Files
@ r27400:742251af6ade
Branch filter:
Location: cpp/openttd-patchpack/source/src/tilearea.cpp
r27400:742251af6ade
8.0 KiB
text/x-c
Codechange: rename smallvec_type to container_func and use only when needed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | /*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file tilearea.cpp Handling of tile areas. */
#include "stdafx.h"
#include "tilearea_type.h"
#include "safeguards.h"
/**
* Construct this tile area based on two points.
* @param start the start of the area
* @param end the end of the area
*/
OrthogonalTileArea::OrthogonalTileArea(TileIndex start, TileIndex end)
{
assert(start < Map::Size());
assert(end < Map::Size());
uint sx = TileX(start);
uint sy = TileY(start);
uint ex = TileX(end);
uint ey = TileY(end);
if (sx > ex) Swap(sx, ex);
if (sy > ey) Swap(sy, ey);
this->tile = TileXY(sx, sy);
this->w = ex - sx + 1;
this->h = ey - sy + 1;
}
/**
* Add a single tile to a tile area; enlarge if needed.
* @param to_add The tile to add
*/
void OrthogonalTileArea::Add(TileIndex to_add)
{
if (this->tile == INVALID_TILE) {
this->tile = to_add;
this->w = 1;
this->h = 1;
return;
}
uint sx = TileX(this->tile);
uint sy = TileY(this->tile);
uint ex = sx + this->w - 1;
uint ey = sy + this->h - 1;
uint ax = TileX(to_add);
uint ay = TileY(to_add);
sx = std::min(ax, sx);
sy = std::min(ay, sy);
ex = std::max(ax, ex);
ey = std::max(ay, ey);
this->tile = TileXY(sx, sy);
this->w = ex - sx + 1;
this->h = ey - sy + 1;
}
/**
* Does this tile area intersect with another?
* @param ta the other tile area to check against.
* @return true if they intersect.
*/
bool OrthogonalTileArea::Intersects(const OrthogonalTileArea &ta) const
{
if (ta.w == 0 || this->w == 0) return false;
assert(ta.w != 0 && ta.h != 0 && this->w != 0 && this->h != 0);
uint left1 = TileX(this->tile);
uint top1 = TileY(this->tile);
uint right1 = left1 + this->w - 1;
uint bottom1 = top1 + this->h - 1;
uint left2 = TileX(ta.tile);
uint top2 = TileY(ta.tile);
uint right2 = left2 + ta.w - 1;
uint bottom2 = top2 + ta.h - 1;
return !(
left2 > right1 ||
right2 < left1 ||
top2 > bottom1 ||
bottom2 < top1
);
}
/**
* Does this tile area contain a tile?
* @param tile Tile to test for.
* @return True if the tile is inside the area.
*/
bool OrthogonalTileArea::Contains(TileIndex tile) const
{
if (this->w == 0) return false;
assert(this->w != 0 && this->h != 0);
uint left = TileX(this->tile);
uint top = TileY(this->tile);
uint tile_x = TileX(tile);
uint tile_y = TileY(tile);
return IsInsideBS(tile_x, left, this->w) && IsInsideBS(tile_y, top, this->h);
}
/**
* Expand a tile area by rad tiles in each direction, keeping within map bounds.
* @param rad Number of tiles to expand
* @return The OrthogonalTileArea.
*/
OrthogonalTileArea &OrthogonalTileArea::Expand(int rad)
{
int x = TileX(this->tile);
int y = TileY(this->tile);
int sx = std::max<int>(x - rad, 0);
int sy = std::max<int>(y - rad, 0);
int ex = std::min<int>(x + this->w + rad, Map::SizeX());
int ey = std::min<int>(y + this->h + rad, Map::SizeY());
this->tile = TileXY(sx, sy);
this->w = ex - sx;
this->h = ey - sy;
return *this;
}
/**
* Clamp the tile area to map borders.
*/
void OrthogonalTileArea::ClampToMap()
{
assert(this->tile < Map::Size());
this->w = std::min<int>(this->w, Map::SizeX() - TileX(this->tile));
this->h = std::min<int>(this->h, Map::SizeY() - TileY(this->tile));
}
/**
* Returns an iterator to the beginning of the tile area.
* @return The OrthogonalTileIterator.
*/
OrthogonalTileIterator OrthogonalTileArea::begin() const
{
return OrthogonalTileIterator(*this);
}
/**
* Returns an iterator to the end of the tile area.
* @return The OrthogonalTileIterator.
*/
OrthogonalTileIterator OrthogonalTileArea::end() const
{
return OrthogonalTileIterator(OrthogonalTileArea());
}
/**
* Create a diagonal tile area from two corners.
* @param start First corner of the area.
* @param end Second corner of the area.
*/
DiagonalTileArea::DiagonalTileArea(TileIndex start, TileIndex end) : tile(start)
{
assert(start < Map::Size());
assert(end < Map::Size());
/* Unfortunately we can't find a new base and make all a and b positive because
* the new base might be a "flattened" corner where there actually is no single
* tile. If we try anyway the result is either inaccurate ("one off" half of the
* time) or the code gets much more complex;
*
* We also need to increment/decrement a and b here to have one-past-end semantics
* for a and b, just the way the orthogonal tile area does it for w and h. */
this->a = TileY(end) + TileX(end) - TileY(start) - TileX(start);
this->b = TileY(end) - TileX(end) - TileY(start) + TileX(start);
if (this->a > 0) {
this->a++;
} else {
this->a--;
}
if (this->b > 0) {
this->b++;
} else {
this->b--;
}
}
/**
* Does this tile area contain a tile?
* @param tile Tile to test for.
* @return True if the tile is inside the area.
*/
bool DiagonalTileArea::Contains(TileIndex tile) const
{
int a = TileY(tile) + TileX(tile);
int b = TileY(tile) - TileX(tile);
int start_a = TileY(this->tile) + TileX(this->tile);
int start_b = TileY(this->tile) - TileX(this->tile);
int end_a = start_a + this->a;
int end_b = start_b + this->b;
/* Swap if necessary, preserving the "one past end" semantics. */
if (start_a > end_a) {
int tmp = start_a;
start_a = end_a + 1;
end_a = tmp + 1;
}
if (start_b > end_b) {
int tmp = start_b;
start_b = end_b + 1;
end_b = tmp + 1;
}
return (a >= start_a && a < end_a && b >= start_b && b < end_b);
}
/**
* Move ourselves to the next tile in the rectangle on the map.
*/
TileIterator &DiagonalTileIterator::operator++()
{
assert(this->tile != INVALID_TILE);
/* Determine the next tile, while clipping at map borders */
bool new_line = false;
do {
/* Iterate using the rotated coordinates. */
if (this->a_max == 1 || this->a_max == -1) {
/* Special case: Every second column has zero length, skip them completely */
this->a_cur = 0;
if (this->b_max > 0) {
this->b_cur = std::min(this->b_cur + 2, this->b_max);
} else {
this->b_cur = std::max(this->b_cur - 2, this->b_max);
}
} else {
/* Every column has at least one tile to process */
if (this->a_max > 0) {
this->a_cur += 2;
new_line = this->a_cur >= this->a_max;
} else {
this->a_cur -= 2;
new_line = this->a_cur <= this->a_max;
}
if (new_line) {
/* offset of initial a_cur: one tile in the same direction as a_max
* every second line.
*/
this->a_cur = abs(this->a_cur) % 2 ? 0 : (this->a_max > 0 ? 1 : -1);
if (this->b_max > 0) {
++this->b_cur;
} else {
--this->b_cur;
}
}
}
/* And convert the coordinates back once we've gone to the next tile. */
uint x = this->base_x + (this->a_cur - this->b_cur) / 2;
uint y = this->base_y + (this->b_cur + this->a_cur) / 2;
/* Prevent wrapping around the map's borders. */
this->tile = x >= Map::SizeX() || y >= Map::SizeY() ? INVALID_TILE : TileXY(x, y);
} while (this->tile > Map::Size() && this->b_max != this->b_cur);
if (this->b_max == this->b_cur) this->tile = INVALID_TILE;
return *this;
}
/**
* Create either an OrthogonalTileIterator or DiagonalTileIterator given the diagonal parameter.
* @param corner1 Tile from where to begin iterating.
* @param corner2 Tile where to end the iterating.
* @param diagonal Whether to create a DiagonalTileIterator or OrthogonalTileIterator.
* @return unique_ptr to the allocated TileIterator.
*/
/* static */ std::unique_ptr<TileIterator> TileIterator::Create(TileIndex corner1, TileIndex corner2, bool diagonal)
{
if (diagonal) {
return std::make_unique<DiagonalTileIterator>(corner1, corner2);
}
return std::make_unique<OrthogonalTileIterator>(corner1, corner2);
}
|