Files
@ r3765:c9eaea3d3f78
Branch filter:
Location: cpp/openttd-patchpack/source/pathfind.c
r3765:c9eaea3d3f78
24.8 KiB
text/x-c
(svn r4757) - Newstations: add saveload support for custom station speclists
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 | /* $Id$ */
#include "stdafx.h"
#include "openttd.h"
#include "bridge_map.h"
#include "functions.h"
#include "map.h"
#include "tile.h"
#include "pathfind.h"
#include "rail.h"
#include "debug.h"
#include "tunnel_map.h"
#include "variables.h"
#include "depot.h"
// remember which tiles we have already visited so we don't visit them again.
static bool TPFSetTileBit(TrackPathFinder *tpf, TileIndex tile, int dir)
{
uint hash, val, offs;
TrackPathFinderLink *link, *new_link;
uint bits = 1 << dir;
if (tpf->disable_tile_hash)
return true;
hash = PATHFIND_HASH_TILE(tile);
val = tpf->hash_head[hash];
if (val == 0) {
/* unused hash entry, set the appropriate bit in it and return true
* to indicate that a bit was set. */
tpf->hash_head[hash] = bits;
tpf->hash_tile[hash] = tile;
return true;
} else if (!(val & 0x8000)) {
/* single tile */
if (tile == tpf->hash_tile[hash]) {
/* found another bit for the same tile,
* check if this bit is already set, if so, return false */
if (val & bits)
return false;
/* otherwise set the bit and return true to indicate that the bit
* was set */
tpf->hash_head[hash] = val | bits;
return true;
} else {
/* two tiles with the same hash, need to make a link */
/* allocate a link. if out of links, handle this by returning
* that a tile was already visisted. */
if (tpf->num_links_left == 0) {
return false;
}
tpf->num_links_left--;
link = tpf->new_link++;
/* move the data that was previously in the hash_??? variables
* to the link struct, and let the hash variables point to the link */
link->tile = tpf->hash_tile[hash];
tpf->hash_tile[hash] = PATHFIND_GET_LINK_OFFS(tpf, link);
link->flags = tpf->hash_head[hash];
tpf->hash_head[hash] = 0xFFFF; /* multi link */
link->next = 0xFFFF;
}
} else {
/* a linked list of many tiles,
* find the one corresponding to the tile, if it exists.
* otherwise make a new link */
offs = tpf->hash_tile[hash];
do {
link = PATHFIND_GET_LINK_PTR(tpf, offs);
if (tile == link->tile) {
/* found the tile in the link list,
* check if the bit was alrady set, if so return false to indicate that the
* bit was already set */
if (link->flags & bits)
return false;
link->flags |= bits;
return true;
}
} while ((offs=link->next) != 0xFFFF);
}
/* get here if we need to add a new link to link,
* first, allocate a new link, in the same way as before */
if (tpf->num_links_left == 0) {
return false;
}
tpf->num_links_left--;
new_link = tpf->new_link++;
/* then fill the link with the new info, and establish a ptr from the old
* link to the new one */
new_link->tile = tile;
new_link->flags = bits;
new_link->next = 0xFFFF;
link->next = PATHFIND_GET_LINK_OFFS(tpf, new_link);
return true;
}
static const byte _bits_mask[4] = {
0x19,
0x16,
0x25,
0x2A,
};
static const byte _tpf_new_direction[14] = {
0,1,0,1,2,1, 0,0,
2,3,3,2,3,0,
};
static const byte _tpf_prev_direction[14] = {
0,1,1,0,1,2, 0,0,
2,3,2,3,0,3,
};
static const byte _otherdir_mask[4] = {
0x10,
0,
0x5,
0x2A,
};
static void TPFMode2(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
{
uint bits;
int i;
RememberData rd;
assert(tpf->tracktype == TRANSPORT_WATER);
// This addition will sometimes overflow by a single tile.
// The use of TILE_MASK here makes sure that we still point at a valid
// tile, and then this tile will be in the sentinel row/col, so GetTileTrackStatus will fail.
tile = TILE_MASK(tile + TileOffsByDir(direction));
if (++tpf->rd.cur_length > 50)
return;
bits = GetTileTrackStatus(tile, tpf->tracktype);
bits = (byte)((bits | (bits >> 8)) & _bits_mask[direction]);
if (bits == 0)
return;
assert(TileX(tile) != MapMaxX() && TileY(tile) != MapMaxY());
if ( (bits & (bits - 1)) == 0 ) {
/* only one direction */
i = 0;
while (!(bits&1))
i++, bits>>=1;
rd = tpf->rd;
goto continue_here;
}
/* several directions */
i=0;
do {
if (!(bits & 1)) continue;
rd = tpf->rd;
// Change direction 4 times only
if ((byte)i != tpf->rd.pft_var6) {
if (++tpf->rd.depth > 4) {
tpf->rd = rd;
return;
}
tpf->rd.pft_var6 = (byte)i;
}
continue_here:;
tpf->the_dir = HASBIT(_otherdir_mask[direction],i) ? (i+8) : i;
if (!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, NULL)) {
TPFMode2(tpf, tile, _tpf_new_direction[tpf->the_dir]);
}
tpf->rd = rd;
} while (++i, bits>>=1);
}
/* Returns the end tile and the length of a tunnel. The length does not
* include the starting tile (entry), it does include the end tile (exit).
*/
FindLengthOfTunnelResult FindLengthOfTunnel(TileIndex tile, DiagDirection dir)
{
TileIndexDiff delta = TileOffsByDir(dir);
uint z = GetTileZ(tile);
FindLengthOfTunnelResult flotr;
flotr.length = 0;
dir = ReverseDiagDir(dir);
do {
flotr.length++;
tile += delta;
} while(
!IsTunnelTile(tile) ||
GetTunnelDirection(tile) != dir ||
GetTileZ(tile) != z
);
flotr.tile = tile;
return flotr;
}
static const uint16 _tpfmode1_and[4] = { 0x1009, 0x16, 0x520, 0x2A00 };
static uint SkipToEndOfTunnel(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
{
FindLengthOfTunnelResult flotr;
TPFSetTileBit(tpf, tile, 14);
flotr = FindLengthOfTunnel(tile, direction);
tpf->rd.cur_length += flotr.length;
TPFSetTileBit(tpf, flotr.tile, 14);
return flotr.tile;
}
const byte _ffb_64[128] = {
0,0,1,0,2,0,1,0,
3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,
3,0,1,0,2,0,1,0,
5,0,1,0,2,0,1,0,
3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,
3,0,1,0,2,0,1,0,
0,0,0,2,0,4,4,6,
0,8,8,10,8,12,12,14,
0,16,16,18,16,20,20,22,
16,24,24,26,24,28,28,30,
0,32,32,34,32,36,36,38,
32,40,40,42,40,44,44,46,
32,48,48,50,48,52,52,54,
48,56,56,58,56,60,60,62,
};
static void TPFMode1(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
{
uint bits;
int i;
RememberData rd;
TileIndex tile_org = tile;
if (IsTunnelTile(tile)) {
if (GetTunnelDirection(tile) != direction ||
GetTunnelTransportType(tile) != tpf->tracktype) {
return;
}
tile = SkipToEndOfTunnel(tpf, tile, direction);
}
tile += TileOffsByDir(direction);
/* Check in case of rail if the owner is the same */
if (tpf->tracktype == TRANSPORT_RAIL) {
// don't enter train depot from the back
if (IsTileDepotType(tile, TRANSPORT_RAIL) && GetRailDepotDirection(tile) == direction) return;
if (IsTileType(tile_org, MP_RAILWAY) || IsTileType(tile_org, MP_STATION) || IsTileType(tile_org, MP_TUNNELBRIDGE))
if (IsTileType(tile, MP_RAILWAY) || IsTileType(tile, MP_STATION) || IsTileType(tile, MP_TUNNELBRIDGE))
/* Check if we are on a bridge (middle parts don't have an owner */
if (!IsBridgeTile(tile) || !IsBridgeMiddle(tile))
if (!IsBridgeTile(tile_org) || !IsBridgeMiddle(tile_org))
if (GetTileOwner(tile_org) != GetTileOwner(tile))
return;
}
tpf->rd.cur_length++;
bits = GetTileTrackStatus(tile, tpf->tracktype);
if ((byte)bits != tpf->var2) {
bits &= _tpfmode1_and[direction];
bits = bits | (bits>>8);
}
bits &= 0xBF;
if (bits != 0) {
if (!tpf->disable_tile_hash || (tpf->rd.cur_length <= 64 && (KILL_FIRST_BIT(bits) == 0 || ++tpf->rd.depth <= 7))) {
do {
i = FIND_FIRST_BIT(bits);
bits = KILL_FIRST_BIT(bits);
tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
rd = tpf->rd;
if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
}
tpf->rd = rd;
} while (bits != 0);
}
}
/* the next is only used when signals are checked.
* seems to go in 2 directions simultaneously */
/* if i can get rid of this, tail end recursion can be used to minimize
* stack space dramatically. */
/* If we are doing signal setting, we must reverse at evere tile, so we
* iterate all the tracks in a signal block, even when a normal train would
* not reach it (for example, when two lines merge */
if (tpf->hasbit_13)
return;
tile = tile_org;
direction = ReverseDiagDir(direction);
bits = GetTileTrackStatus(tile, tpf->tracktype);
bits |= (bits >> 8);
if ( (byte)bits != tpf->var2) {
bits &= _bits_mask[direction];
}
bits &= 0xBF;
if (bits == 0)
return;
do {
i = FIND_FIRST_BIT(bits);
bits = KILL_FIRST_BIT(bits);
tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
rd = tpf->rd;
if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
}
tpf->rd = rd;
} while (bits != 0);
}
void FollowTrack(TileIndex tile, uint16 flags, DiagDirection direction, TPFEnumProc *enum_proc, TPFAfterProc *after_proc, void *data)
{
TrackPathFinder tpf;
assert(direction < 4);
/* initialize path finder variables */
tpf.userdata = data;
tpf.enum_proc = enum_proc;
tpf.new_link = tpf.links;
tpf.num_links_left = lengthof(tpf.links);
tpf.rd.cur_length = 0;
tpf.rd.depth = 0;
tpf.rd.pft_var6 = 0;
tpf.var2 = HASBIT(flags, 15) ? 0x43 : 0xFF; /* 0x8000 */
tpf.disable_tile_hash = HASBIT(flags, 12); /* 0x1000 */
tpf.hasbit_13 = HASBIT(flags, 13); /* 0x2000 */
tpf.tracktype = (byte)flags;
if (HASBIT(flags, 11)) {
tpf.rd.pft_var6 = 0xFF;
tpf.enum_proc(tile, data, 0, 0, 0);
TPFMode2(&tpf, tile, direction);
} else {
/* clear the hash_heads */
memset(tpf.hash_head, 0, sizeof(tpf.hash_head));
TPFMode1(&tpf, tile, direction);
}
if (after_proc != NULL)
after_proc(&tpf);
}
typedef struct {
TileIndex tile;
uint16 cur_length; // This is the current length to this tile.
uint16 priority; // This is the current length + estimated length to the goal.
byte track;
byte depth;
byte state;
byte first_track;
} StackedItem;
static const byte _new_track[6][4] = {
{0,0xff,8,0xff,},
{0xff,1,0xff,9,},
{0xff,2,10,0xff,},
{3,0xff,0xff,11,},
{12,4,0xff,0xff,},
{0xff,0xff,5,13,},
};
typedef struct HashLink {
TileIndex tile;
uint16 typelength;
uint16 next;
} HashLink;
typedef struct {
NTPEnumProc *enum_proc;
void *userdata;
TileIndex dest;
TransportType tracktype;
RailTypeMask railtypes;
uint maxlength;
HashLink *new_link;
uint num_links_left;
uint nstack;
StackedItem stack[256]; // priority queue of stacked items
uint16 hash_head[0x400]; // hash heads. 0 means unused. 0xFFFC = length, 0x3 = dir
TileIndex hash_tile[0x400]; // tiles. or links.
HashLink links[0x400]; // hash links
} NewTrackPathFinder;
#define NTP_GET_LINK_OFFS(tpf, link) ((byte*)(link) - (byte*)tpf->links)
#define NTP_GET_LINK_PTR(tpf, link_offs) (HashLink*)((byte*)tpf->links + (link_offs))
#define ARR(i) tpf->stack[(i)-1]
// called after a new element was added in the queue at the last index.
// move it down to the proper position
static inline void HeapifyUp(NewTrackPathFinder *tpf)
{
StackedItem si;
int i = ++tpf->nstack;
while (i != 1 && ARR(i).priority < ARR(i>>1).priority) {
// the child element is larger than the parent item.
// swap the child item and the parent item.
si = ARR(i); ARR(i) = ARR(i>>1); ARR(i>>1) = si;
i>>=1;
}
}
// called after the element 0 was eaten. fill it with a new element
static inline void HeapifyDown(NewTrackPathFinder *tpf)
{
StackedItem si;
int i = 1, j;
int n;
assert(tpf->nstack > 0);
n = --tpf->nstack;
if (n == 0) return; // heap is empty so nothing to do?
// copy the last item to index 0. we use it as base for heapify.
ARR(1) = ARR(n+1);
while ((j=i*2) <= n) {
// figure out which is smaller of the children.
if (j != n && ARR(j).priority > ARR(j+1).priority)
j++; // right item is smaller
assert(i <= n && j <= n);
if (ARR(i).priority <= ARR(j).priority)
break; // base elem smaller than smallest, done!
// swap parent with the child
si = ARR(i); ARR(i) = ARR(j); ARR(j) = si;
i = j;
}
}
// mark a tile as visited and store the length of the path.
// if we already had a better path to this tile, return false.
// otherwise return true.
static bool NtpVisit(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection dir, uint length)
{
uint hash,head;
HashLink *link, *new_link;
assert(length < 16384-1);
hash = PATHFIND_HASH_TILE(tile);
// never visited before?
if ((head=tpf->hash_head[hash]) == 0) {
tpf->hash_tile[hash] = tile;
tpf->hash_head[hash] = dir | (length << 2);
return true;
}
if (head != 0xffff) {
if (tile == tpf->hash_tile[hash] && (head & 0x3) == dir) {
// longer length
if (length >= (head >> 2)) return false;
tpf->hash_head[hash] = dir | (length << 2);
return true;
}
// two tiles with the same hash, need to make a link
// allocate a link. if out of links, handle this by returning
// that a tile was already visisted.
if (tpf->num_links_left == 0) {
DEBUG(ntp, 1) ("[NTP] no links left");
return false;
}
tpf->num_links_left--;
link = tpf->new_link++;
/* move the data that was previously in the hash_??? variables
* to the link struct, and let the hash variables point to the link */
link->tile = tpf->hash_tile[hash];
tpf->hash_tile[hash] = NTP_GET_LINK_OFFS(tpf, link);
link->typelength = tpf->hash_head[hash];
tpf->hash_head[hash] = 0xFFFF; /* multi link */
link->next = 0xFFFF;
} else {
// a linked list of many tiles,
// find the one corresponding to the tile, if it exists.
// otherwise make a new link
uint offs = tpf->hash_tile[hash];
do {
link = NTP_GET_LINK_PTR(tpf, offs);
if (tile == link->tile && (link->typelength & 0x3U) == dir) {
if (length >= (uint)(link->typelength >> 2)) return false;
link->typelength = dir | (length << 2);
return true;
}
} while ((offs = link->next) != 0xFFFF);
}
/* get here if we need to add a new link to link,
* first, allocate a new link, in the same way as before */
if (tpf->num_links_left == 0) {
DEBUG(ntp, 1) ("[NTP] no links left");
return false;
}
tpf->num_links_left--;
new_link = tpf->new_link++;
/* then fill the link with the new info, and establish a ptr from the old
* link to the new one */
new_link->tile = tile;
new_link->typelength = dir | (length << 2);
new_link->next = 0xFFFF;
link->next = NTP_GET_LINK_OFFS(tpf, new_link);
return true;
}
/**
* Checks if the shortest path to the given tile/dir so far is still the given
* length.
* @return true if the length is still the same
* @pre The given tile/dir combination should be present in the hash, by a
* previous call to NtpVisit().
*/
static bool NtpCheck(NewTrackPathFinder *tpf, TileIndex tile, uint dir, uint length)
{
uint hash,head,offs;
HashLink *link;
hash = PATHFIND_HASH_TILE(tile);
head=tpf->hash_head[hash];
assert(head);
if (head != 0xffff) {
assert( tpf->hash_tile[hash] == tile && (head & 3) == dir);
assert( (head >> 2) <= length);
return length == (head >> 2);
}
// else it's a linked list of many tiles
offs = tpf->hash_tile[hash];
for (;;) {
link = NTP_GET_LINK_PTR(tpf, offs);
if (tile == link->tile && (link->typelength & 0x3U) == dir) {
assert((uint)(link->typelength >> 2) <= length);
return length == (uint)(link->typelength >> 2);
}
offs = link->next;
assert(offs != 0xffff);
}
}
static const uint16 _is_upwards_slope[15] = {
0, // no tileh
(1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_NW), // 1
(1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_SE), // 2
(1 << TRACKDIR_X_SW), // 3
(1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_SE), // 4
0, // 5
(1 << TRACKDIR_Y_SE), // 6
0, // 7
(1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_NW), // 8,
(1 << TRACKDIR_Y_NW), // 9
0, //10
0, //11,
(1 << TRACKDIR_X_NE), //12
0, //13
0, //14
};
#define DIAG_FACTOR 3
#define STR_FACTOR 2
static uint DistanceMoo(TileIndex t0, TileIndex t1)
{
const uint dx = abs(TileX(t0) - TileX(t1));
const uint dy = abs(TileY(t0) - TileY(t1));
const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */
/* OPTIMISATION:
* Original: diagTracks = max(dx, dy) - min(dx,dy);
* Proof:
* (dx-dy) - straightTracks == (min + max) - straightTracks = min + // max - 2 * min = max - min */
const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */
return diagTracks*DIAG_FACTOR + straightTracks*STR_FACTOR;
}
// These has to be small cause the max length of a track
// is currently limited to 16384
static const byte _length_of_track[16] = {
DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0,
DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0
};
// new more optimized pathfinder for trains...
// Tile is the tile the train is at.
// direction is the tile the train is moving towards.
static void NTPEnum(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
{
TrackBits bits, allbits;
uint track;
TileIndex tile_org;
StackedItem si;
FindLengthOfTunnelResult flotr;
int estimation;
// Need to have a special case for the start.
// We shouldn't call the callback for the current tile.
si.cur_length = 1; // Need to start at 1 cause 0 is a reserved value.
si.depth = 0;
si.state = 0;
si.first_track = 0xFF;
goto start_at;
for (;;) {
// Get the next item to search from from the priority queue
do {
if (tpf->nstack == 0)
return; // nothing left? then we're done!
si = tpf->stack[0];
tile = si.tile;
HeapifyDown(tpf);
// Make sure we havn't already visited this tile.
} while (!NtpCheck(tpf, tile, _tpf_prev_direction[si.track], si.cur_length));
// Add the length of this track.
si.cur_length += _length_of_track[si.track];
callback_and_continue:
if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
return;
assert(si.track <= 13);
direction = _tpf_new_direction[si.track];
start_at:
// If the tile is the entry tile of a tunnel, and we're not going out of the tunnel,
// need to find the exit of the tunnel.
if (IsTunnelTile(tile) &&
GetTunnelDirection(tile) != ReverseDiagDir(direction)) {
/* We are not just driving out of the tunnel */
if (GetTunnelDirection(tile) != direction ||
GetTunnelTransportType(tile) != tpf->tracktype) {
// We are not driving into the tunnel, or it is an invalid tunnel
continue;
}
flotr = FindLengthOfTunnel(tile, direction);
si.cur_length += flotr.length * DIAG_FACTOR;
tile = flotr.tile;
// tile now points to the exit tile of the tunnel
}
// This is a special loop used to go through
// a rail net and find the first intersection
tile_org = tile;
for (;;) {
assert(direction <= 3);
tile += TileOffsByDir(direction);
// too long search length? bail out.
if (si.cur_length >= tpf->maxlength) {
DEBUG(ntp,1) ("[NTP] cur_length too big");
bits = 0;
break;
}
// Not a regular rail tile?
// Then we can't use the code below, but revert to more general code.
if (!IsTileType(tile, MP_RAILWAY) || !IsPlainRailTile(tile)) {
// We found a tile which is not a normal railway tile.
// Determine which tracks that exist on this tile.
bits = GetTileTrackStatus(tile, TRANSPORT_RAIL) & _tpfmode1_and[direction];
bits = (bits | (bits >> 8)) & 0x3F;
// Check that the tile contains exactly one track
if (bits == 0 || KILL_FIRST_BIT(bits) != 0) break;
///////////////////
// If we reach here, the tile has exactly one track.
// tile - index to a tile that is not rail tile, but still straight (with optional signals)
// bits - bitmask of which track that exist on the tile (exactly one bit is set)
// direction - which direction are we moving in?
///////////////////
si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
si.cur_length += _length_of_track[si.track];
goto callback_and_continue;
}
/* Regular rail tile, determine which tracks exist. */
allbits = GetTrackBits(tile);
/* Which tracks are reachable? */
bits = allbits & DiagdirReachesTracks(direction);
/* The tile has no reachable tracks => End of rail segment
* or Intersection => End of rail segment. We check this agains all the
* bits, not just reachable ones, to prevent infinite loops. */
if (bits == 0 || TracksOverlap(allbits)) break;
if (!HASBIT(tpf->railtypes, GetRailType(tile))) {
bits = 0;
break;
}
/* If we reach here, the tile has exactly one track, and this
track is reachable => Rail segment continues */
track = _new_track[FIND_FIRST_BIT(bits)][direction];
assert(track != 0xff);
si.cur_length += _length_of_track[track];
// Check if this rail is an upwards slope. If it is, then add a penalty.
// Small optimization here.. if (track&7)>1 then it can't be a slope so we avoid calling GetTileSlope
if ((track & 7) <= 1 && (_is_upwards_slope[GetTileSlope(tile, NULL)] & (1 << track)) ) {
// upwards slope. add some penalty.
si.cur_length += 4*DIAG_FACTOR;
}
// railway tile with signals..?
if (HasSignals(tile)) {
byte m3;
m3 = _m[tile].m3;
if (!(m3 & SignalAlongTrackdir(track))) {
// if one way signal not pointing towards us, stop going in this direction => End of rail segment.
if (m3 & SignalAgainstTrackdir(track)) {
bits = 0;
break;
}
} else if (_m[tile].m2 & SignalAlongTrackdir(track)) {
// green signal in our direction. either one way or two way.
si.state |= 3;
} else {
// reached a red signal.
if (m3 & SignalAgainstTrackdir(track)) {
// two way red signal. unless we passed another green signal on the way,
// stop going in this direction => End of rail segment.
// this is to prevent us from going into a full platform.
if (!(si.state&1)) {
bits = 0;
break;
}
}
if (!(si.state & 2)) {
// Is this the first signal we see? And it's red... add penalty
si.cur_length += 10*DIAG_FACTOR;
si.state += 2; // remember that we added penalty.
// Because we added a penalty, we can't just continue as usual.
// Need to get out and let A* do it's job with
// possibly finding an even shorter path.
break;
}
}
if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
return; /* Don't process this tile any further */
}
// continue with the next track
direction = _tpf_new_direction[track];
// safety check if we're running around chasing our tail... (infinite loop)
if (tile == tile_org) {
bits = 0;
break;
}
}
// There are no tracks to choose between.
// Stop searching in this direction
if (bits == 0)
continue;
////////////////
// We got multiple tracks to choose between (intersection).
// Branch the search space into several branches.
////////////////
// Check if we've already visited this intersection.
// If we've already visited it with a better length, then
// there's no point in visiting it again.
if (!NtpVisit(tpf, tile, direction, si.cur_length))
continue;
// Push all possible alternatives that we can reach from here
// onto the priority heap.
// 'bits' contains the tracks that we can choose between.
// First compute the estimated distance to the target.
// This is used to implement A*
estimation = 0;
if (tpf->dest != 0)
estimation = DistanceMoo(tile, tpf->dest);
si.depth++;
if (si.depth == 0)
continue; /* We overflowed our depth. No more searching in this direction. */
si.tile = tile;
do {
si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
assert(si.track != 0xFF);
si.priority = si.cur_length + estimation;
// out of stack items, bail out?
if (tpf->nstack >= lengthof(tpf->stack)) {
DEBUG(ntp, 1) ("[NTP] out of stack");
break;
}
tpf->stack[tpf->nstack] = si;
HeapifyUp(tpf);
} while ((bits = KILL_FIRST_BIT(bits)) != 0);
// If this is the first intersection, we need to fill the first_track member.
// so the code outside knows which path is better.
// also randomize the order in which we search through them.
if (si.depth == 1) {
assert(tpf->nstack == 1 || tpf->nstack == 2 || tpf->nstack == 3);
if (tpf->nstack != 1) {
uint32 r = Random();
if (r&1) swap_byte(&tpf->stack[0].track, &tpf->stack[1].track);
if (tpf->nstack != 2) {
byte t = tpf->stack[2].track;
if (r&2) swap_byte(&tpf->stack[0].track, &t);
if (r&4) swap_byte(&tpf->stack[1].track, &t);
tpf->stack[2].first_track = tpf->stack[2].track = t;
}
tpf->stack[0].first_track = tpf->stack[0].track;
tpf->stack[1].first_track = tpf->stack[1].track;
}
}
// Continue with the next from the queue...
}
}
// new pathfinder for trains. better and faster.
void NewTrainPathfind(TileIndex tile, TileIndex dest, RailTypeMask railtypes, DiagDirection direction, NTPEnumProc* enum_proc, void* data)
{
NewTrackPathFinder tpf;
tpf.dest = dest;
tpf.userdata = data;
tpf.enum_proc = enum_proc;
tpf.tracktype = TRANSPORT_RAIL;
tpf.railtypes = railtypes;
tpf.maxlength = min(_patches.pf_maxlength * 3, 10000);
tpf.nstack = 0;
tpf.new_link = tpf.links;
tpf.num_links_left = lengthof(tpf.links);
memset(tpf.hash_head, 0, sizeof(tpf.hash_head));
NTPEnum(&tpf, tile, direction);
}
|