Files @ r17613:a9b2554a5d79
Branch filter:

Location: cpp/openttd-patchpack/source/src/tilearea.cpp

rubidium
(svn r22387) -Fix-ish [FS#4601]: Windows' recv seems to return "graceful closed" before having passed the remaining buffer which causes OpenTTD to think all connections are "incorrectly" terminated, i.e. without the "I'm leaving" packet from the client. So let the client wait a tiny bit after sending the "I'm leaving" packet and before gracefully closing the connection
/* $Id$ */

/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file tilearea.cpp Handling of tile areas. */

#include "stdafx.h"

#include "tilearea_type.h"

/**
 * Construct this tile area based on two points.
 * @param start the start of the area
 * @param end   the end of the area
 */
TileArea::TileArea(TileIndex start, TileIndex end)
{
	uint sx = TileX(start);
	uint sy = TileY(start);
	uint ex = TileX(end);
	uint ey = TileY(end);

	if (sx > ex) Swap(sx, ex);
	if (sy > ey) Swap(sy, ey);

	this->tile = TileXY(sx, sy);
	this->w    = ex - sx + 1;
	this->h    = ey - sy + 1;
}

/**
 * Add a single tile to a tile area; enlarge if needed.
 * @param to_add The tile to add
 */
void TileArea::Add(TileIndex to_add)
{
	if (this->tile == INVALID_TILE) {
		this->tile = to_add;
		this->w = 1;
		this->h = 1;
		return;
	}

	uint sx = TileX(this->tile);
	uint sy = TileY(this->tile);
	uint ex = sx + this->w - 1;
	uint ey = sy + this->h - 1;

	uint ax = TileX(to_add);
	uint ay = TileY(to_add);

	sx = min(ax, sx);
	sy = min(ay, sy);
	ex = max(ax, ex);
	ey = max(ay, ey);

	this->tile = TileXY(sx, sy);
	this->w    = ex - sx + 1;
	this->h    = ey - sy + 1;
}

/**
 * Does this tile area intersect with another?
 * @param ta the other tile area to check against.
 * @return true if they intersect.
 */
bool TileArea::Intersects(const TileArea &ta) const
{
	if (ta.w == 0 || this->w == 0) return false;

	assert(ta.w != 0 && ta.h != 0 && this->w != 0 && this->h != 0);

	uint left1   = TileX(this->tile);
	uint top1    = TileY(this->tile);
	uint right1  = left1 + this->w - 1;
	uint bottom1 = top1  + this->h - 1;

	uint left2   = TileX(ta.tile);
	uint top2    = TileY(ta.tile);
	uint right2  = left2 + ta.w - 1;
	uint bottom2 = top2  + ta.h - 1;

	return !(
			left2   > right1  ||
			right2  < left1   ||
			top2    > bottom1 ||
			bottom2 < top1
		);
}

/**
 * Clamp the tile area to map borders.
 */
void TileArea::ClampToMap()
{
	assert(this->tile < MapSize());
	this->w = min(this->w, MapSizeX() - TileX(this->tile));
	this->h = min(this->h, MapSizeY() - TileY(this->tile));
}

/**
 * Construct the iterator.
 * @param begin Tile from where to begin iterating.
 * @param end   Tile where to end the iterating.
 */
DiagonalTileIterator::DiagonalTileIterator(TileIndex corner1, TileIndex corner2) : TileIterator(corner2), base_x(TileX(corner2)), base_y(TileY(corner2)), a_cur(0), b_cur(0)
{
	assert(corner1 < MapSize());
	assert(corner2 < MapSize());

	int dist_x = TileX(corner1) - TileX(corner2);
	int dist_y = TileY(corner1) - TileY(corner2);
	this->a_max = dist_x + dist_y;
	this->b_max = dist_y - dist_x;

	/* Unfortunately we can't find a new base and make all a and b positive because
	 * the new base might be a "flattened" corner where there actually is no single
	 * tile. If we try anyway the result is either inaccurate ("one off" half of the
	 * time) or the code gets much more complex;
	 *
	 * We also need to increment here to have equality as marker for the end of a row or
	 * column. Like that it's shorter than having another if/else in operator++
	 */
	if (this->a_max > 0) {
		this->a_max++;
	} else {
		this->a_max--;
	}

	if (this->b_max > 0) {
		this->b_max++;
	} else {
		this->b_max--;
	}
}

/**
 * Move ourselves to the next tile in the rectange on the map.
 */
TileIterator &DiagonalTileIterator::operator++()
{
	assert(this->tile != INVALID_TILE);

	/* Determine the next tile, while clipping at map borders */
	bool new_line = false;
	do {
		/* Iterate using the rotated coordinates. */
		if (this->a_max == 1 || this->a_max == -1) {
			/* Special case: Every second column has zero length, skip them completely */
			this->a_cur = 0;
			if (this->b_max > 0) {
				this->b_cur = min(this->b_cur + 2, this->b_max);
			} else {
				this->b_cur = max(this->b_cur - 2, this->b_max);
			}
		} else {
			/* Every column has at least one tile to process */
			if (this->a_max > 0) {
				this->a_cur += 2;
				new_line = this->a_cur >= this->a_max;
			} else {
				this->a_cur -= 2;
				new_line = this->a_cur <= this->a_max;
			}
			if (new_line) {
				/* offset of initial a_cur: one tile in the same direction as a_max
				 * every second line.
				 */
				this->a_cur = abs(this->a_cur) % 2 ? 0 : (this->a_max > 0 ? 1 : -1);

				if (this->b_max > 0) {
					++this->b_cur;
				} else {
					--this->b_cur;
				}
			}
		}

		/* And convert the coordinates back once we've gone to the next tile. */
		uint x = this->base_x + (this->a_cur - this->b_cur) / 2;
		uint y = this->base_y + (this->b_cur + this->a_cur) / 2;
		/* Prevent wrapping around the map's borders. */
		this->tile = x >= MapSizeX() || y >= MapSizeY() ? INVALID_TILE : TileXY(x, y);
	} while (this->tile > MapSize() && this->b_max != this->b_cur);

	if (this->b_max == this->b_cur) this->tile = INVALID_TILE;
	return *this;
}