Files @ r25014:e1f1bf3a062e
Branch filter:

Location: cpp/openttd-patchpack/source/src/linkgraph/demands.cpp

Patric Stout
Add: [Video] move GameLoop into its own thread

This allows drawing to happen while the GameLoop is doing an
iteration too.

Sadly, not much drawing currently can be done while the GameLoop
is running, as for example PollEvent() or UpdateWindows() can
influence the game-state. As such, they first need to acquire a
lock on the game-state before they can be called.

Currently, the main advantage is the time spend in Paint(), which
for non-OpenGL drivers can be a few milliseconds. For OpenGL this
is more like 0.05 milliseconds; in these instances this change
doesn't add any benefits for now.

This is an alternative to the former "draw-thread", which moved
the drawing in a thread for some OSes. It has similar performance
gain as this does, although this implementation allows for more
finer control over what suffers when the GameLoop takes too
long: drawing or the next GameLoop. For now they both suffer
equally.
/** @file demands.cpp Definition of demand calculating link graph handler. */

#include "../stdafx.h"
#include "demands.h"
#include <queue>

#include "../safeguards.h"

typedef std::queue<NodeID> NodeList;

/**
 * Scale various things according to symmetric/asymmetric distribution.
 */
class Scaler {
public:
	void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw);
};

/**
 * Scaler for symmetric distribution.
 */
class SymmetricScaler : public Scaler {
public:
	/**
	 * Constructor.
	 * @param mod_size Size modifier to be used. Determines how much demands
	 *                 increase with the supply of the remote station.
	 */
	inline SymmetricScaler(uint mod_size) : mod_size(mod_size), supply_sum(0),
		demand_per_node(0)
	{}

	/**
	 * Count a node's supply into the sum of supplies.
	 * @param node Node.
	 */
	inline void AddNode(const Node &node)
	{
		this->supply_sum += node.Supply();
	}

	/**
	 * Calculate the mean demand per node using the sum of supplies.
	 * @param num_demands Number of accepting nodes.
	 */
	inline void SetDemandPerNode(uint num_demands)
	{
		this->demand_per_node = std::max(this->supply_sum / num_demands, 1U);
	}

	/**
	 * Get the effective supply of one node towards another one. In symmetric
	 * distribution the supply of the other node is weighed in.
	 * @param from The supplying node.
	 * @param to The receiving node.
	 * @return Effective supply.
	 */
	inline uint EffectiveSupply(const Node &from, const Node &to)
	{
		return std::max(from.Supply() * std::max(1U, to.Supply()) * this->mod_size / 100 / this->demand_per_node, 1U);
	}

	/**
	 * Check if there is any acceptance left for this node. In symmetric distribution
	 * nodes only accept anything if they also supply something. So if
	 * undelivered_supply == 0 at the node there isn't any demand left either.
	 * @param to Node to be checked.
	 * @return If demand is left.
	 */
	inline bool HasDemandLeft(const Node &to)
	{
		return (to.Supply() == 0 || to.UndeliveredSupply() > 0) && to.Demand() > 0;
	}

	void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw);

private:
	uint mod_size;        ///< Size modifier. Determines how much demands increase with the supply of the remote station.
	uint supply_sum;      ///< Sum of all supplies in the component.
	uint demand_per_node; ///< Mean demand associated with each node.
};

/**
 * A scaler for asymmetric distribution.
 */
class AsymmetricScaler : public Scaler {
public:
	/**
	 * Nothing to do here.
	 * @param unused.
	 */
	inline void AddNode(const Node &)
	{
	}

	/**
	 * Nothing to do here.
	 * @param unused.
	 */
	inline void SetDemandPerNode(uint)
	{
	}

	/**
	 * Get the effective supply of one node towards another one.
	 * @param from The supplying node.
	 * @param unused.
	 */
	inline uint EffectiveSupply(const Node &from, const Node &)
	{
		return from.Supply();
	}

	/**
	 * Check if there is any acceptance left for this node. In asymmetric distribution
	 * nodes always accept as long as their demand > 0.
	 * @param to The node to be checked.
	 */
	inline bool HasDemandLeft(const Node &to) { return to.Demand() > 0; }
};

/**
 * Set the demands between two nodes using the given base demand. In symmetric mode
 * this sets demands in both directions.
 * @param job The link graph job.
 * @param from_id The supplying node.
 * @param to_id The receiving node.
 * @param demand_forw Demand calculated for the "forward" direction.
 */
void SymmetricScaler::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw)
{
	if (job[from_id].Demand() > 0) {
		uint demand_back = demand_forw * this->mod_size / 100;
		uint undelivered = job[to_id].UndeliveredSupply();
		if (demand_back > undelivered) {
			demand_back = undelivered;
			demand_forw = std::max(1U, demand_back * 100 / this->mod_size);
		}
		this->Scaler::SetDemands(job, to_id, from_id, demand_back);
	}

	this->Scaler::SetDemands(job, from_id, to_id, demand_forw);
}

/**
 * Set the demands between two nodes using the given base demand. In asymmetric mode
 * this only sets demand in the "forward" direction.
 * @param job The link graph job.
 * @param from_id The supplying node.
 * @param to_id The receiving node.
 * @param demand_forw Demand calculated for the "forward" direction.
 */
inline void Scaler::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw)
{
	job[from_id].DeliverSupply(to_id, demand_forw);
}

/**
 * Do the actual demand calculation, called from constructor.
 * @param job Job to calculate the demands for.
 * @tparam Tscaler Scaler to be used for scaling demands.
 */
template<class Tscaler>
void DemandCalculator::CalcDemand(LinkGraphJob &job, Tscaler scaler)
{
	NodeList supplies;
	NodeList demands;
	uint num_supplies = 0;
	uint num_demands = 0;

	for (NodeID node = 0; node < job.Size(); node++) {
		scaler.AddNode(job[node]);
		if (job[node].Supply() > 0) {
			supplies.push(node);
			num_supplies++;
		}
		if (job[node].Demand() > 0) {
			demands.push(node);
			num_demands++;
		}
	}

	if (num_supplies == 0 || num_demands == 0) return;

	/* Mean acceptance attributed to each node. If the distribution is
	 * symmetric this is relative to remote supply, otherwise it is
	 * relative to remote demand. */
	scaler.SetDemandPerNode(num_demands);
	uint chance = 0;

	while (!supplies.empty() && !demands.empty()) {
		NodeID from_id = supplies.front();
		supplies.pop();

		for (uint i = 0; i < num_demands; ++i) {
			assert(!demands.empty());
			NodeID to_id = demands.front();
			demands.pop();
			if (from_id == to_id) {
				/* Only one node with supply and demand left */
				if (demands.empty() && supplies.empty()) return;

				demands.push(to_id);
				continue;
			}

			int32 supply = scaler.EffectiveSupply(job[from_id], job[to_id]);
			assert(supply > 0);

			/* Scale the distance by mod_dist around max_distance */
			int32 distance = this->max_distance - (this->max_distance -
					(int32)DistanceMaxPlusManhattan(job[from_id].XY(), job[to_id].XY())) *
					this->mod_dist / 100;

			/* Scale the accuracy by distance around accuracy / 2 */
			int32 divisor = this->accuracy * (this->mod_dist - 50) / 100 +
					this->accuracy * distance / this->max_distance + 1;

			assert(divisor > 0);

			uint demand_forw = 0;
			if (divisor <= supply) {
				/* At first only distribute demand if
				 * effective supply / accuracy divisor >= 1
				 * Others are too small or too far away to be considered. */
				demand_forw = supply / divisor;
			} else if (++chance > this->accuracy * num_demands * num_supplies) {
				/* After some trying, if there is still supply left, distribute
				 * demand also to other nodes. */
				demand_forw = 1;
			}

			demand_forw = std::min(demand_forw, job[from_id].UndeliveredSupply());

			scaler.SetDemands(job, from_id, to_id, demand_forw);

			if (scaler.HasDemandLeft(job[to_id])) {
				demands.push(to_id);
			} else {
				num_demands--;
			}

			if (job[from_id].UndeliveredSupply() == 0) break;
		}

		if (job[from_id].UndeliveredSupply() != 0) {
			supplies.push(from_id);
		} else {
			num_supplies--;
		}
	}
}

/**
 * Create the DemandCalculator and immediately do the calculation.
 * @param job Job to calculate the demands for.
 */
DemandCalculator::DemandCalculator(LinkGraphJob &job) :
	max_distance(DistanceMaxPlusManhattan(TileXY(0,0), TileXY(MapMaxX(), MapMaxY())))
{
	const LinkGraphSettings &settings = job.Settings();
	CargoID cargo = job.Cargo();

	this->accuracy = settings.accuracy;
	this->mod_dist = settings.demand_distance;
	if (this->mod_dist > 100) {
		/* Increase effect of mod_dist > 100 */
		int over100 = this->mod_dist - 100;
		this->mod_dist = 100 + over100 * over100;
	}

	switch (settings.GetDistributionType(cargo)) {
		case DT_SYMMETRIC:
			this->CalcDemand<SymmetricScaler>(job, SymmetricScaler(settings.demand_size));
			break;
		case DT_ASYMMETRIC:
			this->CalcDemand<AsymmetricScaler>(job, AsymmetricScaler());
			break;
		default:
			/* Nothing to do. */
			break;
	}
}