Files
@ r28410:d9c73d685bbc
Branch filter:
Location: cpp/openttd-patchpack/source/src/blitter/32bpp_sse_func.hpp
r28410:d9c73d685bbc
18.0 KiB
text/x-c++hdr
Codechange: replace static inline with static for non-class functions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | /*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file 32bpp_sse_func.hpp Functions related to SSE 32 bpp blitter. */
#ifndef BLITTER_32BPP_SSE_FUNC_HPP
#define BLITTER_32BPP_SSE_FUNC_HPP
#ifdef WITH_SSE
GNU_TARGET(SSE_TARGET)
inline void InsertFirstUint32(const uint32_t value, __m128i &into)
{
#if (SSE_VERSION >= 4)
into = _mm_insert_epi32(into, value, 0);
#else
into = _mm_insert_epi16(into, value, 0);
into = _mm_insert_epi16(into, value >> 16, 1);
#endif
}
GNU_TARGET(SSE_TARGET)
inline void InsertSecondUint32(const uint32_t value, __m128i &into)
{
#if (SSE_VERSION >= 4)
into = _mm_insert_epi32(into, value, 1);
#else
into = _mm_insert_epi16(into, value, 2);
into = _mm_insert_epi16(into, value >> 16, 3);
#endif
}
GNU_TARGET(SSE_TARGET)
inline void LoadUint64(const uint64_t value, __m128i &into)
{
#ifdef POINTER_IS_64BIT
into = _mm_cvtsi64_si128(value);
#else
#if (SSE_VERSION >= 4)
into = _mm_cvtsi32_si128(value);
InsertSecondUint32(value >> 32, into);
#else
(*(um128i*) &into).m128i_u64[0] = value;
#endif
#endif
}
GNU_TARGET(SSE_TARGET)
inline __m128i PackUnsaturated(__m128i from, const __m128i &mask)
{
#if (SSE_VERSION == 2)
from = _mm_and_si128(from, mask); // PAND, wipe high bytes to keep low bytes when packing
return _mm_packus_epi16(from, from); // PACKUSWB, pack 2 colours (with saturation)
#else
return _mm_shuffle_epi8(from, mask);
#endif
}
GNU_TARGET(SSE_TARGET)
inline __m128i DistributeAlpha(const __m128i from, const __m128i &mask)
{
#if (SSE_VERSION == 2)
__m128i alphaAB = _mm_shufflelo_epi16(from, 0x3F); // PSHUFLW, put alpha1 in front of each rgb1
alphaAB = _mm_shufflehi_epi16(alphaAB, 0x3F); // PSHUFHW, put alpha2 in front of each rgb2
return _mm_andnot_si128(mask, alphaAB); // PANDN, set alpha fields to 0
#else
return _mm_shuffle_epi8(from, mask);
#endif
}
GNU_TARGET(SSE_TARGET)
inline __m128i AlphaBlendTwoPixels(__m128i src, __m128i dst, const __m128i &distribution_mask, const __m128i &pack_mask, const __m128i &alpha_mask)
{
__m128i srcAB = _mm_unpacklo_epi8(src, _mm_setzero_si128()); // PUNPCKLBW, expand each uint8_t into uint16
__m128i dstAB = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
__m128i alphaMaskAB = _mm_cmpgt_epi16(srcAB, _mm_setzero_si128()); // PCMPGTW (alpha > 0) ? 0xFFFF : 0
__m128i alphaAB = _mm_sub_epi16(srcAB, alphaMaskAB); // if (alpha > 0) a++;
alphaAB = DistributeAlpha(alphaAB, distribution_mask);
srcAB = _mm_sub_epi16(srcAB, dstAB); // PSUBW, (r - Cr)
srcAB = _mm_mullo_epi16(srcAB, alphaAB); // PMULLW, a*(r - Cr)
srcAB = _mm_srli_epi16(srcAB, 8); // PSRLW, a*(r - Cr)/256
srcAB = _mm_add_epi16(srcAB, dstAB); // PADDW, a*(r - Cr)/256 + Cr
alphaMaskAB = _mm_and_si128(alphaMaskAB, alpha_mask); // PAND, set non alpha fields to 0
srcAB = _mm_or_si128(srcAB, alphaMaskAB); // POR, set alpha fields to 0xFFFF is src alpha was > 0
return PackUnsaturated(srcAB, pack_mask);
}
/* Darken 2 pixels.
* rgb = rgb * ((256/4) * 4 - (alpha/4)) / ((256/4) * 4)
*/
GNU_TARGET(SSE_TARGET)
inline __m128i DarkenTwoPixels(__m128i src, __m128i dst, const __m128i &distribution_mask, const __m128i &tr_nom_base)
{
__m128i srcAB = _mm_unpacklo_epi8(src, _mm_setzero_si128());
__m128i dstAB = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
__m128i alphaAB = DistributeAlpha(srcAB, distribution_mask);
alphaAB = _mm_srli_epi16(alphaAB, 2); // Reduce to 64 levels of shades so the max value fits in 16 bits.
__m128i nom = _mm_sub_epi16(tr_nom_base, alphaAB);
dstAB = _mm_mullo_epi16(dstAB, nom);
dstAB = _mm_srli_epi16(dstAB, 8);
return _mm_packus_epi16(dstAB, dstAB);
}
IGNORE_UNINITIALIZED_WARNING_START
GNU_TARGET(SSE_TARGET)
static Colour ReallyAdjustBrightness(Colour colour, uint8_t brightness)
{
uint64_t c16 = colour.b | (uint64_t) colour.g << 16 | (uint64_t) colour.r << 32;
c16 *= brightness;
uint64_t c16_ob = c16; // Helps out of order execution.
c16 /= Blitter_32bppBase::DEFAULT_BRIGHTNESS;
c16 &= 0x01FF01FF01FFULL;
/* Sum overbright (maximum for each rgb is 508, 9 bits, -255 is changed in -256 so we just have to take the 8 lower bits into account). */
c16_ob = (((c16_ob >> (8 + 7)) & 0x0100010001ULL) * 0xFF) & c16;
const uint ob = ((uint16_t) c16_ob + (uint16_t) (c16_ob >> 16) + (uint16_t) (c16_ob >> 32)) / 2;
const uint32_t alpha32 = colour.data & 0xFF000000;
__m128i ret;
LoadUint64(c16, ret);
if (ob != 0) {
__m128i ob128 = _mm_cvtsi32_si128(ob);
ob128 = _mm_shufflelo_epi16(ob128, 0xC0);
__m128i white = OVERBRIGHT_VALUE_MASK;
__m128i c128 = ret;
ret = _mm_subs_epu16(white, c128); // PSUBUSW, (255 - rgb)
ret = _mm_mullo_epi16(ret, ob128); // PMULLW, ob*(255 - rgb)
ret = _mm_srli_epi16(ret, 8); // PSRLW, ob*(255 - rgb)/256
ret = _mm_add_epi16(ret, c128); // PADDW, ob*(255 - rgb)/256 + rgb
}
ret = _mm_packus_epi16(ret, ret); // PACKUSWB, saturate and pack.
return alpha32 | _mm_cvtsi128_si32(ret);
}
IGNORE_UNINITIALIZED_WARNING_STOP
/** ReallyAdjustBrightness() is not called that often.
* Inlining this function implies a far jump, which has a huge latency.
*/
inline Colour AdjustBrightneSSE(Colour colour, uint8_t brightness)
{
/* Shortcut for normal brightness. */
if (brightness == Blitter_32bppBase::DEFAULT_BRIGHTNESS) return colour;
return ReallyAdjustBrightness(colour, brightness);
}
GNU_TARGET(SSE_TARGET)
inline __m128i AdjustBrightnessOfTwoPixels([[maybe_unused]] __m128i from, [[maybe_unused]] uint32_t brightness)
{
#if (SSE_VERSION < 3)
NOT_REACHED();
#else
/* The following dataflow differs from the one of AdjustBrightness() only for alpha.
* In order to keep alpha in colAB, insert a 1 in a unused brightness byte (a*1->a).
* OK, not a 1 but DEFAULT_BRIGHTNESS to compensate the div.
*/
brightness &= 0xFF00FF00;
brightness += Blitter_32bppBase::DEFAULT_BRIGHTNESS;
__m128i colAB = _mm_unpacklo_epi8(from, _mm_setzero_si128());
__m128i briAB = _mm_cvtsi32_si128(brightness);
briAB = _mm_shuffle_epi8(briAB, BRIGHTNESS_LOW_CONTROL_MASK); // DEFAULT_BRIGHTNESS in 0, 0x00 in 2.
colAB = _mm_mullo_epi16(colAB, briAB);
__m128i colAB_ob = _mm_srli_epi16(colAB, 8 + 7);
colAB = _mm_srli_epi16(colAB, 7);
/* Sum overbright.
* Maximum for each rgb is 508 => 9 bits. The highest bit tells if there is overbright.
* -255 is changed in -256 so we just have to take the 8 lower bits into account.
*/
colAB = _mm_and_si128(colAB, BRIGHTNESS_DIV_CLEANER);
colAB_ob = _mm_and_si128(colAB_ob, OVERBRIGHT_PRESENCE_MASK);
colAB_ob = _mm_mullo_epi16(colAB_ob, OVERBRIGHT_VALUE_MASK);
colAB_ob = _mm_and_si128(colAB_ob, colAB);
__m128i obAB = _mm_hadd_epi16(_mm_hadd_epi16(colAB_ob, _mm_setzero_si128()), _mm_setzero_si128());
obAB = _mm_srli_epi16(obAB, 1); // Reduce overbright strength.
obAB = _mm_shuffle_epi8(obAB, OVERBRIGHT_CONTROL_MASK);
__m128i retAB = OVERBRIGHT_VALUE_MASK; // ob_mask is equal to white.
retAB = _mm_subs_epu16(retAB, colAB); // (255 - rgb)
retAB = _mm_mullo_epi16(retAB, obAB); // ob*(255 - rgb)
retAB = _mm_srli_epi16(retAB, 8); // ob*(255 - rgb)/256
retAB = _mm_add_epi16(retAB, colAB); // ob*(255 - rgb)/256 + rgb
return _mm_packus_epi16(retAB, retAB);
#endif
}
#if FULL_ANIMATION == 0
/**
* Draws a sprite to a (screen) buffer. It is templated to allow faster operation.
*
* @tparam mode blitter mode
* @param bp further blitting parameters
* @param zoom zoom level at which we are drawing
*/
IGNORE_UNINITIALIZED_WARNING_START
template <BlitterMode mode, Blitter_32bppSSE2::ReadMode read_mode, Blitter_32bppSSE2::BlockType bt_last, bool translucent>
GNU_TARGET(SSE_TARGET)
#if (SSE_VERSION == 2)
inline void Blitter_32bppSSE2::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
#elif (SSE_VERSION == 3)
inline void Blitter_32bppSSSE3::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
#elif (SSE_VERSION == 4)
inline void Blitter_32bppSSE4::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
#endif
{
const byte * const remap = bp->remap;
Colour *dst_line = (Colour *) bp->dst + bp->top * bp->pitch + bp->left;
int effective_width = bp->width;
/* Find where to start reading in the source sprite. */
const SpriteData * const sd = (const SpriteData *) bp->sprite;
const SpriteInfo * const si = &sd->infos[zoom];
const MapValue *src_mv_line = (const MapValue *) &sd->data[si->mv_offset] + bp->skip_top * si->sprite_width;
const Colour *src_rgba_line = (const Colour *) ((const byte *) &sd->data[si->sprite_offset] + bp->skip_top * si->sprite_line_size);
if (read_mode != RM_WITH_MARGIN) {
src_rgba_line += bp->skip_left;
src_mv_line += bp->skip_left;
}
const MapValue *src_mv = src_mv_line;
/* Load these variables into register before loop. */
const __m128i alpha_and = ALPHA_AND_MASK;
#define ALPHA_BLEND_PARAM_3 alpha_and
#if (SSE_VERSION == 2)
const __m128i clear_hi = CLEAR_HIGH_BYTE_MASK;
#define ALPHA_BLEND_PARAM_1 alpha_and
#define ALPHA_BLEND_PARAM_2 clear_hi
#define DARKEN_PARAM_1 tr_nom_base
#define DARKEN_PARAM_2 tr_nom_base
#else
const __m128i a_cm = ALPHA_CONTROL_MASK;
const __m128i pack_low_cm = PACK_LOW_CONTROL_MASK;
#define ALPHA_BLEND_PARAM_1 a_cm
#define ALPHA_BLEND_PARAM_2 pack_low_cm
#define DARKEN_PARAM_1 a_cm
#define DARKEN_PARAM_2 tr_nom_base
#endif
const __m128i tr_nom_base = TRANSPARENT_NOM_BASE;
for (int y = bp->height; y != 0; y--) {
Colour *dst = dst_line;
const Colour *src = src_rgba_line + META_LENGTH;
if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv = src_mv_line;
if (read_mode == RM_WITH_MARGIN) {
assert(bt_last == BT_NONE); // or you must ensure block type is preserved
src += src_rgba_line[0].data;
dst += src_rgba_line[0].data;
if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv += src_rgba_line[0].data;
const int width_diff = si->sprite_width - bp->width;
effective_width = bp->width - (int) src_rgba_line[0].data;
const int delta_diff = (int) src_rgba_line[1].data - width_diff;
const int new_width = effective_width - delta_diff;
effective_width = delta_diff > 0 ? new_width : effective_width;
if (effective_width <= 0) goto next_line;
}
switch (mode) {
default:
if (!translucent) {
for (uint x = (uint) effective_width; x > 0; x--) {
if (src->a) *dst = *src;
src++;
dst++;
}
break;
}
for (uint x = (uint) effective_width / 2; x > 0; x--) {
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
_mm_storel_epi64((__m128i*) dst, AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
src += 2;
dst += 2;
}
if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) {
__m128i srcABCD = _mm_cvtsi32_si128(src->data);
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
dst->data = _mm_cvtsi128_si32(AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
}
break;
case BM_COLOUR_REMAP:
#if (SSE_VERSION >= 3)
for (uint x = (uint) effective_width / 2; x > 0; x--) {
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
uint32_t mvX2 = *((uint32_t *) const_cast<MapValue *>(src_mv));
/* Remap colours. */
if (mvX2 & 0x00FF00FF) {
#define CMOV_REMAP(m_colour, m_colour_init, m_src, m_m) \
/* Written so the compiler uses CMOV. */ \
Colour m_colour = m_colour_init; \
{ \
const Colour srcm = (Colour) (m_src); \
const uint m = (byte) (m_m); \
const uint r = remap[m]; \
const Colour cmap = (this->LookupColourInPalette(r).data & 0x00FFFFFF) | (srcm.data & 0xFF000000); \
m_colour = r == 0 ? m_colour : cmap; \
m_colour = m != 0 ? m_colour : srcm; \
}
#ifdef POINTER_IS_64BIT
uint64_t srcs = _mm_cvtsi128_si64(srcABCD);
uint64_t remapped_src = 0;
CMOV_REMAP(c0, 0, srcs, mvX2);
remapped_src = c0.data;
CMOV_REMAP(c1, 0, srcs >> 32, mvX2 >> 16);
remapped_src |= (uint64_t) c1.data << 32;
srcABCD = _mm_cvtsi64_si128(remapped_src);
#else
Colour remapped_src[2];
CMOV_REMAP(c0, 0, _mm_cvtsi128_si32(srcABCD), mvX2);
remapped_src[0] = c0.data;
CMOV_REMAP(c1, 0, src[1], mvX2 >> 16);
remapped_src[1] = c1.data;
srcABCD = _mm_loadl_epi64((__m128i*) &remapped_src);
#endif
if ((mvX2 & 0xFF00FF00) != 0x80008000) srcABCD = AdjustBrightnessOfTwoPixels(srcABCD, mvX2);
}
/* Blend colours. */
_mm_storel_epi64((__m128i *) dst, AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
dst += 2;
src += 2;
src_mv += 2;
}
if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) {
#else
for (uint x = (uint) effective_width; x > 0; x--) {
#endif
/* In case the m-channel is zero, do not remap this pixel in any way. */
__m128i srcABCD;
if (src_mv->m) {
const uint r = remap[src_mv->m];
if (r != 0) {
Colour remapped_colour = AdjustBrightneSSE(this->LookupColourInPalette(r), src_mv->v);
if (src->a == 255) {
*dst = remapped_colour;
} else {
remapped_colour.a = src->a;
srcABCD = _mm_cvtsi32_si128(remapped_colour.data);
goto bmcr_alpha_blend_single;
}
}
} else {
srcABCD = _mm_cvtsi32_si128(src->data);
if (src->a < 255) {
bmcr_alpha_blend_single:
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
srcABCD = AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3);
}
dst->data = _mm_cvtsi128_si32(srcABCD);
}
#if (SSE_VERSION == 2)
src_mv++;
dst++;
src++;
#endif
}
break;
case BM_TRANSPARENT:
/* Make the current colour a bit more black, so it looks like this image is transparent. */
for (uint x = (uint) bp->width / 2; x > 0; x--) {
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
_mm_storel_epi64((__m128i *) dst, DarkenTwoPixels(srcABCD, dstABCD, DARKEN_PARAM_1, DARKEN_PARAM_2));
src += 2;
dst += 2;
}
if ((bt_last == BT_NONE && bp->width & 1) || bt_last == BT_ODD) {
__m128i srcABCD = _mm_cvtsi32_si128(src->data);
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
dst->data = _mm_cvtsi128_si32(DarkenTwoPixels(srcABCD, dstABCD, DARKEN_PARAM_1, DARKEN_PARAM_2));
}
break;
case BM_TRANSPARENT_REMAP:
/* Apply custom transparency remap. */
for (uint x = (uint) bp->width; x > 0; x--) {
if (src->a != 0) {
*dst = this->LookupColourInPalette(remap[GetNearestColourIndex(*dst)]);
}
src_mv++;
dst++;
src++;
}
break;
case BM_CRASH_REMAP:
for (uint x = (uint) bp->width; x > 0; x--) {
if (src_mv->m == 0) {
if (src->a != 0) {
uint8_t g = MakeDark(src->r, src->g, src->b);
*dst = ComposeColourRGBA(g, g, g, src->a, *dst);
}
} else {
uint r = remap[src_mv->m];
if (r != 0) *dst = ComposeColourPANoCheck(this->AdjustBrightness(this->LookupColourInPalette(r), src_mv->v), src->a, *dst);
}
src_mv++;
dst++;
src++;
}
break;
case BM_BLACK_REMAP:
for (uint x = (uint) bp->width; x > 0; x--) {
if (src->a != 0) {
*dst = Colour(0, 0, 0);
}
src_mv++;
dst++;
src++;
}
break;
}
next_line:
if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv_line += si->sprite_width;
src_rgba_line = (const Colour*) ((const byte*) src_rgba_line + si->sprite_line_size);
dst_line += bp->pitch;
}
}
IGNORE_UNINITIALIZED_WARNING_STOP
/**
* Draws a sprite to a (screen) buffer. Calls adequate templated function.
*
* @param bp further blitting parameters
* @param mode blitter mode
* @param zoom zoom level at which we are drawing
*/
#if (SSE_VERSION == 2)
void Blitter_32bppSSE2::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
#elif (SSE_VERSION == 3)
void Blitter_32bppSSSE3::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
#elif (SSE_VERSION == 4)
void Blitter_32bppSSE4::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
#endif
{
switch (mode) {
default: {
if (bp->skip_left != 0 || bp->width <= MARGIN_NORMAL_THRESHOLD) {
bm_normal:
const BlockType bt_last = (BlockType) (bp->width & 1);
switch (bt_last) {
default: Draw<BM_NORMAL, RM_WITH_SKIP, BT_EVEN, true>(bp, zoom); return;
case BT_ODD: Draw<BM_NORMAL, RM_WITH_SKIP, BT_ODD, true>(bp, zoom); return;
}
} else {
if (((const Blitter_32bppSSE_Base::SpriteData *) bp->sprite)->flags & SF_TRANSLUCENT) {
Draw<BM_NORMAL, RM_WITH_MARGIN, BT_NONE, true>(bp, zoom);
} else {
Draw<BM_NORMAL, RM_WITH_MARGIN, BT_NONE, false>(bp, zoom);
}
return;
}
break;
}
case BM_COLOUR_REMAP:
if (((const Blitter_32bppSSE_Base::SpriteData *) bp->sprite)->flags & SF_NO_REMAP) goto bm_normal;
if (bp->skip_left != 0 || bp->width <= MARGIN_REMAP_THRESHOLD) {
Draw<BM_COLOUR_REMAP, RM_WITH_SKIP, BT_NONE, true>(bp, zoom); return;
} else {
Draw<BM_COLOUR_REMAP, RM_WITH_MARGIN, BT_NONE, true>(bp, zoom); return;
}
case BM_TRANSPARENT: Draw<BM_TRANSPARENT, RM_NONE, BT_NONE, true>(bp, zoom); return;
case BM_TRANSPARENT_REMAP: Draw<BM_TRANSPARENT_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
case BM_CRASH_REMAP: Draw<BM_CRASH_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
case BM_BLACK_REMAP: Draw<BM_BLACK_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
}
}
#endif /* FULL_ANIMATION */
#endif /* WITH_SSE */
#endif /* BLITTER_32BPP_SSE_FUNC_HPP */
|