Files @ r2576:7fd8df558d87
Branch filter:

Location: cpp/openttd-patchpack/source/queue.c

truelight
(svn r3113) -Fix: The Makefile had 64bit code which was obsolete, not to say wrong.
This removes all the 64bit stuff from the Makefile. Everything should
work just fine. Also removed the warning on amd64, 64bit OpenTTD is
stable. Tnx to dst for commenting and testing on this subject.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/* $Id$ */

#include "stdafx.h"
#include "openttd.h"
#include "queue.h"

static void Stack_Clear(Queue* q, bool free_values)
{
	uint i;
	if (free_values)
		for (i=0;i<q->data.stack.size;i++)
			free(q->data.stack.elements[i]);
	q->data.stack.size = 0;
}

static void Stack_Free(Queue* q, bool free_values)
{
	q->clear(q, free_values);
	free(q->data.stack.elements);
	if (q->freeq)
		free(q);
}

static bool Stack_Push(Queue* q, void* item, int priority)
{
	if (q->data.stack.size == q->data.stack.max_size)
		return false;
	q->data.stack.elements[q->data.stack.size++] = item;
	return true;
}

static void* Stack_Pop(Queue* q)
{
	void* result;
	if (q->data.stack.size == 0)
		return NULL;
	result = q->data.stack.elements[--q->data.stack.size];

	return result;
}

static bool Stack_Delete(Queue* q, void* item, int priority)
{
	return false;
}

static Queue* init_stack(Queue* q, uint max_size)
{
	q->push = Stack_Push;
	q->pop = Stack_Pop;
	q->del = Stack_Delete;
	q->clear = Stack_Clear;
	q->free = Stack_Free;
	q->data.stack.max_size = max_size;
	q->data.stack.size = 0;
	q->data.stack.elements = malloc(max_size * sizeof(void*));
	q->freeq = false;
	return q;
}

Queue* new_Stack(uint max_size)
{
	Queue* q = malloc(sizeof(Queue));
	init_stack(q, max_size);
	q->freeq = true;
	return q;
}

/*
 * Fifo
 */

static void Fifo_Clear(Queue* q, bool free_values)
{
	uint head, tail;
	if (free_values) {
		head = q->data.fifo.head;
		tail = q->data.fifo.tail; /* cache for speed */
		while (head != tail) {
			free(q->data.fifo.elements[tail]);
			tail = (tail + 1) % q->data.fifo.max_size;
		}
	}
	q->data.fifo.head = q->data.fifo.tail = 0;
}

static void Fifo_Free(Queue* q, bool free_values)
{
	q->clear(q, free_values);
	free(q->data.fifo.elements);
	if (q->freeq)
		free(q);
}

static bool Fifo_Push(Queue* q, void* item, int priority)
{
	uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size;
	if (next == q->data.fifo.tail)
		return false;
	q->data.fifo.elements[q->data.fifo.head] = item;


	q->data.fifo.head = next;
	return true;
}

static void* Fifo_Pop(Queue* q)
{
	void* result;
	if (q->data.fifo.head == q->data.fifo.tail)
		return NULL;
	result = q->data.fifo.elements[q->data.fifo.tail];


	q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size;
	return result;
}

static bool Fifo_Delete(Queue* q, void* item, int priority)
{
	return false;
}

static Queue* init_fifo(Queue* q, uint max_size)
{
	q->push = Fifo_Push;
	q->pop = Fifo_Pop;
	q->del = Fifo_Delete;
	q->clear = Fifo_Clear;
	q->free = Fifo_Free;
	q->data.fifo.max_size = max_size;
	q->data.fifo.head = 0;
	q->data.fifo.tail = 0;
	q->data.fifo.elements = malloc(max_size * sizeof(void*));
	q->freeq = false;
	return q;
}

Queue* new_Fifo(uint max_size)
{
	Queue* q = malloc(sizeof(Queue));
	init_fifo(q, max_size);
	q->freeq = true;
	return q;
}


/*
 * Insertion Sorter
 */

static void InsSort_Clear(Queue* q, bool free_values)
{
	InsSortNode* node = q->data.inssort.first;
	InsSortNode* prev;
	while (node != NULL) {
		if (free_values)
			free(node->item);
		prev = node;
		node = node->next;
		free(prev);

	}
	q->data.inssort.first = NULL;
}

static void InsSort_Free(Queue* q, bool free_values)
{
	q->clear(q, free_values);
	if (q->freeq)
		free(q);
}

static bool InsSort_Push(Queue* q, void* item, int priority)
{
	InsSortNode* newnode = malloc(sizeof(InsSortNode));
	if (newnode == NULL) return false;
	newnode->item = item;
	newnode->priority = priority;
	if (q->data.inssort.first == NULL || q->data.inssort.first->priority >= priority) {
		newnode->next = q->data.inssort.first;
		q->data.inssort.first = newnode;
	} else {
		InsSortNode* node = q->data.inssort.first;
		while( node != NULL ) {
			if (node->next == NULL || node->next->priority >= priority) {
				newnode->next = node->next;
				node->next = newnode;
				break;
			}
			node = node->next;
		}
	}
	return true;
}

static void* InsSort_Pop(Queue* q)
{
	InsSortNode* node = q->data.inssort.first;
	void* result;
	if (node == NULL)
		return NULL;
	result = node->item;
	q->data.inssort.first = q->data.inssort.first->next;
	if (q->data.inssort.first)
		assert(q->data.inssort.first->priority >= node->priority);
	free(node);
	return result;
}

static bool InsSort_Delete(Queue* q, void* item, int priority)
{
	return false;
}

void init_InsSort(Queue* q) {
	q->push = InsSort_Push;
	q->pop = InsSort_Pop;
	q->del = InsSort_Delete;
	q->clear = InsSort_Clear;
	q->free = InsSort_Free;
	q->data.inssort.first = NULL;
	q->freeq = false;
}

Queue* new_InsSort(void)
{
	Queue* q = malloc(sizeof(Queue));
	init_InsSort(q);
	q->freeq = true;
	return q;
}


/*
 * Binary Heap
 * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
 */

#define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
#define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE-1)

// To make our life easy, we make the next define
//  Because Binary Heaps works with array from 1 to n,
//  and C with array from 0 to n-1, and we don't like typing
//  q->data.binaryheap.elements[i-1] every time, we use this define.
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]

static void BinaryHeap_Clear(Queue* q, bool free_values)
{
	/* Free all items if needed and free all but the first blocks of
	 * memory */
	uint i,j;
	for (i=0;i<q->data.binaryheap.blocks;i++) {
		if (q->data.binaryheap.elements[i] == NULL) {
			/* No more allocated blocks */
			break;
		}
		/* For every allocated block */
		if (free_values)
			for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) {
				/* For every element in the block */
				if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
					&& (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
					break; /* We're past the last element */
				free(q->data.binaryheap.elements[i][j].item);
			}
		if (i != 0) {
			/* Leave the first block of memory alone */
			free(q->data.binaryheap.elements[i]);
			q->data.binaryheap.elements[i] = NULL;
		}
	}
	q->data.binaryheap.size = 0;
	q->data.binaryheap.blocks = 1;
}

static void BinaryHeap_Free(Queue* q, bool free_values)
{
	uint i;
	q->clear(q, free_values);
	for (i=0;i<q->data.binaryheap.blocks;i++) {
		if (q->data.binaryheap.elements[i] == NULL)
			break;
		free(q->data.binaryheap.elements[i]);
	}
	if (q->freeq)
		free(q);
}

static bool BinaryHeap_Push(Queue* q, void* item, int priority)
{
	#ifdef QUEUE_DEBUG
			printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
	#endif
	if (q->data.binaryheap.size == q->data.binaryheap.max_size)
		return false;
	assert(q->data.binaryheap.size < q->data.binaryheap.max_size);

	if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
		/* The currently allocated blocks are full, allocate a new one */
		assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
		q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
		q->data.binaryheap.blocks++;
#ifdef QUEUE_DEBUG
		printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->data.binaryheap.blocks *  BINARY_HEAP_BLOCKSIZE);
#endif
	}

	// Add the item at the end of the array
	BIN_HEAP_ARR(q->data.binaryheap.size+1).priority = priority;
	BIN_HEAP_ARR(q->data.binaryheap.size+1).item = item;
	q->data.binaryheap.size++;

	// Now we are going to check where it belongs. As long as the parent is
	// bigger, we switch with the parent
	{
		int i, j;
		BinaryHeapNode temp;
		i = q->data.binaryheap.size;
		while (i > 1) {
			// Get the parent of this object (divide by 2)
			j = i / 2;
			// Is the parent bigger then the current, switch them
			if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
				temp = BIN_HEAP_ARR(j);
				BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
				BIN_HEAP_ARR(i) = temp;
				i = j;
			} else {
				// It is not, we're done!
				break;
			}
		}
	}

	return true;
}

static bool BinaryHeap_Delete(Queue* q, void* item, int priority)
{
	#ifdef QUEUE_DEBUG
			printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
	#endif
	uint i = 0;
	// First, we try to find the item..
	do {
		if (BIN_HEAP_ARR(i+1).item == item) break;
		i++;
	} while (i < q->data.binaryheap.size);
	// We did not find the item, so we return false
	if (i == q->data.binaryheap.size) return false;

	// Now we put the last item over the current item while decreasing the size of the elements
	q->data.binaryheap.size--;
	BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->data.binaryheap.size+1);

	// Now the only thing we have to do, is resort it..
	// On place i there is the item to be sorted.. let's start there
	{
		uint j;
		BinaryHeapNode temp;
		// Because of the fast that Binary Heap uses array from 1 to n, we need to increase
		//   i with 1
		i++;

		for (;;) {
			j = i;
			// Check if we have 2 childs
			if (2*j+1 <= q->data.binaryheap.size) {
				// Is this child smaller than the parent?
				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; }
				// Yes, we _need_ to use i here, not j, because we want to have the smallest child
				//  This way we get that straight away!
				if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; }
			// Do we have one child?
			} else if (2*j <= q->data.binaryheap.size) {
				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; }
			}

			// One of our childs is smaller than we are, switch
			if (i != j) {
				temp = BIN_HEAP_ARR(j);
				BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
				BIN_HEAP_ARR(i) = temp;
			} else {
				// None of our childs is smaller, so we stay here.. stop :)
				break;
			}
		}
	}

	return true;
}

static void* BinaryHeap_Pop(Queue* q)
{
	#ifdef QUEUE_DEBUG
			printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
	#endif
	void* result;
	if (q->data.binaryheap.size == 0)
		return NULL;

	// The best item is always on top, so give that as result
	result = BIN_HEAP_ARR(1).item;
	// And now we should get ride of this item...
	BinaryHeap_Delete(q,BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);

	return result;
}

void init_BinaryHeap(Queue* q, uint max_size)
{
	assert(q);
	q->push = BinaryHeap_Push;
	q->pop = BinaryHeap_Pop;
	q->del = BinaryHeap_Delete;
	q->clear = BinaryHeap_Clear;
	q->free = BinaryHeap_Free;
	q->data.binaryheap.max_size = max_size;
	q->data.binaryheap.size = 0;
	// We malloc memory in block of BINARY_HEAP_BLOCKSIZE
	//   It autosizes when it runs out of memory
	q->data.binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE*sizeof(BinaryHeapNode)) + 1);
	q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
	q->data.binaryheap.blocks = 1;
	q->freeq = false;
#ifdef QUEUE_DEBUG
		printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024));
#endif
}

Queue* new_BinaryHeap(uint max_size) {
	Queue* q = malloc(sizeof(Queue));
	init_BinaryHeap(q, max_size);
	q->freeq = true;
	return q;
}

// Because we don't want anyone else to bother with our defines
#undef BIN_HEAP_ARR

/*
 * Hash
 */

void init_Hash(Hash* h, Hash_HashProc* hash, uint num_buckets) {
	/* Allocate space for the Hash, the buckets and the bucket flags */
	uint i;
	assert(h);
	#ifdef HASH_DEBUG
	debug("Allocated hash: %p", h);
	#endif
	h->hash = hash;
	h->size = 0;
	h->num_buckets = num_buckets;
	h->buckets = malloc(num_buckets * (sizeof(HashNode) + sizeof(bool)));
	#ifdef HASH_DEBUG
	debug("Buckets = %p", h->buckets);
	#endif
	h->buckets_in_use = (bool*)(h->buckets + num_buckets);
	h->freeh = false;
	for (i=0;i<num_buckets;i++)
		h->buckets_in_use[i] = false;
}

Hash* new_Hash(Hash_HashProc* hash, int num_buckets) {
	Hash* h = malloc(sizeof(Hash));
	init_Hash(h, hash, num_buckets);
	h->freeh = true;
	return h;
}

void delete_Hash(Hash* h, bool free_values) {
	uint i;
	/* Iterate all buckets */
	for (i=0;i<h->num_buckets;i++)
	{
		if (h->buckets_in_use[i]) {
			HashNode* node;
			/* Free the first value */
			if (free_values)
				free(h->buckets[i].value);
			node = h->buckets[i].next;
			while (node != NULL) {
				HashNode* prev = node;
				node = node->next;
				/* Free the value */
				if (free_values)
					free(prev->value);
				/* Free the node */
				free(prev);
			}
		}
	}
	free(h->buckets);
	/* No need to free buckets_in_use, it is always allocated in one
	 * malloc with buckets */
	#ifdef HASH_DEBUG
	debug("Freeing Hash: %p", h);
	#endif
	if (h->freeh)
		free(h);
}

void stat_Hash(Hash* h)
{
	uint used_buckets = 0;
	uint max_collision = 0;
	uint max_usage = 0;
	uint usage[200];
	uint i;
	uint collision;
	HashNode* node;

	for (i=0;i<200;i++) usage[i] = 0;
	for (i=0;i<h->num_buckets;i++) {
		collision = 0;
		if (h->buckets_in_use[i]) {
			used_buckets++;
			node = &h->buckets[i];
			while (node != NULL) {
				collision++;
				node = node->next;
			}
			if (collision > max_collision) max_collision = collision;
		}
		if (collision > 199) collision = 199;
		usage[collision]++;
		if (collision >0 && usage[collision] >= max_usage) max_usage = usage[collision];
	}
	printf("---\nHash size: %d\nNodes used: %d\nNon empty buckets: %d\nMax collision: %d\n", h->num_buckets, h->size, used_buckets, max_collision);
	printf("{ ");
	for (i=0;i<=max_collision;i++)
		if (usage[i]) {
			printf("%d:%d ", i, usage[i]);
/*
			if (i>0){
				uint j;
				for (j=0;j<(usage[i] * 160 / 800);j++)
					printf("#");
			}
			printf("\n");
			*/
		}
	printf ("}\n");
}

void clear_Hash(Hash* h, bool free_values)
{
	uint i;
	HashNode* node;
#ifdef HASH_STATS
	if (h->size > 2000)
		stat_Hash(h);
#endif
	/* Iterate all buckets */
	for (i=0;i<h->num_buckets;i++)
	{
		if (h->buckets_in_use[i]) {
			h->buckets_in_use[i] = false;
			/* Free the first value */
			if (free_values)
				free(h->buckets[i].value);
			node = h->buckets[i].next;
			while (node != NULL) {
				HashNode* prev = node;
				node = node->next;
				if (free_values)
					free(prev->value);
				free(prev);
			}
		}
	}
	h->size = 0;
}

/* Finds the node that that saves this key pair. If it is not
 * found, returns NULL. If it is found, *prev is set to the
 * node before the one found, or if the node found was the first in the bucket
 * to NULL. If it is not found, *prev is set to the last HashNode in the
 * bucket, or NULL if it is empty. prev can also be NULL, in which case it is
 * not used for output.
 */
static HashNode* Hash_FindNode(Hash* h, uint key1, uint key2, HashNode** prev_out)
{
	uint hash = h->hash(key1, key2);
	HashNode* result = NULL;
	#ifdef HASH_DEBUG
	debug("Looking for %u, %u", key1, key2);
	#endif
	/* Check if the bucket is empty */
	if (!h->buckets_in_use[hash]) {
		if (prev_out)
			*prev_out = NULL;
		result = NULL;
	/* Check the first node specially */
	} else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
		/* Save the value */
		result = h->buckets + hash;
		if (prev_out)
			*prev_out = NULL;
	#ifdef HASH_DEBUG
		debug("Found in first node: %p", result);
	#endif
	/* Check all other nodes */
	} else {
		HashNode* prev = h->buckets + hash;
		HashNode* node = prev->next;
		while (node != NULL) {
			if (node->key1 == key1 && node->key2 == key2) {
				/* Found it */
				result = node;
	#ifdef HASH_DEBUG
				debug("Found in other node: %p", result);
	#endif
				break;
			}
			prev = node;
			node = node->next;
		}
		if (prev_out)
			*prev_out = prev;
	}
	#ifdef HASH_DEBUG
	if (result == NULL)
		debug("Not found");
	#endif
	return result;
}

void* Hash_Delete(Hash* h, uint key1, uint key2) {
	void* result;
	HashNode* prev; /* Used as output var for below function call */
	HashNode* node = Hash_FindNode(h, key1, key2, &prev);

	if (node == NULL) {
		/* not found */
		result = NULL;
	} else if (prev == NULL) {
		/* It is in the first node, we can't free that one, so we free
		 * the next one instead (if there is any)*/
		/* Save the value */
		result = node->value;
		if (node->next != NULL) {
			HashNode* next = node->next;
			/* Copy the second to the first */
			*node = *next;
			/* Free the second */
		#ifndef NOFREE
			free(next);
		#endif
		} else {
			/* This was the last in this bucket */
			/* Mark it as empty */
			uint hash = h->hash(key1, key2);
			h->buckets_in_use[hash] = false;
		}
	} else {
		/* It is in another node */
		/* Save the value */
		result = node->value;
		/* Link previous and next nodes */
		prev->next = node->next;
		/* Free the node */
		#ifndef NOFREE
		free(node);
		#endif
	}
	if (result != NULL)
		h->size--;
	return result;
}


void* Hash_Set(Hash* h, uint key1, uint key2, void* value) {
	HashNode* prev;
	HashNode* node = Hash_FindNode(h, key1, key2, &prev);
	void* result = NULL;
	if (node != NULL) {
		/* Found it */
		result = node->value;
		node->value = value;
		return result;
	}
	/* It is not yet present, let's add it */
	if (prev == NULL) {
		/* The bucket is still empty */
		uint hash = h->hash(key1, key2);
		h->buckets_in_use[hash] = true;
		node = h->buckets + hash;
	} else {
		/* Add it after prev */
		node = malloc(sizeof(HashNode));
		prev->next = node;
	}
	node->next = NULL;
	node->key1 = key1;
	node->key2 = key2;
	node->value = value;
	h->size++;
	return NULL;
}

void* Hash_Get(Hash* h, uint key1, uint key2) {
	HashNode* node = Hash_FindNode(h, key1, key2, NULL);
	#ifdef HASH_DEBUG
	debug("Found node: %p", node);
	#endif
	if (node == NULL) {
		/* Node not found */
		return NULL;
	} else {
		return node->value;
	}
}

uint Hash_Size(Hash* h) {
    return h->size;
}