Files @ r28486:aff297ed5a05
Branch filter:

Location: cpp/openttd-patchpack/source/src/core/bitmath_func.hpp

Peter Nelson
Codechange: Allow constexpr NWidgetPart construction.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file bitmath_func.hpp Functions related to bit mathematics. */

#ifndef BITMATH_FUNC_HPP
#define BITMATH_FUNC_HPP

/**
 * Fetch \a n bits from \a x, started at bit \a s.
 *
 * This function can be used to fetch \a n bits from the value \a x. The
 * \a s value set the start position to read. The start position is
 * count from the LSB and starts at \c 0. The result starts at a
 * LSB, as this isn't just an and-bitmask but also some
 * bit-shifting operations. GB(0xFF, 2, 1) will so
 * return 0x01 (0000 0001) instead of
 * 0x04 (0000 0100).
 *
 * @param x The value to read some bits.
 * @param s The start position to read some bits.
 * @param n The number of bits to read.
 * @pre n < sizeof(T) * 8
 * @pre s + n <= sizeof(T) * 8
 * @return The selected bits, aligned to a LSB.
 */
template <typename T>
debug_inline constexpr static uint GB(const T x, const uint8_t s, const uint8_t n)
{
	return (x >> s) & (((T)1U << n) - 1);
}

/**
 * Set \a n bits in \a x starting at bit \a s to \a d
 *
 * This function sets \a n bits from \a x which started as bit \a s to the value of
 * \a d. The parameters \a x, \a s and \a n works the same as the parameters of
 * #GB. The result is saved in \a x again. Unused bits in the window
 * provided by n are set to 0 if the value of \a d isn't "big" enough.
 * This is not a bug, its a feature.
 *
 * @note Parameter \a x must be a variable as the result is saved there.
 * @note To avoid unexpected results the value of \a d should not use more
 *       space as the provided space of \a n bits (log2)
 * @param x The variable to change some bits
 * @param s The start position for the new bits
 * @param n The size/window for the new bits
 * @param d The actually new bits to save in the defined position.
 * @pre n < sizeof(T) * 8
 * @pre s + n <= sizeof(T) * 8
 * @return The new value of \a x
 */
template <typename T, typename U>
inline T SB(T &x, const uint8_t s, const uint8_t n, const U d)
{
	x &= (T)(~((((T)1U << n) - 1) << s));
	x |= (T)(d << s);
	return x;
}

/**
 * Add \a i to \a n bits of \a x starting at bit \a s.
 *
 * This adds the value of \a i on \a n bits of \a x starting at bit \a s. The parameters \a x,
 * \a s, \a i are similar to #GB. Besides, \ a x must be a variable as the result are
 * saved there. An overflow does not affect the following bits of the given
 * bit window and is simply ignored.
 *
 * @note Parameter x must be a variable as the result is saved there.
 * @param x The variable to add some bits at some position
 * @param s The start position of the addition
 * @param n The size/window for the addition
 * @pre n < sizeof(T) * 8
 * @pre s + n <= sizeof(T) * 8
 * @param i The value to add at the given start position in the given window.
 * @return The new value of \a x
 */
template <typename T, typename U>
inline T AB(T &x, const uint8_t s, const uint8_t n, const U i)
{
	const T mask = ((((T)1U << n) - 1) << s);
	x = (T)((x & ~mask) | ((x + (i << s)) & mask));
	return x;
}

/**
 * Checks if a bit in a value is set.
 *
 * This function checks if a bit inside a value is set or not.
 * The \a y value specific the position of the bit, started at the
 * LSB and count from \c 0.
 *
 * @param x The value to check
 * @param y The position of the bit to check, started from the LSB
 * @pre y < sizeof(T) * 8
 * @return True if the bit is set, false else.
 */
template <typename T>
debug_inline static bool HasBit(const T x, const uint8_t y)
{
	return (x & ((T)1U << y)) != 0;
}

/**
 * Set a bit in a variable.
 *
 * This function sets a bit in a variable. The variable is changed
 * and the value is also returned. Parameter y defines the bit and
 * starts at the LSB with 0.
 *
 * @param x The variable to set a bit
 * @param y The bit position to set
 * @pre y < sizeof(T) * 8
 * @return The new value of the old value with the bit set
 */
template <typename T>
inline T SetBit(T &x, const uint8_t y)
{
	return x = (T)(x | ((T)1U << y));
}

/**
 * Sets several bits in a variable.
 *
 * This macro sets several bits in a variable. The bits to set are provided
 * by a value. The new value is also returned.
 *
 * @param x The variable to set some bits
 * @param y The value with set bits for setting them in the variable
 * @return The new value of x
 */
#define SETBITS(x, y) ((x) |= (y))

/**
 * Clears a bit in a variable.
 *
 * This function clears a bit in a variable. The variable is
 * changed and the value is also returned. Parameter y defines the bit
 * to clear and starts at the LSB with 0.
 *
 * @param x The variable to clear the bit
 * @param y The bit position to clear
 * @pre y < sizeof(T) * 8
 * @return The new value of the old value with the bit cleared
 */
template <typename T>
inline T ClrBit(T &x, const uint8_t y)
{
	return x = (T)(x & ~((T)1U << y));
}

/**
 * Clears several bits in a variable.
 *
 * This macro clears several bits in a variable. The bits to clear are
 * provided by a value. The new value is also returned.
 *
 * @param x The variable to clear some bits
 * @param y The value with set bits for clearing them in the variable
 * @return The new value of x
 */
#define CLRBITS(x, y) ((x) &= ~(y))

/**
 * Toggles a bit in a variable.
 *
 * This function toggles a bit in a variable. The variable is
 * changed and the value is also returned. Parameter y defines the bit
 * to toggle and starts at the LSB with 0.
 *
 * @param x The variable to toggle the bit
 * @param y The bit position to toggle
 * @pre y < sizeof(T) * 8
 * @return The new value of the old value with the bit toggled
 */
template <typename T>
inline T ToggleBit(T &x, const uint8_t y)
{
	return x = (T)(x ^ ((T)1U << y));
}


/** Lookup table to check which bit is set in a 6 bit variable */
extern const uint8_t _ffb_64[64];

/**
 * Returns the first non-zero bit in a 6-bit value (from right).
 *
 * Returns the position of the first bit that is not zero, counted from the
 * LSB. Ie, 110100 returns 2, 000001 returns 0, etc. When x == 0 returns
 * 0.
 *
 * @param x The 6-bit value to check the first zero-bit
 * @return The first position of a bit started from the LSB or 0 if x is 0.
 */
#define FIND_FIRST_BIT(x) _ffb_64[(x)]

/**
 * Finds the position of the first non-zero bit in an integer.
 *
 * This function returns the position of the first bit set in the
 * integer. It does only check the bits of the bitmask
 * 0x3F3F (0011111100111111) and checks only the
 * bits of the bitmask 0x3F00 if and only if the
 * lower part 0x00FF is 0. This results the bits at 0x00C0 must
 * be also zero to check the bits at 0x3F00.
 *
 * @param value The value to check the first bits
 * @return The position of the first bit which is set
 * @see FIND_FIRST_BIT
 */
inline uint8_t FindFirstBit2x64(const int value)
{
	if ((value & 0xFF) == 0) {
		return FIND_FIRST_BIT((value >> 8) & 0x3F) + 8;
	} else {
		return FIND_FIRST_BIT(value & 0x3F);
	}
}

uint8_t FindFirstBit(uint64_t x);
uint8_t FindLastBit(uint64_t x);

/**
 * Clear the first bit in an integer.
 *
 * This function returns a value where the first bit (from LSB)
 * is cleared.
 * So, 110100 returns 110000, 000001 returns 000000, etc.
 *
 * @param value The value to clear the first bit
 * @return The new value with the first bit cleared
 */
template <typename T>
inline T KillFirstBit(T value)
{
	return value &= (T)(value - 1);
}

/**
 * Counts the number of set bits in a variable.
 *
 * @param value the value to count the number of bits in.
 * @return the number of bits.
 */
template <typename T>
inline uint CountBits(T value)
{
	uint num;

	/* This loop is only called once for every bit set by clearing the lowest
	 * bit in each loop. The number of bits is therefore equal to the number of
	 * times the loop was called. It was found at the following website:
	 * http://graphics.stanford.edu/~seander/bithacks.html */

	for (num = 0; value != 0; num++) {
		value &= (T)(value - 1);
	}

	return num;
}

/**
 * Test whether \a value has exactly 1 bit set
 *
 * @param value the value to test.
 * @return does \a value have exactly 1 bit set?
 */
template <typename T>
inline bool HasExactlyOneBit(T value)
{
	return value != 0 && (value & (value - 1)) == 0;
}

/**
 * Test whether \a value has at most 1 bit set
 *
 * @param value the value to test.
 * @return does \a value have at most 1 bit set?
 */
template <typename T>
inline bool HasAtMostOneBit(T value)
{
	return (value & (value - 1)) == 0;
}

/**
 * ROtate \a x Left by \a n
 *
 * @note Assumes a byte has 8 bits
 * @param x The value which we want to rotate
 * @param n The number how many we want to rotate
 * @pre n < sizeof(T) * 8
 * @return A bit rotated number
 */
template <typename T>
inline T ROL(const T x, const uint8_t n)
{
	if (n == 0) return x;
	return (T)(x << n | x >> (sizeof(x) * 8 - n));
}

/**
 * ROtate \a x Right by \a n
 *
 * @note Assumes a byte has 8 bits
 * @param x The value which we want to rotate
 * @param n The number how many we want to rotate
 * @pre n < sizeof(T) * 8
 * @return A bit rotated number
 */
template <typename T>
inline T ROR(const T x, const uint8_t n)
{
	if (n == 0) return x;
	return (T)(x >> n | x << (sizeof(x) * 8 - n));
}

 /**
 * Iterable ensemble of each set bit in a value.
 * @tparam Tbitpos Type of the position variable.
 * @tparam Tbitset Type of the bitset value.
 */
template <typename Tbitpos = uint, typename Tbitset = uint>
struct SetBitIterator {
	struct Iterator {
		typedef Tbitpos value_type;
		typedef value_type *pointer;
		typedef value_type &reference;
		typedef size_t difference_type;
		typedef std::forward_iterator_tag iterator_category;

		explicit Iterator(Tbitset bitset) : bitset(bitset), bitpos(static_cast<Tbitpos>(0))
		{
			this->Validate();
		}

		bool operator==(const Iterator &other) const
		{
			return this->bitset == other.bitset && (this->bitset == 0 || this->bitpos == other.bitpos);
		}
		bool operator!=(const Iterator &other) const { return !(*this == other); }
		Tbitpos operator*() const { return this->bitpos; }
		Iterator & operator++() { this->Next(); this->Validate(); return *this; }

	private:
		Tbitset bitset;
		Tbitpos bitpos;
		void Validate()
		{
			while (this->bitset != 0 && (this->bitset & 1) == 0) this->Next();
		}
		void Next()
		{
			this->bitset = static_cast<Tbitset>(this->bitset >> 1);
			this->bitpos++;
		}
	};

	SetBitIterator(Tbitset bitset) : bitset(bitset) {}
	Iterator begin() { return Iterator(this->bitset); }
	Iterator end() { return Iterator(static_cast<Tbitset>(0)); }
	bool empty() { return this->begin() == this->end(); }

private:
	Tbitset bitset;
};

#if defined(__APPLE__)
	/* Make endian swapping use Apple's macros to increase speed
	 * (since it will use hardware swapping if available).
	 * Even though they should return uint16_t and uint32_t, we get
	 * warnings if we don't cast those (why?) */
#	define BSWAP32(x) (static_cast<uint32_t>(CFSwapInt32(x)))
#	define BSWAP16(x) (static_cast<uint16_t>(CFSwapInt16(x)))
#elif defined(_MSC_VER)
	/* MSVC has intrinsics for swapping, resulting in faster code */
#	define BSWAP32(x) (_byteswap_ulong(x))
#	define BSWAP16(x) (_byteswap_ushort(x))
#else
	/**
	 * Perform a 32 bits endianness bitswap on x.
	 * @param x the variable to bitswap
	 * @return the bitswapped value.
	 */
	static inline uint32_t BSWAP32(uint32_t x)
	{
#if !defined(__ICC) && defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4)  && __GNUC_MINOR__ >= 3))
		/* GCC >= 4.3 provides a builtin, resulting in faster code */
		return static_cast<uint32_t>(__builtin_bswap32(static_cast<int32_t>(x)));
#else
		return ((x >> 24) & 0xFF) | ((x >> 8) & 0xFF00) | ((x << 8) & 0xFF0000) | ((x << 24) & 0xFF000000);
#endif /* defined(__GNUC__) */
	}

	/**
	 * Perform a 16 bits endianness bitswap on x.
	 * @param x the variable to bitswap
	 * @return the bitswapped value.
	 */
	static inline uint16_t BSWAP16(uint16_t x)
	{
		return (x >> 8) | (x << 8);
	}
#endif /* __APPLE__ */

#endif /* BITMATH_FUNC_HPP */