Files @ r2072:93fbc12acd5b
Branch filter:

Location: cpp/openttd-patchpack/source/npf.h

ludde
(svn r2582) Fix: Prevent generating unrealistically many Oil refineries on large maps. They are always placed next to the borderline, so the perimeter is used instead of area to scale the number of those industries.
#ifndef NPF_H
#define NPF_H

#include "openttd.h"
#include "aystar.h"
#include "vehicle.h"
#include "pbs.h"
#include "tile.h"
#include "rail.h"

//mowing grass
enum {
	NPF_HASH_BITS = 12, /* The size of the hash used in pathfinding. Just changing this value should be sufficient to change the hash size. Should be an even value. */
	/* Do no change below values */
	NPF_HASH_SIZE = 1 << NPF_HASH_BITS,
	NPF_HASH_HALFBITS = NPF_HASH_BITS / 2,
	NPF_HASH_HALFMASK = (1 << NPF_HASH_HALFBITS) - 1
};

enum {
	/** This penalty is the equivalent of "inifite", which means that paths that
	 * get this penalty will be chosen, but only if there is no other route
	 * without it. Be careful with not applying this penalty to often, or the
	 * total path cost might overflow..
	 * For now, this is just a Very Big Penalty, we might actually implement
	 * this in a nicer way :-)
	 */
	NPF_INFINITE_PENALTY = 1000 * NPF_TILE_LENGTH
};

typedef struct NPFFindStationOrTileData { /* Meant to be stored in AyStar.targetdata */
	TileIndex dest_coords; /* An indication of where the station is, for heuristic purposes, or the target tile */
	int station_index; /* station index we're heading for, or -1 when we're heading for a tile */
} NPFFindStationOrTileData;

enum { /* Indices into AyStar.userdata[] */
	NPF_TYPE = 0, /* Contains a TransportTypes value */
	NPF_OWNER, /* Contains an Owner value */
	NPF_RAILTYPE, /* Contains the RailType value of the engine when NPF_TYPE == TRANSPORT_RAIL. Unused otherwise. */
	NPF_PBS_MODE, /* Contains the pbs mode, see pbs.h */
};

enum { /* Indices into AyStarNode.userdata[] */
	NPF_TRACKDIR_CHOICE = 0, /* The trackdir chosen to get here */
	NPF_NODE_FLAGS,
};

typedef enum { /* Flags for AyStarNode.userdata[NPF_NODE_FLAGS]. Use NPFGetBit() and NPFGetBit() to use them. */
	NPF_FLAG_SEEN_SIGNAL, /* Used to mark that a signal was seen on the way, for rail only */
	NPF_FLAG_REVERSE, /* Used to mark that this node was reached from the second start node, if applicable */
	NPF_FLAG_LAST_SIGNAL_RED, /* Used to mark that the last signal on this path was red */
	NPF_FLAG_PBS_EXIT, /* Used to mark tracks inside a pbs block, for rail only, for the end node, this is set when the path found goes through a pbs block */
	NPF_FLAG_PBS_BLOCKED, /* Used to mark that this path crosses another pbs path */
	NPF_FLAG_PBS_RED, /* Used to mark that this path goes through a red exit-pbs signal */
	NPF_FLAG_PBS_CHOICE, /* Used to mark that the train has had a choice on this path */
	NPF_FLAG_PBS_TARGET_SEEN, /* Used to mark that a target tile has been passed on this path */
} NPFNodeFlag;

typedef struct NPFFoundTargetData { /* Meant to be stored in AyStar.userpath */
	uint best_bird_dist; /* The best heuristic found. Is 0 if the target was found */
	uint best_path_dist; /* The shortest path. Is (uint)-1 if no path is found */
	Trackdir best_trackdir; /* The trackdir that leads to the shortest path/closest birds dist */
	AyStarNode node; /* The node within the target the search led us to */
	PathNode path;
} NPFFoundTargetData;

/* These functions below are _not_ re-entrant, in favor of speed! */

/* Will search from the given tile and direction, for a route to the given
 * station for the given transport type. See the declaration of
 * NPFFoundTargetData above for the meaning of the result. */
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailType railtype, byte pbs_mode);

/* Will search as above, but with two start nodes, the second being the
 * reverse. Look at the NPF_FLAG_REVERSE flag in the result node to see which
 * direction was taken (NPFGetBit(result.node, NPF_FLAG_REVERSE)) */
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailType railtype, byte pbs_mode);

/* Will search a route to the closest depot. */

/* Search using breadth first. Good for little track choice and inaccurate
 * heuristic, such as railway/road.*/
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailType railtype);
/* Same as above but with two start nodes, the second being the reverse. Call
 * NPFGetBit(result.node, NPF_FLAG_REVERSE) to see from which node the path
 * orginated. All pathfs from the second node will have the given
 * reverse_penalty applied (NPF_TILE_LENGTH is the equivalent of one full
 * tile).
 */
NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, TransportType type, Owner owner, RailType railtype, uint reverse_penalty);
/* Search by trying each depot in order of Manhattan Distance. Good for lots
 * of choices and accurate heuristics, such as water. */
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailType railtype);

void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v);


/*
 * Functions to manipulate the various NPF related flags on an AyStarNode.
 */

/**
 * Returns the current value of the given flag on the given AyStarNode.
 */
static inline bool NPFGetFlag(const AyStarNode* node, NPFNodeFlag flag)
{
	return HASBIT(node->user_data[NPF_NODE_FLAGS], flag);
}

/**
 * Sets the given flag on the given AyStarNode to the given value.
 */
static inline void NPFSetFlag(AyStarNode* node, NPFNodeFlag flag, bool value)
{
	if (value)
		SETBIT(node->user_data[NPF_NODE_FLAGS], flag);
	else
		CLRBIT(node->user_data[NPF_NODE_FLAGS], flag);
}

#endif // NPF_H