Files @ r25397:c741c77120c8
Branch filter:

Location: cpp/openttd-patchpack/source/src/network/core/tcp_connect.cpp

Patric Stout
Feature: use Happy Eyeballs to make network connections (TCP-only) (#9199)

Hostnames like "content.openttd.org" resolve into multiple IPv4 and IPv6.
It is possible that either of the IPs is not working, either due to
a poorly configured OS (having IPv6 but no valid route), broken network
paths, or a service that is temporary unavailable.

Instead of trying the IPs one by one, waiting for a 3s timeout between
each, be a bit more like browsers, and stack attempts on top of each
other with slight delays. This is called Happy Eyebells.

Initially, try the first IPv6 address. If within 250ms there is no
connection yet, try the first IPv4 address. 250ms later, try the
second IPv6 address, etc, till all addresses are tried.

If any connection is created, abort all the other (pending) connections
and use the one that is created. If all fail 3s after the last connect(),
trigger a timeout for all.
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/**
 * @file tcp_connect.cpp Basic functions to create connections without blocking.
 */

#include "../../stdafx.h"
#include "../../thread.h"

#include "tcp.h"
#include "../network_internal.h"

#include <deque>

#include "../../safeguards.h"

/** List of connections that are currently being created */
static std::vector<TCPConnecter *> _tcp_connecters;

/**
 * Create a new connecter for the given address
 * @param connection_string the address to connect to
 */
TCPConnecter::TCPConnecter(const std::string &connection_string, uint16 default_port)
{
	this->connection_string = NormalizeConnectionString(connection_string, default_port);

	_tcp_connecters.push_back(this);

	if (!StartNewThread(nullptr, "ottd:resolve", &TCPConnecter::ResolveThunk, this)) {
		this->Resolve();
	}
}

TCPConnecter::~TCPConnecter()
{
	for (const auto &socket : this->sockets) {
		close(socket);
	}

	freeaddrinfo(this->ai);
}

/**
 * Start a connection to the indicated address.
 * @param address The address to connection to.
 */
void TCPConnecter::Connect(addrinfo *address)
{
	SOCKET sock = socket(address->ai_family, address->ai_socktype, address->ai_protocol);
	if (sock == INVALID_SOCKET) {
		DEBUG(net, 0, "Could not create %s %s socket: %s", NetworkAddress::SocketTypeAsString(address->ai_socktype), NetworkAddress::AddressFamilyAsString(address->ai_family), NetworkError::GetLast().AsString());
		return;
	}

	if (!SetNoDelay(sock)) DEBUG(net, 1, "Setting TCP_NODELAY failed");
	if (!SetNonBlocking(sock)) DEBUG(net, 0, "Setting non-blocking mode failed");

	NetworkAddress network_address = NetworkAddress(address->ai_addr, (int)address->ai_addrlen);
	DEBUG(net, 4, "Attempting to connect to %s", network_address.GetAddressAsString().c_str());

	int err = connect(sock, address->ai_addr, (int)address->ai_addrlen);
	if (err != 0 && !NetworkError::GetLast().IsConnectInProgress()) {
		closesocket(sock);

		DEBUG(net, 1, "Could not connect to %s: %s", network_address.GetAddressAsString().c_str(), NetworkError::GetLast().AsString());
		return;
	}

	this->sockets.push_back(sock);
}

/**
 * Start the connect() for the next address in the list.
 * @return True iff a new connect() is attempted.
 */
bool TCPConnecter::TryNextAddress()
{
	if (this->current_address >= this->addresses.size()) return false;

	this->last_attempt = std::chrono::steady_clock::now();
	this->Connect(this->addresses[this->current_address++]);

	return true;
}

void TCPConnecter::OnResolved(addrinfo *ai)
{
	std::deque<addrinfo *> addresses_ipv4, addresses_ipv6;

	/* Apply "Happy Eyeballs" if it is likely IPv6 is functional. */

	/* Detect if IPv6 is likely to succeed or not. */
	bool seen_ipv6 = false;
	bool resort = true;
	for (addrinfo *runp = ai; runp != nullptr; runp = runp->ai_next) {
		if (runp->ai_family == AF_INET6) {
			seen_ipv6 = true;
		} else if (!seen_ipv6) {
			/* We see an IPv4 before an IPv6; this most likely means there is
			 * no IPv6 available on the system, so keep the order of this
			 * list. */
			resort = false;
			break;
		}
	}

	/* Convert the addrinfo into NetworkAddresses. */
	for (addrinfo *runp = ai; runp != nullptr; runp = runp->ai_next) {
		if (resort) {
			if (runp->ai_family == AF_INET6) {
				addresses_ipv6.emplace_back(runp);
			} else {
				addresses_ipv4.emplace_back(runp);
			}
		} else {
			this->addresses.emplace_back(runp);
		}
	}

	/* If we want to resort, make the list like IPv6 / IPv4 / IPv6 / IPv4 / ..
	 * for how ever many (round-robin) DNS entries we have. */
	if (resort) {
		while (!addresses_ipv4.empty() || !addresses_ipv6.empty()) {
			if (!addresses_ipv6.empty()) {
				this->addresses.push_back(addresses_ipv6.front());
				addresses_ipv6.pop_front();
			}
			if (!addresses_ipv4.empty()) {
				this->addresses.push_back(addresses_ipv4.front());
				addresses_ipv4.pop_front();
			}
		}
	}

	if (_debug_net_level >= 5) {
		DEBUG(net, 5, "%s resolved in:", this->connection_string.c_str());
		for (const auto &address : this->addresses) {
			DEBUG(net, 5, "- %s", NetworkAddress(address->ai_addr, (int)address->ai_addrlen).GetAddressAsString().c_str());
		}
	}

	this->current_address = 0;
}

void TCPConnecter::Resolve()
{
	/* Port is already guaranteed part of the connection_string. */
	NetworkAddress address = ParseConnectionString(this->connection_string, 0);

	addrinfo hints;
	memset(&hints, 0, sizeof(hints));
	hints.ai_family = AF_UNSPEC;
	hints.ai_flags = AI_ADDRCONFIG;
	hints.ai_socktype = SOCK_STREAM;

	char port_name[6];
	seprintf(port_name, lastof(port_name), "%u", address.GetPort());

	static bool getaddrinfo_timeout_error_shown = false;
	auto start = std::chrono::steady_clock::now();

	addrinfo *ai;
	int e = getaddrinfo(address.GetHostname(), port_name, &hints, &ai);

	auto end = std::chrono::steady_clock::now();
	auto duration = std::chrono::duration_cast<std::chrono::seconds>(end - start);
	if (!getaddrinfo_timeout_error_shown && duration >= std::chrono::seconds(5)) {
		DEBUG(net, 0, "getaddrinfo() for address \"%s\" took %i seconds", this->connection_string.c_str(), (int)duration.count());
		DEBUG(net, 0, "  This is likely an issue in the DNS name resolver's configuration causing it to time out");
		getaddrinfo_timeout_error_shown = true;
	}

	if (e != 0) {
		DEBUG(misc, 0, "Failed to resolve DNS for %s", this->connection_string.c_str());
		this->OnFailure();
		return;
	}

	this->ai = ai;
	this->OnResolved(ai);
	this->is_resolved = true;
}

/* static */ void TCPConnecter::ResolveThunk(TCPConnecter *connecter)
{
	connecter->Resolve();
}

/**
 * Check if there was activity for this connecter.
 * @return True iff the TCPConnecter is done and can be cleaned up.
 */
bool TCPConnecter::CheckActivity()
{
	if (!this->is_resolved.load()) return false;

	/* If there are no attempts pending, connect to the next. */
	if (this->sockets.empty()) {
		if (!this->TryNextAddress()) {
			/* There were no more addresses to try, so we failed. */
			this->OnFailure();
			return true;
		}
		return false;
	}

	fd_set write_fd;
	FD_ZERO(&write_fd);
	for (const auto &socket : this->sockets) {
		FD_SET(socket, &write_fd);
	}

	timeval tv;
	tv.tv_usec = 0;
	tv.tv_sec = 0;
	int n = select(FD_SETSIZE, NULL, &write_fd, NULL, &tv);
	/* select() failed; hopefully next try it doesn't. */
	if (n < 0) {
		/* select() normally never fails; so hopefully it works next try! */
		DEBUG(net, 1, "select() failed with %s", NetworkError::GetLast().AsString());
		return false;
	}

	/* No socket updates. */
	if (n == 0) {
		/* Wait 250ms between attempting another address. */
		if (std::chrono::steady_clock::now() < this->last_attempt + std::chrono::milliseconds(250)) return false;

		/* Try the next address in the list. */
		if (this->TryNextAddress()) return false;

		/* Wait up to 3 seconds since the last connection we started. */
		if (std::chrono::steady_clock::now() < this->last_attempt + std::chrono::milliseconds(3000)) return false;

		/* More than 3 seconds no socket reported activity, and there are no
		 * more address to try. Timeout the attempt. */
		DEBUG(net, 0, "Timeout while connecting to %s", this->connection_string.c_str());

		for (const auto &socket : this->sockets) {
			closesocket(socket);
		}
		this->OnFailure();
		return true;
	}

	/* Check for errors on any of the sockets. */
	for (auto it = this->sockets.begin(); it != this->sockets.end(); /* nothing */) {
		NetworkError socket_error = GetSocketError(*it);
		if (socket_error.HasError()) {
			DEBUG(net, 1, "Could not connect to %s: %s", NetworkAddress::GetPeerName(*it).c_str(), socket_error.AsString());
			closesocket(*it);
			it = this->sockets.erase(it);
		} else {
			it++;
		}
	}

	/* In case all sockets had an error, queue a new one. */
	if (this->sockets.empty()) {
		if (!this->TryNextAddress()) {
			/* There were no more addresses to try, so we failed. */
			this->OnFailure();
			return true;
		}
		return false;
	}

	/* At least one socket is connected. The first one that does is the one
	 * we will be using, and we close all other sockets. */
	SOCKET connected_socket = INVALID_SOCKET;
	for (auto it = this->sockets.begin(); it != this->sockets.end(); /* nothing */) {
		if (connected_socket == INVALID_SOCKET && FD_ISSET(*it, &write_fd)) {
			connected_socket = *it;
		} else {
			closesocket(*it);
		}
		it = this->sockets.erase(it);
	}
	assert(connected_socket != INVALID_SOCKET);

	DEBUG(net, 1, "Connected to %s", this->connection_string.c_str());
	if (_debug_net_level >= 5) {
		DEBUG(net, 5, "- using %s", NetworkAddress::GetPeerName(connected_socket).c_str());
	}

	this->OnConnect(connected_socket);
	return true;
}

/**
 * Check whether we need to call the callback, i.e. whether we
 * have connected or aborted and call the appropriate callback
 * for that. It's done this way to ease on the locking that
 * would otherwise be needed everywhere.
 */
/* static */ void TCPConnecter::CheckCallbacks()
{
	for (auto iter = _tcp_connecters.begin(); iter < _tcp_connecters.end(); /* nothing */) {
		TCPConnecter *cur = *iter;

		if (cur->CheckActivity()) {
			iter = _tcp_connecters.erase(iter);
			delete cur;
		} else {
			iter++;
		}
	}
}

/** Kill all connection attempts. */
/* static */ void TCPConnecter::KillAll()
{
	for (auto iter = _tcp_connecters.begin(); iter < _tcp_connecters.end(); /* nothing */) {
		TCPConnecter *cur = *iter;
		iter = _tcp_connecters.erase(iter);
		delete cur;
	}
}