Files @ r7882:cdf03a4ac84a
Branch filter:

Location: cpp/openttd-patchpack/source/src/map.cpp

rubidium
(svn r11433) -Fix: starting OpenTTD with DOS files made it look weird out of the box.
-Change: make extra sprites (the ones not in the TTD GRFs) replaceable using Action 5.
-Feature: make replacing contiguous subsets of sprites in for some types possible in Action 5.
Note to GRF authors: when you replaced OpenTTD sprites that are not from the TTD GRF files using Action A, your GRF will not have the intended result anymore as the sprite numbers have changed. You should replace the Action A with an Action 5 from now on.
/* $Id$ */

/** @file map.cpp */

#include "stdafx.h"
#include "openttd.h"
#include "debug.h"
#include "functions.h"
#include "macros.h"
#include "map.h"
#include "direction.h"
#include "helpers.hpp"

#if defined(_MSC_VER) && _MSC_VER >= 1400 /* VStudio 2005 is stupid! */
/* Why the hell is that not in all MSVC headers?? */
extern "C" _CRTIMP void __cdecl _assert(void *, void *, unsigned);
#endif

uint _map_log_x;     ///< 2^_map_log_x == _map_size_x
uint _map_size_x;    ///< Size of the map along the X
uint _map_size_y;    ///< Size of the map along the Y
uint _map_size;      ///< The number of tiles on the map
uint _map_tile_mask; ///< _map_size - 1 (to mask the mapsize)

Tile *_m = NULL;          ///< Tiles of the map
TileExtended *_me = NULL; ///< Extended Tiles of the map


/*!
 * (Re)allocates a map with the given dimension
 * @param size_x the width of the map along the NE/SW edge
 * @param size_y the 'height' of the map along the SE/NW edge
 */
void AllocateMap(uint size_x, uint size_y)
{
	/* Make sure that the map size is within the limits and that
	 * the x axis size is a power of 2. */
	if (size_x < 64 || size_x > 2048 ||
			size_y < 64 || size_y > 2048 ||
			(size_x & (size_x - 1)) != 0 ||
			(size_y & (size_y - 1)) != 0)
		error("Invalid map size");

	DEBUG(map, 1, "Allocating map of size %dx%d", size_x, size_y);

	_map_log_x = FindFirstBit(size_x);
	_map_size_x = size_x;
	_map_size_y = size_y;
	_map_size = size_x * size_y;
	_map_tile_mask = _map_size - 1;

	free(_m);
	free(_me);

	_m = CallocT<Tile>(_map_size);
	_me = CallocT<TileExtended>(_map_size);

	/* XXX @todo handle memory shortage more gracefully
	 * Maybe some attemps could be made to try with smaller maps down to 64x64
	 * Maybe check for available memory before doing the calls, after all, we know how big
	 * the map is */
	if ((_m == NULL) || (_me == NULL)) error("Failed to allocate memory for the map");
}


#ifdef _DEBUG
TileIndex TileAdd(TileIndex tile, TileIndexDiff add,
	const char *exp, const char *file, int line)
{
	int dx;
	int dy;
	uint x;
	uint y;

	dx = add & MapMaxX();
	if (dx >= (int)MapSizeX() / 2) dx -= MapSizeX();
	dy = (add - dx) / (int)MapSizeX();

	x = TileX(tile) + dx;
	y = TileY(tile) + dy;

	if (x >= MapSizeX() || y >= MapSizeY()) {
		char buf[512];

		snprintf(buf, lengthof(buf), "TILE_ADD(%s) when adding 0x%.4X and 0x%.4X failed",
			exp, tile, add);
#if !defined(_MSC_VER) || defined(WINCE)
		fprintf(stderr, "%s:%d %s\n", file, line, buf);
#else
		_assert(buf, (char*)file, line);
#endif
	}

	assert(TileXY(x, y) == TILE_MASK(tile + add));

	return TileXY(x, y);
}
#endif

/*!
 * Scales the given value by the map size, where the given value is
 * for a 256 by 256 map.
 * @param n the value to scale
 * @return the scaled size
 */
uint ScaleByMapSize(uint n)
{
	/* First shift by 12 to prevent integer overflow for large values of n.
	 * >>12 is safe since the min mapsize is 64x64
	 * Add (1<<4)-1 to round upwards. */
	return (n * (MapSize() >> 12) + (1 << 4) - 1) >> 4;
}


/*!
 * Scales the given value by the maps circumference, where the given
 * value is for a 256 by 256 map
 * @param n the value to scale
 * @return the scaled size
 */
uint ScaleByMapSize1D(uint n)
{
	/* Normal circumference for the X+Y is 256+256 = 1<<9
	 * Note, not actually taking the full circumference into account,
	 * just half of it.
	 * (1<<9) - 1 is there to scale upwards. */
	return (n * (MapSizeX() + MapSizeY()) + (1 << 9) - 1) >> 9;
}


/*!
 * This function checks if we add addx/addy to tile, if we
 * do wrap around the edges. For example, tile = (10,2) and
 * addx = +3 and addy = -4. This function will now return
 * INVALID_TILE, because the y is wrapped. This is needed in
 * for example, farmland. When the tile is not wrapped,
 * the result will be tile + TileDiffXY(addx, addy)
 *
 * @param tile the 'starting' point of the adding
 * @param addx the amount of tiles in the X direction to add
 * @param addy the amount of tiles in the Y direction to add
 * @return translated tile, or INVALID_TILE when it would've wrapped.
 */
uint TileAddWrap(TileIndex tile, int addx, int addy)
{
	uint x = TileX(tile) + addx;
	uint y = TileY(tile) + addy;

	/* Are we about to wrap? */
	if (x < MapMaxX() && y < MapMaxY())
		return tile + TileDiffXY(addx, addy);

	return INVALID_TILE;
}

/** 'Lookup table' for tile offsets given a DiagDirection */
extern const TileIndexDiffC _tileoffs_by_diagdir[] = {
	{-1,  0}, ///< DIAGDIR_NE
	{ 0,  1}, ///< DIAGDIR_SE
	{ 1,  0}, ///< DIAGDIR_SW
	{ 0, -1}  ///< DIAGDIR_NW
};

/** 'Lookup table' for tile offsets given a Direction */
extern const TileIndexDiffC _tileoffs_by_dir[] = {
	{-1, -1}, ///< DIR_N
	{-1,  0}, ///< DIR_NE
	{-1,  1}, ///< DIR_E
	{ 0,  1}, ///< DIR_SE
	{ 1,  1}, ///< DIR_S
	{ 1,  0}, ///< DIR_SW
	{ 1, -1}, ///< DIR_W
	{ 0, -1}  ///< DIR_NW
};

/*!
 * Gets the Manhattan distance between the two given tiles.
 * The Manhattan distance is the sum of the delta of both the
 * X and Y component.
 * Also known as L1-Norm
 * @param t0 the start tile
 * @param t1 the end tile
 * @return the distance
 */
uint DistanceManhattan(TileIndex t0, TileIndex t1)
{
	const uint dx = delta(TileX(t0), TileX(t1));
	const uint dy = delta(TileY(t0), TileY(t1));
	return dx + dy;
}


/*!
 * Gets the 'Square' distance between the two given tiles.
 * The 'Square' distance is the square of the shortest (straight line)
 * distance between the two tiles.
 * Also known as euclidian- or L2-Norm squared.
 * @param t0 the start tile
 * @param t1 the end tile
 * @return the distance
 */
uint DistanceSquare(TileIndex t0, TileIndex t1)
{
	const int dx = TileX(t0) - TileX(t1);
	const int dy = TileY(t0) - TileY(t1);
	return dx * dx + dy * dy;
}


/*!
 * Gets the biggest distance component (x or y) between the two given tiles.
 * Also known as L-Infinity-Norm.
 * @param t0 the start tile
 * @param t1 the end tile
 * @return the distance
 */
uint DistanceMax(TileIndex t0, TileIndex t1)
{
	const uint dx = delta(TileX(t0), TileX(t1));
	const uint dy = delta(TileY(t0), TileY(t1));
	return dx > dy ? dx : dy;
}


/*!
 * Gets the biggest distance component (x or y) between the two given tiles
 * plus the Manhattan distance, i.e. two times the biggest distance component
 * and once the smallest component.
 * @param t0 the start tile
 * @param t1 the end tile
 * @return the distance
 */
uint DistanceMaxPlusManhattan(TileIndex t0, TileIndex t1)
{
	const uint dx = delta(TileX(t0), TileX(t1));
	const uint dy = delta(TileY(t0), TileY(t1));
	return dx > dy ? 2 * dx + dy : 2 * dy + dx;
}

/*!
 * Param the minimum distance to an edge
 * @param tile the tile to get the distance from
 * @return the distance from the edge in tiles
 */
uint DistanceFromEdge(TileIndex tile)
{
	const uint xl = TileX(tile);
	const uint yl = TileY(tile);
	const uint xh = MapSizeX() - 1 - xl;
	const uint yh = MapSizeY() - 1 - yl;
	const uint minl = xl < yl ? xl : yl;
	const uint minh = xh < yh ? xh : yh;
	return minl < minh ? minl : minh;
}

/*!
 * Function performing a search around a center tile and going outward, thus in circle.
 * Although it really is a square search...
 * Every tile will be tested by means of the callback function proc,
 * which will determine if yes or no the given tile meets criteria of search.
 * @param tile to start the search from
 * @param size: number of tiles per side of the desired search area
 * @param proc: callback testing function pointer.
 * @param data to be passed to the callback function. Depends on the implementation
 * @return result of the search
 * @pre proc != NULL
 * @pre size > 0
 */
bool CircularTileSearch(TileIndex tile, uint size, TestTileOnSearchProc proc, uint32 data)
{
	uint n, x, y;
	DiagDirection dir;

	assert(proc != NULL);
	assert(size > 0);

	x = TileX(tile);
	y = TileY(tile);

	if (size % 2 == 1) {
		/* If the length of the side is uneven, the center has to be checked
		 * separately, as the pattern of uneven sides requires to go around the center */
		n = 2;
		if (proc(TileXY(x, y), data)) return true;

		/* If tile test is not successful, get one tile down and left,
		 * ready for a test in first circle around center tile */
		x += _tileoffs_by_dir[DIR_W].x;
		y += _tileoffs_by_dir[DIR_W].y;
	} else {
		n = 1;
		/* To use _tileoffs_by_diagdir's order, we must relocate to
		 * another tile, as we now first go 'up', 'right', 'down', 'left'
		 * instead of 'right', 'down', 'left', 'up', which the calling
		 * function assume. */
		x++;
	}

	for (; n < size; n += 2) {
		for (dir = DIAGDIR_NE; dir < DIAGDIR_END; dir++) {
			uint j;
			for (j = n; j != 0; j--) {
				if (x <= MapMaxX() && y <= MapMaxY() && ///< Is the tile within the map?
						proc(TileXY(x, y), data)) {     ///< Is the callback successful?
					return true;                        ///< then stop the search
				}

				/* Step to the next 'neighbour' in the circular line */
				x += _tileoffs_by_diagdir[dir].x;
				y += _tileoffs_by_diagdir[dir].y;
			}
		}
		/* Jump to next circle to test */
		x += _tileoffs_by_dir[DIR_W].x;
		y += _tileoffs_by_dir[DIR_W].y;
	}
	return false;
}