Files @ r16843:a8f72c659012
Branch filter:

Location: cpp/openttd-patchpack/source/src/pathfinder/npf/queue.cpp

alberth
(svn r21587) -Codechange: Move simple callback functions into the switch.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/* $Id$ */

/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file queue.cpp Implementation of the #BinaryHeap/#Hash. */

#include "../../stdafx.h"
#include "../../core/alloc_func.hpp"
#include "queue.h"


/*
 * Binary Heap
 * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
 */

const int BinaryHeap::BINARY_HEAP_BLOCKSIZE_BITS = 10; ///< The number of elements that will be malloc'd at a time.
const int BinaryHeap::BINARY_HEAP_BLOCKSIZE      = 1 << BinaryHeap::BINARY_HEAP_BLOCKSIZE_BITS;
const int BinaryHeap::BINARY_HEAP_BLOCKSIZE_MASK = BinaryHeap::BINARY_HEAP_BLOCKSIZE - 1;

/**
 * Clears the queue, by removing all values from it. Its state is
 * effectively reset. If free_items is true, each of the items cleared
 * in this way are free()'d.
 */
void BinaryHeap::Clear(bool free_values)
{
	/* Free all items if needed and free all but the first blocks of memory */
	uint i;
	uint j;

	for (i = 0; i < this->blocks; i++) {
		if (this->elements[i] == NULL) {
			/* No more allocated blocks */
			break;
		}
		/* For every allocated block */
		if (free_values) {
			for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) {
				/* For every element in the block */
				if ((this->size >> BINARY_HEAP_BLOCKSIZE_BITS) == i &&
						(this->size & BINARY_HEAP_BLOCKSIZE_MASK) == j) {
					break; // We're past the last element
				}
				free(this->elements[i][j].item);
			}
		}
		if (i != 0) {
			/* Leave the first block of memory alone */
			free(this->elements[i]);
			this->elements[i] = NULL;
		}
	}
	this->size = 0;
	this->blocks = 1;
}

/**
 * Frees the queue, by reclaiming all memory allocated by it. After
 * this it is no longer usable. If free_items is true, any remaining
 * items are free()'d too.
 */
void BinaryHeap::Free(bool free_values)
{
	uint i;

	this->Clear(free_values);
	for (i = 0; i < this->blocks; i++) {
		if (this->elements[i] == NULL) break;
		free(this->elements[i]);
	}
	free(this->elements);
}

/**
 * Pushes an element into the queue, at the appropriate place for the queue.
 * Requires the queue pointer to be of an appropriate type, of course.
 */
bool BinaryHeap::Push(void *item, int priority)
{
	if (this->size == this->max_size) return false;
	assert(this->size < this->max_size);

	if (this->elements[this->size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
		/* The currently allocated blocks are full, allocate a new one */
		assert((this->size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
		this->elements[this->size >> BINARY_HEAP_BLOCKSIZE_BITS] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
		this->blocks++;
	}

	/* Add the item at the end of the array */
	this->GetElement(this->size + 1).priority = priority;
	this->GetElement(this->size + 1).item = item;
	this->size++;

	/* Now we are going to check where it belongs. As long as the parent is
	 * bigger, we switch with the parent */
	{
		BinaryHeapNode temp;
		int i;
		int j;

		i = this->size;
		while (i > 1) {
			/* Get the parent of this object (divide by 2) */
			j = i / 2;
			/* Is the parent bigger than the current, switch them */
			if (this->GetElement(i).priority <= this->GetElement(j).priority) {
				temp = this->GetElement(j);
				this->GetElement(j) = this->GetElement(i);
				this->GetElement(i) = temp;
				i = j;
			} else {
				/* It is not, we're done! */
				break;
			}
		}
	}

	return true;
}

/**
 * Deletes the item from the queue. priority should be specified if
 * known, which speeds up the deleting for some queue's. Should be -1
 * if not known.
 */
bool BinaryHeap::Delete(void *item, int priority)
{
	uint i = 0;

	/* First, we try to find the item.. */
	do {
		if (this->GetElement(i + 1).item == item) break;
		i++;
	} while (i < this->size);
	/* We did not find the item, so we return false */
	if (i == this->size) return false;

	/* Now we put the last item over the current item while decreasing the size of the elements */
	this->size--;
	this->GetElement(i + 1) = this->GetElement(this->size + 1);

	/* Now the only thing we have to do, is resort it..
	 * On place i there is the item to be sorted.. let's start there */
	{
		uint j;
		BinaryHeapNode temp;
		/* Because of the fact that Binary Heap uses array from 1 to n, we need to
		 * increase i by 1
		 */
		i++;

		for (;;) {
			j = i;
			/* Check if we have 2 childs */
			if (2 * j + 1 <= this->size) {
				/* Is this child smaller than the parent? */
				if (this->GetElement(j).priority >= this->GetElement(2 * j).priority) i = 2 * j;
				/* Yes, we _need_ to use i here, not j, because we want to have the smallest child
				 *  This way we get that straight away! */
				if (this->GetElement(i).priority >= this->GetElement(2 * j + 1).priority) i = 2 * j + 1;
			/* Do we have one child? */
			} else if (2 * j <= this->size) {
				if (this->GetElement(j).priority >= this->GetElement(2 * j).priority) i = 2 * j;
			}

			/* One of our childs is smaller than we are, switch */
			if (i != j) {
				temp = this->GetElement(j);
				this->GetElement(j) = this->GetElement(i);
				this->GetElement(i) = temp;
			} else {
				/* None of our childs is smaller, so we stay here.. stop :) */
				break;
			}
		}
	}

	return true;
}

/**
 * Pops the first element from the queue. What exactly is the first element,
 * is defined by the exact type of queue.
 */
void *BinaryHeap::Pop()
{
	void *result;

	if (this->size == 0) return NULL;

	/* The best item is always on top, so give that as result */
	result = this->GetElement(1).item;
	/* And now we should get rid of this item... */
	this->Delete(this->GetElement(1).item, this->GetElement(1).priority);

	return result;
}

/**
 * Initializes a binary heap and allocates internal memory for maximum of
 * max_size elements
 */
void BinaryHeap::Init(uint max_size)
{
	this->max_size = max_size;
	this->size = 0;
	/* We malloc memory in block of BINARY_HEAP_BLOCKSIZE
	 *   It autosizes when it runs out of memory */
	this->elements = CallocT<BinaryHeapNode*>((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1);
	this->elements[0] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
	this->blocks = 1;
}

/* Because we don't want anyone else to bother with our defines */
#undef BIN_HEAP_ARR

/*
 * Hash
 */

/**
 * Builds a new hash in an existing struct. Make sure that hash() always
 * returns a hash less than num_buckets! Call delete_hash after use
 */
void Hash::Init(Hash_HashProc *hash, uint num_buckets)
{
	/* Allocate space for the Hash, the buckets and the bucket flags */
	uint i;

	this->hash = hash;
	this->size = 0;
	this->num_buckets = num_buckets;
	this->buckets = (HashNode*)MallocT<byte>(num_buckets * (sizeof(*this->buckets) + sizeof(*this->buckets_in_use)));
	this->buckets_in_use = (bool*)(this->buckets + num_buckets);
	for (i = 0; i < num_buckets; i++) this->buckets_in_use[i] = false;
}

/**
 * Deletes the hash and cleans up. Only cleans up memory allocated by new_Hash
 * & friends. If free is true, it will call free() on all the values that
 * are left in the hash.
 */
void Hash::Delete(bool free_values)
{
	uint i;

	/* Iterate all buckets */
	for (i = 0; i < this->num_buckets; i++) {
		if (this->buckets_in_use[i]) {
			HashNode *node;

			/* Free the first value */
			if (free_values) free(this->buckets[i].value);
			node = this->buckets[i].next;
			while (node != NULL) {
				HashNode *prev = node;

				node = node->next;
				/* Free the value */
				if (free_values) free(prev->value);
				/* Free the node */
				free(prev);
			}
		}
	}
	free(this->buckets);
	/* No need to free buckets_in_use, it is always allocated in one
	 * malloc with buckets */
}

#ifdef HASH_STATS
void Hash::PrintStatistics() const
{
	uint used_buckets = 0;
	uint max_collision = 0;
	uint max_usage = 0;
	uint usage[200];
	uint i;

	for (i = 0; i < lengthof(usage); i++) usage[i] = 0;
	for (i = 0; i < this->num_buckets; i++) {
		uint collision = 0;
		if (this->buckets_in_use[i]) {
			const HashNode *node;

			used_buckets++;
			for (node = &this->buckets[i]; node != NULL; node = node->next) collision++;
			if (collision > max_collision) max_collision = collision;
		}
		if (collision >= lengthof(usage)) collision = lengthof(usage) - 1;
		usage[collision]++;
		if (collision > 0 && usage[collision] >= max_usage) {
			max_usage = usage[collision];
		}
	}
	printf(
		"---\n"
		"Hash size: %d\n"
		"Nodes used: %d\n"
		"Non empty buckets: %d\n"
		"Max collision: %d\n",
		this->num_buckets, this->size, used_buckets, max_collision
	);
	printf("{ ");
	for (i = 0; i <= max_collision; i++) {
		if (usage[i] > 0) {
			printf("%d:%d ", i, usage[i]);
#if 0
			if (i > 0) {
				uint j;

				for (j = 0; j < usage[i] * 160 / 800; j++) putchar('#');
			}
			printf("\n");
#endif
		}
	}
	printf ("}\n");
}
#endif

/**
 * Cleans the hash, but keeps the memory allocated
 */
void Hash::Clear(bool free_values)
{
	uint i;

#ifdef HASH_STATS
	if (this->size > 2000) this->PrintStatistics();
#endif

	/* Iterate all buckets */
	for (i = 0; i < this->num_buckets; i++) {
		if (this->buckets_in_use[i]) {
			HashNode *node;

			this->buckets_in_use[i] = false;
			/* Free the first value */
			if (free_values) free(this->buckets[i].value);
			node = this->buckets[i].next;
			while (node != NULL) {
				HashNode *prev = node;

				node = node->next;
				if (free_values) free(prev->value);
				free(prev);
			}
		}
	}
	this->size = 0;
}

/**
 * Finds the node that that saves this key pair. If it is not
 * found, returns NULL. If it is found, *prev is set to the
 * node before the one found, or if the node found was the first in the bucket
 * to NULL. If it is not found, *prev is set to the last HashNode in the
 * bucket, or NULL if it is empty. prev can also be NULL, in which case it is
 * not used for output.
 */
HashNode *Hash::FindNode(uint key1, uint key2, HashNode** prev_out) const
{
	uint hash = this->hash(key1, key2);
	HashNode *result = NULL;

	/* Check if the bucket is empty */
	if (!this->buckets_in_use[hash]) {
		if (prev_out != NULL) *prev_out = NULL;
		result = NULL;
	/* Check the first node specially */
	} else if (this->buckets[hash].key1 == key1 && this->buckets[hash].key2 == key2) {
		/* Save the value */
		result = this->buckets + hash;
		if (prev_out != NULL) *prev_out = NULL;
	/* Check all other nodes */
	} else {
		HashNode *prev = this->buckets + hash;
		HashNode *node;

		for (node = prev->next; node != NULL; node = node->next) {
			if (node->key1 == key1 && node->key2 == key2) {
				/* Found it */
				result = node;
				break;
			}
			prev = node;
		}
		if (prev_out != NULL) *prev_out = prev;
	}
	return result;
}

/**
 * Deletes the value with the specified key pair from the hash and returns
 * that value. Returns NULL when the value was not present. The value returned
 * is _not_ free()'d!
 */
void *Hash::DeleteValue(uint key1, uint key2)
{
	void *result;
	HashNode *prev; // Used as output var for below function call
	HashNode *node = this->FindNode(key1, key2, &prev);

	if (node == NULL) {
		/* not found */
		result = NULL;
	} else if (prev == NULL) {
		/* It is in the first node, we can't free that one, so we free
		 * the next one instead (if there is any)*/
		/* Save the value */
		result = node->value;
		if (node->next != NULL) {
			HashNode *next = node->next;
			/* Copy the second to the first */
			*node = *next;
			/* Free the second */
			free(next);
		} else {
			/* This was the last in this bucket
			 * Mark it as empty */
			uint hash = this->hash(key1, key2);
			this->buckets_in_use[hash] = false;
		}
	} else {
		/* It is in another node
		 * Save the value */
		result = node->value;
		/* Link previous and next nodes */
		prev->next = node->next;
		/* Free the node */
		free(node);
	}
	if (result != NULL) this->size--;
	return result;
}

/**
 * Sets the value associated with the given key pair to the given value.
 * Returns the old value if the value was replaced, NULL when it was not yet present.
 */
void *Hash::Set(uint key1, uint key2, void *value)
{
	HashNode *prev;
	HashNode *node = this->FindNode(key1, key2, &prev);

	if (node != NULL) {
		/* Found it */
		void *result = node->value;

		node->value = value;
		return result;
	}
	/* It is not yet present, let's add it */
	if (prev == NULL) {
		/* The bucket is still empty */
		uint hash = this->hash(key1, key2);
		this->buckets_in_use[hash] = true;
		node = this->buckets + hash;
	} else {
		/* Add it after prev */
		node = MallocT<HashNode>(1);
		prev->next = node;
	}
	node->next = NULL;
	node->key1 = key1;
	node->key2 = key2;
	node->value = value;
	this->size++;
	return NULL;
}

/**
 * Gets the value associated with the given key pair, or NULL when it is not
 * present.
 */
void *Hash::Get(uint key1, uint key2) const
{
	HashNode *node = this->FindNode(key1, key2, NULL);

	return (node != NULL) ? node->value : NULL;
}