Files @ r24498:e9114d9ab04a
Branch filter:

Location: cpp/openttd-patchpack/source/src/core/math_func.cpp

Patric Stout
Fix #6468: don't store version of AIs-started-via-console in name

You can do: "startai myai.3", which starts version 3 of "myai".
This is very useful for testing save/load code between different
versions of your AI.

However, when using this syntax, the AI got saved as "myai.3" as
name of the AI, instead of "myai". This caused several problems,
like indicating to the user the AI could not be found, but still
load the AI. But in all cases, the AI never got the chance to
load the saved data, making the whole reason this exists pointless.

By splitting the name and version already in the console command,
the code becomes simpler and AIs started this way now follow the
normal flow after initialization.
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file math_func.cpp Math functions. */

#include "../stdafx.h"
#include "math_func.hpp"

#include "../safeguards.h"

/**
 * Compute least common multiple (lcm) of arguments \a a and \a b, the smallest
 * integer value that is a multiple of both \a a and \a b.
 * @param a First number.
 * @param b second number.
 * @return Least common multiple of values \a a and \a b.
 *
 * @note This function only works for non-negative values of \a a and \a b.
 */
int LeastCommonMultiple(int a, int b)
{
	if (a == 0 || b == 0) return 0; // By definition.
	if (a == 1 || a == b) return b;
	if (b == 1) return a;

	return a * b / GreatestCommonDivisor(a, b);
}

/**
 * Compute greatest common divisor (gcd) of \a a and \a b.
 * @param a First number.
 * @param b second number.
 * @return Greatest common divisor of \a a and \a b.
 */
int GreatestCommonDivisor(int a, int b)
{
	while (b != 0) {
		int t = b;
		b = a % b;
		a = t;
	}
	return a;

}

/**
 * Deterministic approximate division.
 * Cancels out division errors stemming from the integer nature of the division over multiple runs.
 * @param a Dividend.
 * @param b Divisor.
 * @return a/b or (a/b)+1.
 */
int DivideApprox(int a, int b)
{
	int random_like = ((a + b) * (a - b)) % b;

	int remainder = a % b;

	int ret = a / b;
	if (abs(random_like) < abs(remainder)) {
		ret += ((a < 0) ^ (b < 0)) ? -1 : 1;
	}

	return ret;
}

/**
 * Compute the integer square root.
 * @param num Radicand.
 * @return Rounded integer square root.
 * @note Algorithm taken from http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
 */
uint32 IntSqrt(uint32 num)
{
	uint32 res = 0;
	uint32 bit = 1UL << 30; // Second to top bit number.

	/* 'bit' starts at the highest power of four <= the argument. */
	while (bit > num) bit >>= 2;

	while (bit != 0) {
		if (num >= res + bit) {
			num -= res + bit;
			res = (res >> 1) + bit;
		} else {
			res >>= 1;
		}
		bit >>= 2;
	}

	/* Arithmetic rounding to nearest integer. */
	if (num > res) res++;

	return res;
}