nodes = 0;
	_road_find_station.max_search_nodes = 0;
	_road_find_depot.max_search_nodes = 0;

	_train_find_station.CalculateG = NPFRailPathCost;
	_train_find_depot.CalculateG = NPFRailPathCost;
	_road_find_station.CalculateG = NPFRoadPathCost;
	_road_find_depot.CalculateG = NPFRoadPathCost;

	_train_find_station.CalculateH = NPFCalcStationHeuristic;
	_train_find_depot.CalculateH = NPFCalcStationHeuristic;
	_road_find_station.CalculateH = NPFCalcStationHeuristic;
	_road_find_depot.CalculateH = NPFCalcStationHeuristic;

	_train_find_station.EndNodeCheck = NPFFindStationOrTile;
	_train_find_depot.EndNodeCheck = NPFFindStationOrTile;
	_road_find_station.EndNodeCheck = NPFFindStationOrTile;
	_road_find_depot.EndNodeCheck = NPFFindStationOrTile;

	_train_find_station.FoundEndNode = NPFSaveTargetData;
	_train_find_depot.FoundEndNode = NPFSaveTargetData;
	_road_find_station.FoundEndNode = NPFSaveTargetData;
	_road_find_depot.FoundEndNode = NPFSaveTargetData;

	_train_find_station.GetNeighbours = NPFFollowTrack;
	_train_find_depot.GetNeighbours = NPFFollowTrack;
	_road_find_station.GetNeighbours = NPFFollowTrack;
	_road_find_depot.GetNeighbours = NPFFollowTrack;
#endif
}

void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v) {
	/* Ships don't really reach their stations, but the tile in front. So don't
	 * save the station id for ships. For roadvehs we don't store it either,
	 * because multistop depends on vehicles actually reaching the exact
	 * dest_tile, not just any stop of that station.
	 * So only for train orders to stations we fill fstd->station_index, for all
	 * others only dest_coords */
	if ((v->current_order.type) == OT_GOTO_STATION && v->type == VEH_Train) {
		fstd->station_index = v->current_order.station;
		/* Let's take the closest tile of the station as our target for trains */
		fstd->dest_coords = CalcClosestStationTile(v->current_order.station, v->tile);
	} else {
		fstd->dest_coords = v->dest_tile;
		fstd->station_index = -1;
	}
}