Files
@ r28572:dd3e6f760743
Branch filter:
Location: cpp/openttd-patchpack/source/src/3rdparty/monocypher/monocypher-ed25519.cpp
r28572:dd3e6f760743
16.1 KiB
text/x-c
Update: nlohmann/json to 3.11.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | // Monocypher version 4.0.2
//
// This file is dual-licensed. Choose whichever licence you want from
// the two licences listed below.
//
// The first licence is a regular 2-clause BSD licence. The second licence
// is the CC-0 from Creative Commons. It is intended to release Monocypher
// to the public domain. The BSD licence serves as a fallback option.
//
// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
//
// ------------------------------------------------------------------------
//
// Copyright (c) 2017-2019, Loup Vaillant
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ------------------------------------------------------------------------
//
// Written in 2017-2019 by Loup Vaillant
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software. If not, see
// <https://creativecommons.org/publicdomain/zero/1.0/>
#include "monocypher-ed25519.h"
#ifdef MONOCYPHER_CPP_NAMESPACE
namespace MONOCYPHER_CPP_NAMESPACE {
#endif
/////////////////
/// Utilities ///
/////////////////
#define FOR(i, min, max) for (size_t i = min; i < max; i++)
#define COPY(dst, src, size) FOR(_i_, 0, size) (dst)[_i_] = (src)[_i_]
#define ZERO(buf, size) FOR(_i_, 0, size) (buf)[_i_] = 0
#define WIPE_CTX(ctx) crypto_wipe(ctx , sizeof(*(ctx)))
#define WIPE_BUFFER(buffer) crypto_wipe(buffer, sizeof(buffer))
#define MC_MIN(a, b) ((a) <= (b) ? (a) : (b))
typedef uint8_t u8;
typedef uint64_t u64;
// Returns the smallest positive integer y such that
// (x + y) % pow_2 == 0
// Basically, it's how many bytes we need to add to "align" x.
// Only works when pow_2 is a power of 2.
// Note: we use ~x+1 instead of -x to avoid compiler warnings
static size_t align(size_t x, size_t pow_2)
{
return (~x + 1) & (pow_2 - 1);
}
static u64 load64_be(const u8 s[8])
{
return((u64)s[0] << 56)
| ((u64)s[1] << 48)
| ((u64)s[2] << 40)
| ((u64)s[3] << 32)
| ((u64)s[4] << 24)
| ((u64)s[5] << 16)
| ((u64)s[6] << 8)
| (u64)s[7];
}
static void store64_be(u8 out[8], u64 in)
{
out[0] = (in >> 56) & 0xff;
out[1] = (in >> 48) & 0xff;
out[2] = (in >> 40) & 0xff;
out[3] = (in >> 32) & 0xff;
out[4] = (in >> 24) & 0xff;
out[5] = (in >> 16) & 0xff;
out[6] = (in >> 8) & 0xff;
out[7] = in & 0xff;
}
static void load64_be_buf (u64 *dst, const u8 *src, size_t size) {
FOR(i, 0, size) { dst[i] = load64_be(src + i*8); }
}
///////////////
/// SHA 512 ///
///////////////
static u64 rot(u64 x, int c ) { return (x >> c) | (x << (64 - c)); }
static u64 ch (u64 x, u64 y, u64 z) { return (x & y) ^ (~x & z); }
static u64 maj(u64 x, u64 y, u64 z) { return (x & y) ^ ( x & z) ^ (y & z); }
static u64 big_sigma0(u64 x) { return rot(x, 28) ^ rot(x, 34) ^ rot(x, 39); }
static u64 big_sigma1(u64 x) { return rot(x, 14) ^ rot(x, 18) ^ rot(x, 41); }
static u64 lit_sigma0(u64 x) { return rot(x, 1) ^ rot(x, 8) ^ (x >> 7); }
static u64 lit_sigma1(u64 x) { return rot(x, 19) ^ rot(x, 61) ^ (x >> 6); }
static const u64 K[80] = {
0x428a2f98d728ae22,0x7137449123ef65cd,0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc,
0x3956c25bf348b538,0x59f111f1b605d019,0x923f82a4af194f9b,0xab1c5ed5da6d8118,
0xd807aa98a3030242,0x12835b0145706fbe,0x243185be4ee4b28c,0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f,0x80deb1fe3b1696b1,0x9bdc06a725c71235,0xc19bf174cf692694,
0xe49b69c19ef14ad2,0xefbe4786384f25e3,0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65,
0x2de92c6f592b0275,0x4a7484aa6ea6e483,0x5cb0a9dcbd41fbd4,0x76f988da831153b5,
0x983e5152ee66dfab,0xa831c66d2db43210,0xb00327c898fb213f,0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2,0xd5a79147930aa725,0x06ca6351e003826f,0x142929670a0e6e70,
0x27b70a8546d22ffc,0x2e1b21385c26c926,0x4d2c6dfc5ac42aed,0x53380d139d95b3df,
0x650a73548baf63de,0x766a0abb3c77b2a8,0x81c2c92e47edaee6,0x92722c851482353b,
0xa2bfe8a14cf10364,0xa81a664bbc423001,0xc24b8b70d0f89791,0xc76c51a30654be30,
0xd192e819d6ef5218,0xd69906245565a910,0xf40e35855771202a,0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8,0x1e376c085141ab53,0x2748774cdf8eeb99,0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb,0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc,0x78a5636f43172f60,0x84c87814a1f0ab72,0x8cc702081a6439ec,
0x90befffa23631e28,0xa4506cebde82bde9,0xbef9a3f7b2c67915,0xc67178f2e372532b,
0xca273eceea26619c,0xd186b8c721c0c207,0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178,
0x06f067aa72176fba,0x0a637dc5a2c898a6,0x113f9804bef90dae,0x1b710b35131c471b,
0x28db77f523047d84,0x32caab7b40c72493,0x3c9ebe0a15c9bebc,0x431d67c49c100d4c,
0x4cc5d4becb3e42b6,0x597f299cfc657e2a,0x5fcb6fab3ad6faec,0x6c44198c4a475817
};
static void sha512_compress(crypto_sha512_ctx *ctx)
{
u64 a = ctx->hash[0]; u64 b = ctx->hash[1];
u64 c = ctx->hash[2]; u64 d = ctx->hash[3];
u64 e = ctx->hash[4]; u64 f = ctx->hash[5];
u64 g = ctx->hash[6]; u64 h = ctx->hash[7];
FOR (j, 0, 16) {
u64 in = K[j] + ctx->input[j];
u64 t1 = big_sigma1(e) + ch (e, f, g) + h + in;
u64 t2 = big_sigma0(a) + maj(a, b, c);
h = g; g = f; f = e; e = d + t1;
d = c; c = b; b = a; a = t1 + t2;
}
size_t i16 = 0;
FOR(i, 1, 5) {
i16 += 16;
FOR (j, 0, 16) {
ctx->input[j] += lit_sigma1(ctx->input[(j- 2) & 15]);
ctx->input[j] += lit_sigma0(ctx->input[(j-15) & 15]);
ctx->input[j] += ctx->input[(j- 7) & 15];
u64 in = K[i16 + j] + ctx->input[j];
u64 t1 = big_sigma1(e) + ch (e, f, g) + h + in;
u64 t2 = big_sigma0(a) + maj(a, b, c);
h = g; g = f; f = e; e = d + t1;
d = c; c = b; b = a; a = t1 + t2;
}
}
ctx->hash[0] += a; ctx->hash[1] += b;
ctx->hash[2] += c; ctx->hash[3] += d;
ctx->hash[4] += e; ctx->hash[5] += f;
ctx->hash[6] += g; ctx->hash[7] += h;
}
// Write 1 input byte
static void sha512_set_input(crypto_sha512_ctx *ctx, u8 input)
{
size_t word = ctx->input_idx >> 3;
size_t byte = ctx->input_idx & 7;
ctx->input[word] |= (u64)input << (8 * (7 - byte));
}
// Increment a 128-bit "word".
static void sha512_incr(u64 x[2], u64 y)
{
x[1] += y;
if (x[1] < y) {
x[0]++;
}
}
void crypto_sha512_init(crypto_sha512_ctx *ctx)
{
ctx->hash[0] = 0x6a09e667f3bcc908;
ctx->hash[1] = 0xbb67ae8584caa73b;
ctx->hash[2] = 0x3c6ef372fe94f82b;
ctx->hash[3] = 0xa54ff53a5f1d36f1;
ctx->hash[4] = 0x510e527fade682d1;
ctx->hash[5] = 0x9b05688c2b3e6c1f;
ctx->hash[6] = 0x1f83d9abfb41bd6b;
ctx->hash[7] = 0x5be0cd19137e2179;
ctx->input_size[0] = 0;
ctx->input_size[1] = 0;
ctx->input_idx = 0;
ZERO(ctx->input, 16);
}
void crypto_sha512_update(crypto_sha512_ctx *ctx,
const u8 *message, size_t message_size)
{
// Avoid undefined NULL pointer increments with empty messages
if (message_size == 0) {
return;
}
// Align ourselves with word boundaries
if ((ctx->input_idx & 7) != 0) {
size_t nb_bytes = MC_MIN(align(ctx->input_idx, 8), message_size);
FOR (i, 0, nb_bytes) {
sha512_set_input(ctx, message[i]);
ctx->input_idx++;
}
message += nb_bytes;
message_size -= nb_bytes;
}
// Align ourselves with block boundaries
if ((ctx->input_idx & 127) != 0) {
size_t nb_words = MC_MIN(align(ctx->input_idx, 128), message_size) >> 3;
load64_be_buf(ctx->input + (ctx->input_idx >> 3), message, nb_words);
ctx->input_idx += nb_words << 3;
message += nb_words << 3;
message_size -= nb_words << 3;
}
// Compress block if needed
if (ctx->input_idx == 128) {
sha512_incr(ctx->input_size, 1024); // size is in bits
sha512_compress(ctx);
ctx->input_idx = 0;
ZERO(ctx->input, 16);
}
// Process the message block by block
FOR (i, 0, message_size >> 7) { // number of blocks
load64_be_buf(ctx->input, message, 16);
sha512_incr(ctx->input_size, 1024); // size is in bits
sha512_compress(ctx);
ctx->input_idx = 0;
ZERO(ctx->input, 16);
message += 128;
}
message_size &= 127;
if (message_size != 0) {
// Remaining words
size_t nb_words = message_size >> 3;
load64_be_buf(ctx->input, message, nb_words);
ctx->input_idx += nb_words << 3;
message += nb_words << 3;
message_size -= nb_words << 3;
// Remaining bytes
FOR (i, 0, message_size) {
sha512_set_input(ctx, message[i]);
ctx->input_idx++;
}
}
}
void crypto_sha512_final(crypto_sha512_ctx *ctx, u8 hash[64])
{
// Add padding bit
if (ctx->input_idx == 0) {
ZERO(ctx->input, 16);
}
sha512_set_input(ctx, 128);
// Update size
sha512_incr(ctx->input_size, ctx->input_idx * 8);
// Compress penultimate block (if any)
if (ctx->input_idx > 111) {
sha512_compress(ctx);
ZERO(ctx->input, 14);
}
// Compress last block
ctx->input[14] = ctx->input_size[0];
ctx->input[15] = ctx->input_size[1];
sha512_compress(ctx);
// Copy hash to output (big endian)
FOR (i, 0, 8) {
store64_be(hash + i*8, ctx->hash[i]);
}
WIPE_CTX(ctx);
}
void crypto_sha512(u8 hash[64], const u8 *message, size_t message_size)
{
crypto_sha512_ctx ctx;
crypto_sha512_init (&ctx);
crypto_sha512_update(&ctx, message, message_size);
crypto_sha512_final (&ctx, hash);
}
////////////////////
/// HMAC SHA 512 ///
////////////////////
void crypto_sha512_hmac_init(crypto_sha512_hmac_ctx *ctx,
const u8 *key, size_t key_size)
{
// hash key if it is too long
if (key_size > 128) {
crypto_sha512(ctx->key, key, key_size);
key = ctx->key;
key_size = 64;
}
// Compute inner key: padded key XOR 0x36
FOR (i, 0, key_size) { ctx->key[i] = key[i] ^ 0x36; }
FOR (i, key_size, 128) { ctx->key[i] = 0x36; }
// Start computing inner hash
crypto_sha512_init (&ctx->ctx);
crypto_sha512_update(&ctx->ctx, ctx->key, 128);
}
void crypto_sha512_hmac_update(crypto_sha512_hmac_ctx *ctx,
const u8 *message, size_t message_size)
{
crypto_sha512_update(&ctx->ctx, message, message_size);
}
void crypto_sha512_hmac_final(crypto_sha512_hmac_ctx *ctx, u8 hmac[64])
{
// Finish computing inner hash
crypto_sha512_final(&ctx->ctx, hmac);
// Compute outer key: padded key XOR 0x5c
FOR (i, 0, 128) {
ctx->key[i] ^= 0x36 ^ 0x5c;
}
// Compute outer hash
crypto_sha512_init (&ctx->ctx);
crypto_sha512_update(&ctx->ctx, ctx->key , 128);
crypto_sha512_update(&ctx->ctx, hmac, 64);
crypto_sha512_final (&ctx->ctx, hmac); // outer hash
WIPE_CTX(ctx);
}
void crypto_sha512_hmac(u8 hmac[64], const u8 *key, size_t key_size,
const u8 *message, size_t message_size)
{
crypto_sha512_hmac_ctx ctx;
crypto_sha512_hmac_init (&ctx, key, key_size);
crypto_sha512_hmac_update(&ctx, message, message_size);
crypto_sha512_hmac_final (&ctx, hmac);
}
////////////////////
/// HKDF SHA 512 ///
////////////////////
void crypto_sha512_hkdf_expand(u8 *okm, size_t okm_size,
const u8 *prk, size_t prk_size,
const u8 *info, size_t info_size)
{
int not_first = 0;
u8 ctr = 1;
u8 blk[64];
while (okm_size > 0) {
size_t out_size = MC_MIN(okm_size, sizeof(blk));
crypto_sha512_hmac_ctx ctx;
crypto_sha512_hmac_init(&ctx, prk , prk_size);
if (not_first) {
// For some reason HKDF uses some kind of CBC mode.
// For some reason CTR mode alone wasn't enough.
// Like what, they didn't trust HMAC in 2010? Really??
crypto_sha512_hmac_update(&ctx, blk , sizeof(blk));
}
crypto_sha512_hmac_update(&ctx, info, info_size);
crypto_sha512_hmac_update(&ctx, &ctr, 1);
crypto_sha512_hmac_final(&ctx, blk);
COPY(okm, blk, out_size);
not_first = 1;
okm += out_size;
okm_size -= out_size;
ctr++;
}
}
void crypto_sha512_hkdf(u8 *okm , size_t okm_size,
const u8 *ikm , size_t ikm_size,
const u8 *salt, size_t salt_size,
const u8 *info, size_t info_size)
{
// Extract
u8 prk[64];
crypto_sha512_hmac(prk, salt, salt_size, ikm, ikm_size);
// Expand
crypto_sha512_hkdf_expand(okm, okm_size, prk, sizeof(prk), info, info_size);
}
///////////////
/// Ed25519 ///
///////////////
void crypto_ed25519_key_pair(u8 secret_key[64], u8 public_key[32], u8 seed[32])
{
u8 a[64];
COPY(a, seed, 32); // a[ 0..31] = seed
crypto_wipe(seed, 32);
COPY(secret_key, a, 32); // secret key = seed
crypto_sha512(a, a, 32); // a[ 0..31] = scalar
crypto_eddsa_trim_scalar(a, a); // a[ 0..31] = trimmed scalar
crypto_eddsa_scalarbase(public_key, a); // public key = [trimmed scalar]B
COPY(secret_key + 32, public_key, 32); // secret key includes public half
WIPE_BUFFER(a);
}
static void hash_reduce(u8 h[32],
const u8 *a, size_t a_size,
const u8 *b, size_t b_size,
const u8 *c, size_t c_size,
const u8 *d, size_t d_size)
{
u8 hash[64];
crypto_sha512_ctx ctx;
crypto_sha512_init (&ctx);
crypto_sha512_update(&ctx, a, a_size);
crypto_sha512_update(&ctx, b, b_size);
crypto_sha512_update(&ctx, c, c_size);
crypto_sha512_update(&ctx, d, d_size);
crypto_sha512_final (&ctx, hash);
crypto_eddsa_reduce(h, hash);
}
static void ed25519_dom_sign(u8 signature [64], const u8 secret_key[32],
const u8 *dom, size_t dom_size,
const u8 *message, size_t message_size)
{
u8 a[64]; // secret scalar and prefix
u8 r[32]; // secret deterministic "random" nonce
u8 h[32]; // publically verifiable hash of the message (not wiped)
u8 R[32]; // first half of the signature (allows overlapping inputs)
const u8 *pk = secret_key + 32;
crypto_sha512(a, secret_key, 32);
crypto_eddsa_trim_scalar(a, a);
hash_reduce(r, dom, dom_size, a + 32, 32, message, message_size, 0, 0);
crypto_eddsa_scalarbase(R, r);
hash_reduce(h, dom, dom_size, R, 32, pk, 32, message, message_size);
COPY(signature, R, 32);
crypto_eddsa_mul_add(signature + 32, h, a, r);
WIPE_BUFFER(a);
WIPE_BUFFER(r);
}
void crypto_ed25519_sign(u8 signature [64], const u8 secret_key[64],
const u8 *message, size_t message_size)
{
ed25519_dom_sign(signature, secret_key, 0, 0, message, message_size);
}
int crypto_ed25519_check(const u8 signature[64], const u8 public_key[32],
const u8 *msg, size_t msg_size)
{
u8 h_ram[32];
hash_reduce(h_ram, signature, 32, public_key, 32, msg, msg_size, 0, 0);
return crypto_eddsa_check_equation(signature, public_key, h_ram);
}
static const u8 domain[34] = "SigEd25519 no Ed25519 collisions\1";
void crypto_ed25519_ph_sign(uint8_t signature[64], const uint8_t secret_key[64],
const uint8_t message_hash[64])
{
ed25519_dom_sign(signature, secret_key, domain, sizeof(domain),
message_hash, 64);
}
int crypto_ed25519_ph_check(const uint8_t sig[64], const uint8_t pk[32],
const uint8_t msg_hash[64])
{
u8 h_ram[32];
hash_reduce(h_ram, domain, sizeof(domain), sig, 32, pk, 32, msg_hash, 64);
return crypto_eddsa_check_equation(sig, pk, h_ram);
}
#ifdef MONOCYPHER_CPP_NAMESPACE
}
#endif
|