Files
@ r28657:ee447a88ccab
Branch filter:
Location: cpp/openttd-patchpack/source/src/tgp.cpp
r28657:ee447a88ccab
38.8 KiB
text/x-c
Feature: Order flag to unbunch vehicles at depot (#11945)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 | /*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file tgp.cpp OTTD Perlin Noise Landscape Generator, aka TerraGenesis Perlin */
#include "stdafx.h"
#include "clear_map.h"
#include "void_map.h"
#include "genworld.h"
#include "core/random_func.hpp"
#include "landscape_type.h"
#include "safeguards.h"
/*
*
* Quickie guide to Perlin Noise
* Perlin noise is a predictable pseudo random number sequence. By generating
* it in 2 dimensions, it becomes a useful random map that, for a given seed
* and starting X & Y, is entirely predictable. On the face of it, that may not
* be useful. However, it means that if you want to replay a map in a different
* terrain, or just vary the sea level, you just re-run the generator with the
* same seed. The seed is an int32_t, and is randomised on each run of New Game.
* The Scenario Generator does not randomise the value, so that you can
* experiment with one terrain until you are happy, or click "Random" for a new
* random seed.
*
* Perlin Noise is a series of "octaves" of random noise added together. By
* reducing the amplitude of the noise with each octave, the first octave of
* noise defines the main terrain sweep, the next the ripples on that, and the
* next the ripples on that. I use 6 octaves, with the amplitude controlled by
* a power ratio, usually known as a persistence or p value. This I vary by the
* smoothness selection, as can be seen in the table below. The closer to 1,
* the more of that octave is added. Each octave is however raised to the power
* of its position in the list, so the last entry in the "smooth" row, 0.35, is
* raised to the power of 6, so can only add 0.001838... of the amplitude to
* the running total.
*
* In other words; the first p value sets the general shape of the terrain, the
* second sets the major variations to that, ... until finally the smallest
* bumps are added.
*
* Usefully, this routine is totally scalable; so when 32bpp comes along, the
* terrain can be as bumpy as you like! It is also infinitely expandable; a
* single random seed terrain continues in X & Y as far as you care to
* calculate. In theory, we could use just one seed value, but randomly select
* where in the Perlin XY space we use for the terrain. Personally I prefer
* using a simple (0, 0) to (X, Y), with a varying seed.
*
*
* Other things i have had to do: mountainous wasn't mountainous enough, and
* since we only have 0..15 heights available, I add a second generated map
* (with a modified seed), onto the original. This generally raises the
* terrain, which then needs scaling back down. Overall effect is a general
* uplift.
*
* However, the values on the top of mountains are then almost guaranteed to go
* too high, so large flat plateaus appeared at height 15. To counter this, I
* scale all heights above 12 to proportion up to 15. It still makes the
* mountains have flattish tops, rather than craggy peaks, but at least they
* aren't smooth as glass.
*
*
* For a full discussion of Perlin Noise, please visit:
* http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
*
*
* Evolution II
*
* The algorithm as described in the above link suggests to compute each tile height
* as composition of several noise waves. Some of them are computed directly by
* noise(x, y) function, some are calculated using linear approximation. Our
* first implementation of perlin_noise_2D() used 4 noise(x, y) calls plus
* 3 linear interpolations. It was called 6 times for each tile. This was a bit
* CPU expensive.
*
* The following implementation uses optimized algorithm that should produce
* the same quality result with much less computations, but more memory accesses.
* The overall speedup should be 300% to 800% depending on CPU and memory speed.
*
* I will try to explain it on the example below:
*
* Have a map of 4 x 4 tiles, our simplified noise generator produces only two
* values -1 and +1, use 3 octaves with wave length 1, 2 and 4, with amplitudes
* 3, 2, 1. Original algorithm produces:
*
* h00 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 0/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 0/2) + -1 = lerp(-3.0, 3.0, 0/4) + lerp(-2, 2, 0/2) + -1 = -3.0 + -2 + -1 = -6.0
* h01 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 0/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 0/2) + 1 = lerp(-1.5, 1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = -1.5 + 0 + 1 = -0.5
* h02 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 0/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 0/2) + -1 = lerp( 0, 0, 0/4) + lerp( 2, -2, 0/2) + -1 = 0 + 2 + -1 = 1.0
* h03 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 0/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 0/2) + 1 = lerp( 1.5, -1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = 1.5 + 0 + 1 = 2.5
*
* h10 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 1/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 1/2) + 1 = lerp(-3.0, 3.0, 1/4) + lerp(-2, 2, 1/2) + 1 = -1.5 + 0 + 1 = -0.5
* h11 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 1/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 1/2) + -1 = lerp(-1.5, 1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = -0.75 + 0 + -1 = -1.75
* h12 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 1/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 1/2) + 1 = lerp( 0, 0, 1/4) + lerp( 2, -2, 1/2) + 1 = 0 + 0 + 1 = 1.0
* h13 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 1/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 1/2) + -1 = lerp( 1.5, -1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = 0.75 + 0 + -1 = -0.25
*
*
* Optimization 1:
*
* 1) we need to allocate a bit more tiles: (size_x + 1) * (size_y + 1) = (5 * 5):
*
* 2) setup corner values using amplitude 3
* { -3.0 X X X 3.0 }
* { X X X X X }
* { X X X X X }
* { X X X X X }
* { 3.0 X X X -3.0 }
*
* 3a) interpolate values in the middle
* { -3.0 X 0.0 X 3.0 }
* { X X X X X }
* { 0.0 X 0.0 X 0.0 }
* { X X X X X }
* { 3.0 X 0.0 X -3.0 }
*
* 3b) add patches with amplitude 2 to them
* { -5.0 X 2.0 X 1.0 }
* { X X X X X }
* { 2.0 X -2.0 X 2.0 }
* { X X X X X }
* { 1.0 X 2.0 X -5.0 }
*
* 4a) interpolate values in the middle
* { -5.0 -1.5 2.0 1.5 1.0 }
* { -1.5 -0.75 0.0 0.75 1.5 }
* { 2.0 0.0 -2.0 0.0 2.0 }
* { 1.5 0.75 0.0 -0.75 -1.5 }
* { 1.0 1.5 2.0 -1.5 -5.0 }
*
* 4b) add patches with amplitude 1 to them
* { -6.0 -0.5 1.0 2.5 0.0 }
* { -0.5 -1.75 1.0 -0.25 2.5 }
* { 1.0 1.0 -3.0 1.0 1.0 }
* { 2.5 -0.25 1.0 -1.75 -0.5 }
* { 0.0 2.5 1.0 -0.5 -6.0 }
*
*
*
* Optimization 2:
*
* As you can see above, each noise function was called just once. Therefore
* we don't need to use noise function that calculates the noise from x, y and
* some prime. The same quality result we can obtain using standard Random()
* function instead.
*
*/
/** Fixed point type for heights */
using Height = int16_t;
static const int height_decimal_bits = 4;
/** Fixed point array for amplitudes (and percent values) */
using Amplitude = int;
static const int amplitude_decimal_bits = 10;
/** Height map - allocated array of heights (MapSizeX() + 1) x (MapSizeY() + 1) */
struct HeightMap
{
std::vector<Height> h; //< array of heights
/* Even though the sizes are always positive, there are many cases where
* X and Y need to be signed integers due to subtractions. */
int dim_x; //< height map size_x Map::SizeX() + 1
int size_x; //< Map::SizeX()
int size_y; //< Map::SizeY()
/**
* Height map accessor
* @param x X position
* @param y Y position
* @return height as fixed point number
*/
inline Height &height(uint x, uint y)
{
return h[x + y * dim_x];
}
};
/** Global height map instance */
static HeightMap _height_map = { {}, 0, 0, 0 };
/** Conversion: int to Height */
#define I2H(i) ((i) << height_decimal_bits)
/** Conversion: Height to int */
#define H2I(i) ((i) >> height_decimal_bits)
/** Conversion: int to Amplitude */
#define I2A(i) ((i) << amplitude_decimal_bits)
/** Conversion: Amplitude to int */
#define A2I(i) ((i) >> amplitude_decimal_bits)
/** Conversion: Amplitude to Height */
#define A2H(a) ((a) >> (amplitude_decimal_bits - height_decimal_bits))
/** Maximum number of TGP noise frequencies. */
static const int MAX_TGP_FREQUENCIES = 10;
/** Desired water percentage (100% == 1024) - indexed by _settings_game.difficulty.quantity_sea_lakes */
static const Amplitude _water_percent[4] = {70, 170, 270, 420};
/**
* Gets the maximum allowed height while generating a map based on
* mapsize, terraintype, and the maximum height level.
* @return The maximum height for the map generation.
* @note Values should never be lower than 3 since the minimum snowline height is 2.
*/
static Height TGPGetMaxHeight()
{
if (_settings_game.difficulty.terrain_type == CUSTOM_TERRAIN_TYPE_NUMBER_DIFFICULTY) {
/* TGP never reaches this height; this means that if a user inputs "2",
* it would create a flat map without the "+ 1". But that would
* overflow on "255". So we reduce it by 1 to get back in range. */
return I2H(_settings_game.game_creation.custom_terrain_type + 1) - 1;
}
/**
* Desired maximum height - indexed by:
* - _settings_game.difficulty.terrain_type
* - min(Map::LogX(), Map::LogY()) - MIN_MAP_SIZE_BITS
*
* It is indexed by map size as well as terrain type since the map size limits the height of
* a usable mountain. For example, on a 64x64 map a 24 high single peak mountain (as if you
* raised land 24 times in the center of the map) will leave only a ring of about 10 tiles
* around the mountain to build on. On a 4096x4096 map, it won't cover any major part of the map.
*/
static const int max_height[5][MAX_MAP_SIZE_BITS - MIN_MAP_SIZE_BITS + 1] = {
/* 64 128 256 512 1024 2048 4096 */
{ 3, 3, 3, 3, 4, 5, 7 }, ///< Very flat
{ 5, 7, 8, 9, 14, 19, 31 }, ///< Flat
{ 8, 9, 10, 15, 23, 37, 61 }, ///< Hilly
{ 10, 11, 17, 19, 49, 63, 73 }, ///< Mountainous
{ 12, 19, 25, 31, 67, 75, 87 }, ///< Alpinist
};
int map_size_bucket = std::min(Map::LogX(), Map::LogY()) - MIN_MAP_SIZE_BITS;
int max_height_from_table = max_height[_settings_game.difficulty.terrain_type][map_size_bucket];
/* If there is a manual map height limit, clamp to it. */
if (_settings_game.construction.map_height_limit != 0) {
max_height_from_table = std::min<uint>(max_height_from_table, _settings_game.construction.map_height_limit);
}
return I2H(max_height_from_table);
}
/**
* Get an overestimation of the highest peak TGP wants to generate.
*/
uint GetEstimationTGPMapHeight()
{
return H2I(TGPGetMaxHeight());
}
/**
* Get the amplitude associated with the currently selected
* smoothness and maximum height level.
* @param frequency The frequency to get the amplitudes for
* @return The amplitudes to apply to the map.
*/
static Amplitude GetAmplitude(int frequency)
{
/* Base noise amplitudes (multiplied by 1024) and indexed by "smoothness setting" and log2(frequency). */
static const Amplitude amplitudes[][7] = {
/* lowest frequency ...... highest (every corner) */
{16000, 5600, 1968, 688, 240, 16, 16}, ///< Very smooth
{24000, 12800, 6400, 2700, 1024, 128, 16}, ///< Smooth
{32000, 19200, 12800, 8000, 3200, 256, 64}, ///< Rough
{48000, 24000, 19200, 16000, 8000, 512, 320}, ///< Very rough
};
/*
* Extrapolation factors for ranges before the table.
* The extrapolation is needed to account for the higher map heights. They need larger
* areas with a particular gradient so that we are able to create maps without too
* many steep slopes up to the wanted height level. It's definitely not perfect since
* it will bring larger rectangles with similar slopes which makes the rectangular
* behaviour of TGP more noticeable. However, these height differentiations cannot
* happen over much smaller areas; we basically double the "range" to give a similar
* slope for every doubling of map height.
*/
static const double extrapolation_factors[] = { 3.3, 2.8, 2.3, 1.8 };
int smoothness = _settings_game.game_creation.tgen_smoothness;
/* Get the table index, and return that value if possible. */
int index = frequency - MAX_TGP_FREQUENCIES + lengthof(amplitudes[smoothness]);
Amplitude amplitude = amplitudes[smoothness][std::max(0, index)];
if (index >= 0) return amplitude;
/* We need to extrapolate the amplitude. */
double extrapolation_factor = extrapolation_factors[smoothness];
int height_range = I2H(16);
do {
amplitude = (Amplitude)(extrapolation_factor * (double)amplitude);
height_range <<= 1;
index++;
} while (index < 0);
return Clamp((TGPGetMaxHeight() - height_range) / height_range, 0, 1) * amplitude;
}
/**
* Check if a X/Y set are within the map.
* @param x coordinate x
* @param y coordinate y
* @return true if within the map
*/
static inline bool IsValidXY(int x, int y)
{
return x >= 0 && x < _height_map.size_x && y >= 0 && y < _height_map.size_y;
}
/**
* Allocate array of (MapSizeX()+1)*(MapSizeY()+1) heights and init the _height_map structure members
* @return true on success
*/
static inline bool AllocHeightMap()
{
assert(_height_map.h.empty());
_height_map.size_x = Map::SizeX();
_height_map.size_y = Map::SizeY();
/* Allocate memory block for height map row pointers */
size_t total_size = static_cast<size_t>(_height_map.size_x + 1) * (_height_map.size_y + 1);
_height_map.dim_x = _height_map.size_x + 1;
_height_map.h.resize(total_size);
return true;
}
/** Free height map */
static inline void FreeHeightMap()
{
_height_map.h.clear();
}
/**
* Generates new random height in given amplitude (generated numbers will range from - amplitude to + amplitude)
* @param rMax Limit of result
* @return generated height
*/
static inline Height RandomHeight(Amplitude rMax)
{
/* Spread height into range -rMax..+rMax */
return A2H(RandomRange(2 * rMax + 1) - rMax);
}
/**
* Base Perlin noise generator - fills height map with raw Perlin noise.
*
* This runs several iterations with increasing precision; the last iteration looks at areas
* of 1 by 1 tiles, the second to last at 2 by 2 tiles and the initial 2**MAX_TGP_FREQUENCIES
* by 2**MAX_TGP_FREQUENCIES tiles.
*/
static void HeightMapGenerate()
{
/* Trying to apply noise to uninitialized height map */
assert(!_height_map.h.empty());
int start = std::max(MAX_TGP_FREQUENCIES - (int)std::min(Map::LogX(), Map::LogY()), 0);
bool first = true;
for (int frequency = start; frequency < MAX_TGP_FREQUENCIES; frequency++) {
const Amplitude amplitude = GetAmplitude(frequency);
/* Ignore zero amplitudes; it means our map isn't height enough for this
* amplitude, so ignore it and continue with the next set of amplitude. */
if (amplitude == 0) continue;
const int step = 1 << (MAX_TGP_FREQUENCIES - frequency - 1);
if (first) {
/* This is first round, we need to establish base heights with step = size_min */
for (int y = 0; y <= _height_map.size_y; y += step) {
for (int x = 0; x <= _height_map.size_x; x += step) {
Height height = (amplitude > 0) ? RandomHeight(amplitude) : 0;
_height_map.height(x, y) = height;
}
}
first = false;
continue;
}
/* It is regular iteration round.
* Interpolate height values at odd x, even y tiles */
for (int y = 0; y <= _height_map.size_y; y += 2 * step) {
for (int x = 0; x <= _height_map.size_x - 2 * step; x += 2 * step) {
Height h00 = _height_map.height(x + 0 * step, y);
Height h02 = _height_map.height(x + 2 * step, y);
Height h01 = (h00 + h02) / 2;
_height_map.height(x + 1 * step, y) = h01;
}
}
/* Interpolate height values at odd y tiles */
for (int y = 0; y <= _height_map.size_y - 2 * step; y += 2 * step) {
for (int x = 0; x <= _height_map.size_x; x += step) {
Height h00 = _height_map.height(x, y + 0 * step);
Height h20 = _height_map.height(x, y + 2 * step);
Height h10 = (h00 + h20) / 2;
_height_map.height(x, y + 1 * step) = h10;
}
}
/* Add noise for next higher frequency (smaller steps) */
for (int y = 0; y <= _height_map.size_y; y += step) {
for (int x = 0; x <= _height_map.size_x; x += step) {
_height_map.height(x, y) += RandomHeight(amplitude);
}
}
}
}
/** Returns min, max and average height from height map */
static void HeightMapGetMinMaxAvg(Height *min_ptr, Height *max_ptr, Height *avg_ptr)
{
Height h_min, h_max, h_avg;
int64_t h_accu = 0;
h_min = h_max = _height_map.height(0, 0);
/* Get h_min, h_max and accumulate heights into h_accu */
for (const Height &h : _height_map.h) {
if (h < h_min) h_min = h;
if (h > h_max) h_max = h;
h_accu += h;
}
/* Get average height */
h_avg = (Height)(h_accu / (_height_map.size_x * _height_map.size_y));
/* Return required results */
if (min_ptr != nullptr) *min_ptr = h_min;
if (max_ptr != nullptr) *max_ptr = h_max;
if (avg_ptr != nullptr) *avg_ptr = h_avg;
}
/** Dill histogram and return pointer to its base point - to the count of zero heights */
static int *HeightMapMakeHistogram(Height h_min, [[maybe_unused]] Height h_max, int *hist_buf)
{
int *hist = hist_buf - h_min;
/* Count the heights and fill the histogram */
for (const Height &h : _height_map.h){
assert(h >= h_min);
assert(h <= h_max);
hist[h]++;
}
return hist;
}
/** Applies sine wave redistribution onto height map */
static void HeightMapSineTransform(Height h_min, Height h_max)
{
for (Height &h : _height_map.h) {
double fheight;
if (h < h_min) continue;
/* Transform height into 0..1 space */
fheight = (double)(h - h_min) / (double)(h_max - h_min);
/* Apply sine transform depending on landscape type */
switch (_settings_game.game_creation.landscape) {
case LT_TOYLAND:
case LT_TEMPERATE:
/* Move and scale 0..1 into -1..+1 */
fheight = 2 * fheight - 1;
/* Sine transform */
fheight = sin(fheight * M_PI_2);
/* Transform it back from -1..1 into 0..1 space */
fheight = 0.5 * (fheight + 1);
break;
case LT_ARCTIC:
{
/* Arctic terrain needs special height distribution.
* Redistribute heights to have more tiles at highest (75%..100%) range */
double sine_upper_limit = 0.75;
double linear_compression = 2;
if (fheight >= sine_upper_limit) {
/* Over the limit we do linear compression up */
fheight = 1.0 - (1.0 - fheight) / linear_compression;
} else {
double m = 1.0 - (1.0 - sine_upper_limit) / linear_compression;
/* Get 0..sine_upper_limit into -1..1 */
fheight = 2.0 * fheight / sine_upper_limit - 1.0;
/* Sine wave transform */
fheight = sin(fheight * M_PI_2);
/* Get -1..1 back to 0..(1 - (1 - sine_upper_limit) / linear_compression) == 0.0..m */
fheight = 0.5 * (fheight + 1.0) * m;
}
}
break;
case LT_TROPIC:
{
/* Desert terrain needs special height distribution.
* Half of tiles should be at lowest (0..25%) heights */
double sine_lower_limit = 0.5;
double linear_compression = 2;
if (fheight <= sine_lower_limit) {
/* Under the limit we do linear compression down */
fheight = fheight / linear_compression;
} else {
double m = sine_lower_limit / linear_compression;
/* Get sine_lower_limit..1 into -1..1 */
fheight = 2.0 * ((fheight - sine_lower_limit) / (1.0 - sine_lower_limit)) - 1.0;
/* Sine wave transform */
fheight = sin(fheight * M_PI_2);
/* Get -1..1 back to (sine_lower_limit / linear_compression)..1.0 */
fheight = 0.5 * ((1.0 - m) * fheight + (1.0 + m));
}
}
break;
default:
NOT_REACHED();
break;
}
/* Transform it back into h_min..h_max space */
h = (Height)(fheight * (h_max - h_min) + h_min);
if (h < 0) h = I2H(0);
if (h >= h_max) h = h_max - 1;
}
}
/**
* Additional map variety is provided by applying different curve maps
* to different parts of the map. A randomized low resolution grid contains
* which curve map to use on each part of the make. This filtered non-linearly
* to smooth out transitions between curves, so each tile could have between
* 100% of one map applied or 25% of four maps.
*
* The curve maps define different land styles, i.e. lakes, low-lands, hills
* and mountain ranges, although these are dependent on the landscape style
* chosen as well.
*
* The level parameter dictates the resolution of the grid. A low resolution
* grid will result in larger continuous areas of a land style, a higher
* resolution grid splits the style into smaller areas.
* @param level Rough indication of the size of the grid sections to style. Small level means large grid sections.
*/
static void HeightMapCurves(uint level)
{
Height mh = TGPGetMaxHeight() - I2H(1); // height levels above sea level only
/** Basically scale height X to height Y. Everything in between is interpolated. */
struct ControlPoint {
Height x; ///< The height to scale from.
Height y; ///< The height to scale to.
};
/* Scaled curve maps; value is in height_ts. */
#define F(fraction) ((Height)(fraction * mh))
const ControlPoint curve_map_1[] = { { F(0.0), F(0.0) }, { F(0.8), F(0.13) }, { F(1.0), F(0.4) } };
const ControlPoint curve_map_2[] = { { F(0.0), F(0.0) }, { F(0.53), F(0.13) }, { F(0.8), F(0.27) }, { F(1.0), F(0.6) } };
const ControlPoint curve_map_3[] = { { F(0.0), F(0.0) }, { F(0.53), F(0.27) }, { F(0.8), F(0.57) }, { F(1.0), F(0.8) } };
const ControlPoint curve_map_4[] = { { F(0.0), F(0.0) }, { F(0.4), F(0.3) }, { F(0.7), F(0.8) }, { F(0.92), F(0.99) }, { F(1.0), F(0.99) } };
#undef F
/** Helper structure to index the different curve maps. */
struct ControlPointList {
size_t length; ///< The length of the curve map.
const ControlPoint *list; ///< The actual curve map.
};
static const ControlPointList curve_maps[] = {
{ lengthof(curve_map_1), curve_map_1 },
{ lengthof(curve_map_2), curve_map_2 },
{ lengthof(curve_map_3), curve_map_3 },
{ lengthof(curve_map_4), curve_map_4 },
};
Height ht[lengthof(curve_maps)];
MemSetT(ht, 0, lengthof(ht));
/* Set up a grid to choose curve maps based on location; attempt to get a somewhat square grid */
float factor = sqrt((float)_height_map.size_x / (float)_height_map.size_y);
uint sx = Clamp((int)(((1 << level) * factor) + 0.5), 1, 128);
uint sy = Clamp((int)(((1 << level) / factor) + 0.5), 1, 128);
std::vector<byte> c(static_cast<size_t>(sx) * sy);
for (uint i = 0; i < sx * sy; i++) {
c[i] = Random() % lengthof(curve_maps);
}
/* Apply curves */
for (int x = 0; x < _height_map.size_x; x++) {
/* Get our X grid positions and bi-linear ratio */
float fx = (float)(sx * x) / _height_map.size_x + 1.0f;
uint x1 = (uint)fx;
uint x2 = x1;
float xr = 2.0f * (fx - x1) - 1.0f;
xr = sin(xr * M_PI_2);
xr = sin(xr * M_PI_2);
xr = 0.5f * (xr + 1.0f);
float xri = 1.0f - xr;
if (x1 > 0) {
x1--;
if (x2 >= sx) x2--;
}
for (int y = 0; y < _height_map.size_y; y++) {
/* Get our Y grid position and bi-linear ratio */
float fy = (float)(sy * y) / _height_map.size_y + 1.0f;
uint y1 = (uint)fy;
uint y2 = y1;
float yr = 2.0f * (fy - y1) - 1.0f;
yr = sin(yr * M_PI_2);
yr = sin(yr * M_PI_2);
yr = 0.5f * (yr + 1.0f);
float yri = 1.0f - yr;
if (y1 > 0) {
y1--;
if (y2 >= sy) y2--;
}
uint corner_a = c[x1 + sx * y1];
uint corner_b = c[x1 + sx * y2];
uint corner_c = c[x2 + sx * y1];
uint corner_d = c[x2 + sx * y2];
/* Bitmask of which curve maps are chosen, so that we do not bother
* calculating a curve which won't be used. */
uint corner_bits = 0;
corner_bits |= 1 << corner_a;
corner_bits |= 1 << corner_b;
corner_bits |= 1 << corner_c;
corner_bits |= 1 << corner_d;
Height *h = &_height_map.height(x, y);
/* Do not touch sea level */
if (*h < I2H(1)) continue;
/* Only scale above sea level */
*h -= I2H(1);
/* Apply all curve maps that are used on this tile. */
for (uint t = 0; t < lengthof(curve_maps); t++) {
if (!HasBit(corner_bits, t)) continue;
[[maybe_unused]] bool found = false;
const ControlPoint *cm = curve_maps[t].list;
for (uint i = 0; i < curve_maps[t].length - 1; i++) {
const ControlPoint &p1 = cm[i];
const ControlPoint &p2 = cm[i + 1];
if (*h >= p1.x && *h < p2.x) {
ht[t] = p1.y + (*h - p1.x) * (p2.y - p1.y) / (p2.x - p1.x);
#ifdef WITH_ASSERT
found = true;
#endif
break;
}
}
assert(found);
}
/* Apply interpolation of curve map results. */
*h = (Height)((ht[corner_a] * yri + ht[corner_b] * yr) * xri + (ht[corner_c] * yri + ht[corner_d] * yr) * xr);
/* Readd sea level */
*h += I2H(1);
}
}
}
/** Adjusts heights in height map to contain required amount of water tiles */
static void HeightMapAdjustWaterLevel(Amplitude water_percent, Height h_max_new)
{
Height h_min, h_max, h_avg, h_water_level;
int64_t water_tiles, desired_water_tiles;
int *hist;
HeightMapGetMinMaxAvg(&h_min, &h_max, &h_avg);
/* Allocate histogram buffer and clear its cells */
int *hist_buf = CallocT<int>(h_max - h_min + 1);
/* Fill histogram */
hist = HeightMapMakeHistogram(h_min, h_max, hist_buf);
/* How many water tiles do we want? */
desired_water_tiles = A2I(((int64_t)water_percent) * (int64_t)(_height_map.size_x * _height_map.size_y));
/* Raise water_level and accumulate values from histogram until we reach required number of water tiles */
for (h_water_level = h_min, water_tiles = 0; h_water_level < h_max; h_water_level++) {
water_tiles += hist[h_water_level];
if (water_tiles >= desired_water_tiles) break;
}
/* We now have the proper water level value.
* Transform the height map into new (normalized) height map:
* values from range: h_min..h_water_level will become negative so it will be clamped to 0
* values from range: h_water_level..h_max are transformed into 0..h_max_new
* where h_max_new is depending on terrain type and map size.
*/
for (Height &h : _height_map.h) {
/* Transform height from range h_water_level..h_max into 0..h_max_new range */
h = (Height)(((int)h_max_new) * (h - h_water_level) / (h_max - h_water_level)) + I2H(1);
/* Make sure all values are in the proper range (0..h_max_new) */
if (h < 0) h = I2H(0);
if (h >= h_max_new) h = h_max_new - 1;
}
free(hist_buf);
}
static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime);
/**
* This routine sculpts in from the edge a random amount, again a Perlin
* sequence, to avoid the rigid flat-edge slopes that were present before. The
* Perlin noise map doesn't know where we are going to slice across, and so we
* often cut straight through high terrain. The smoothing routine makes it
* legal, gradually increasing up from the edge to the original terrain height.
* By cutting parts of this away, it gives a far more irregular edge to the
* map-edge. Sometimes it works beautifully with the existing sea & lakes, and
* creates a very realistic coastline. Other times the variation is less, and
* the map-edge shows its cliff-like roots.
*
* This routine may be extended to randomly sculpt the height of the terrain
* near the edge. This will have the coast edge at low level (1-3), rising in
* smoothed steps inland to about 15 tiles in. This should make it look as
* though the map has been built for the map size, rather than a slice through
* a larger map.
*
* Please note that all the small numbers; 53, 101, 167, etc. are small primes
* to help give the perlin noise a bit more of a random feel.
*/
static void HeightMapCoastLines(uint8_t water_borders)
{
int smallest_size = std::min(_settings_game.game_creation.map_x, _settings_game.game_creation.map_y);
const int margin = 4;
int y, x;
double max_x;
double max_y;
/* Lower to sea level */
for (y = 0; y <= _height_map.size_y; y++) {
if (HasBit(water_borders, BORDER_NE)) {
/* Top right */
max_x = abs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.9, 53) + 0.25) * 5 + (perlin_coast_noise_2D(y, y, 0.35, 179) + 1) * 12);
max_x = std::max((smallest_size * smallest_size / 64) + max_x, (smallest_size * smallest_size / 64) + margin - max_x);
if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
for (x = 0; x < max_x; x++) {
_height_map.height(x, y) = 0;
}
}
if (HasBit(water_borders, BORDER_SW)) {
/* Bottom left */
max_x = abs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.85, 101) + 0.3) * 6 + (perlin_coast_noise_2D(y, y, 0.45, 67) + 0.75) * 8);
max_x = std::max((smallest_size * smallest_size / 64) + max_x, (smallest_size * smallest_size / 64) + margin - max_x);
if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
for (x = _height_map.size_x; x > (_height_map.size_x - 1 - max_x); x--) {
_height_map.height(x, y) = 0;
}
}
}
/* Lower to sea level */
for (x = 0; x <= _height_map.size_x; x++) {
if (HasBit(water_borders, BORDER_NW)) {
/* Top left */
max_y = abs((perlin_coast_noise_2D(x, _height_map.size_y / 2, 0.9, 167) + 0.4) * 5 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.4, 211) + 0.7) * 9);
max_y = std::max((smallest_size * smallest_size / 64) + max_y, (smallest_size * smallest_size / 64) + margin - max_y);
if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
for (y = 0; y < max_y; y++) {
_height_map.height(x, y) = 0;
}
}
if (HasBit(water_borders, BORDER_SE)) {
/* Bottom right */
max_y = abs((perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.85, 71) + 0.25) * 6 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.35, 193) + 0.75) * 12);
max_y = std::max((smallest_size * smallest_size / 64) + max_y, (smallest_size * smallest_size / 64) + margin - max_y);
if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
for (y = _height_map.size_y; y > (_height_map.size_y - 1 - max_y); y--) {
_height_map.height(x, y) = 0;
}
}
}
}
/** Start at given point, move in given direction, find and Smooth coast in that direction */
static void HeightMapSmoothCoastInDirection(int org_x, int org_y, int dir_x, int dir_y)
{
const int max_coast_dist_from_edge = 35;
const int max_coast_Smooth_depth = 35;
int x, y;
int ed; // coast distance from edge
int depth;
Height h_prev = I2H(1);
Height h;
assert(IsValidXY(org_x, org_y));
/* Search for the coast (first non-water tile) */
for (x = org_x, y = org_y, ed = 0; IsValidXY(x, y) && ed < max_coast_dist_from_edge; x += dir_x, y += dir_y, ed++) {
/* Coast found? */
if (_height_map.height(x, y) >= I2H(1)) break;
/* Coast found in the neighborhood? */
if (IsValidXY(x + dir_y, y + dir_x) && _height_map.height(x + dir_y, y + dir_x) > 0) break;
/* Coast found in the neighborhood on the other side */
if (IsValidXY(x - dir_y, y - dir_x) && _height_map.height(x - dir_y, y - dir_x) > 0) break;
}
/* Coast found or max_coast_dist_from_edge has been reached.
* Soften the coast slope */
for (depth = 0; IsValidXY(x, y) && depth <= max_coast_Smooth_depth; depth++, x += dir_x, y += dir_y) {
h = _height_map.height(x, y);
h = static_cast<Height>(std::min<uint>(h, h_prev + (4 + depth))); // coast softening formula
_height_map.height(x, y) = h;
h_prev = h;
}
}
/** Smooth coasts by modulating height of tiles close to map edges with cosine of distance from edge */
static void HeightMapSmoothCoasts(uint8_t water_borders)
{
int x, y;
/* First Smooth NW and SE coasts (y close to 0 and y close to size_y) */
for (x = 0; x < _height_map.size_x; x++) {
if (HasBit(water_borders, BORDER_NW)) HeightMapSmoothCoastInDirection(x, 0, 0, 1);
if (HasBit(water_borders, BORDER_SE)) HeightMapSmoothCoastInDirection(x, _height_map.size_y - 1, 0, -1);
}
/* First Smooth NE and SW coasts (x close to 0 and x close to size_x) */
for (y = 0; y < _height_map.size_y; y++) {
if (HasBit(water_borders, BORDER_NE)) HeightMapSmoothCoastInDirection(0, y, 1, 0);
if (HasBit(water_borders, BORDER_SW)) HeightMapSmoothCoastInDirection(_height_map.size_x - 1, y, -1, 0);
}
}
/**
* This routine provides the essential cleanup necessary before OTTD can
* display the terrain. When generated, the terrain heights can jump more than
* one level between tiles. This routine smooths out those differences so that
* the most it can change is one level. When OTTD can support cliffs, this
* routine may not be necessary.
*/
static void HeightMapSmoothSlopes(Height dh_max)
{
for (int y = 0; y <= (int)_height_map.size_y; y++) {
for (int x = 0; x <= (int)_height_map.size_x; x++) {
Height h_max = std::min(_height_map.height(x > 0 ? x - 1 : x, y), _height_map.height(x, y > 0 ? y - 1 : y)) + dh_max;
if (_height_map.height(x, y) > h_max) _height_map.height(x, y) = h_max;
}
}
for (int y = _height_map.size_y; y >= 0; y--) {
for (int x = _height_map.size_x; x >= 0; x--) {
Height h_max = std::min(_height_map.height(x < _height_map.size_x ? x + 1 : x, y), _height_map.height(x, y < _height_map.size_y ? y + 1 : y)) + dh_max;
if (_height_map.height(x, y) > h_max) _height_map.height(x, y) = h_max;
}
}
}
/**
* Height map terraform post processing:
* - water level adjusting
* - coast Smoothing
* - slope Smoothing
* - height histogram redistribution by sine wave transform
*/
static void HeightMapNormalize()
{
int sea_level_setting = _settings_game.difficulty.quantity_sea_lakes;
const Amplitude water_percent = sea_level_setting != (int)CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY ? _water_percent[sea_level_setting] : _settings_game.game_creation.custom_sea_level * 1024 / 100;
const Height h_max_new = TGPGetMaxHeight();
const Height roughness = 7 + 3 * _settings_game.game_creation.tgen_smoothness;
HeightMapAdjustWaterLevel(water_percent, h_max_new);
byte water_borders = _settings_game.construction.freeform_edges ? _settings_game.game_creation.water_borders : 0xF;
if (water_borders == BORDERS_RANDOM) water_borders = GB(Random(), 0, 4);
HeightMapCoastLines(water_borders);
HeightMapSmoothSlopes(roughness);
HeightMapSmoothCoasts(water_borders);
HeightMapSmoothSlopes(roughness);
HeightMapSineTransform(I2H(1), h_max_new);
if (_settings_game.game_creation.variety > 0) {
HeightMapCurves(_settings_game.game_creation.variety);
}
HeightMapSmoothSlopes(I2H(1));
}
/**
* The Perlin Noise calculation using large primes
* The initial number is adjusted by two values; the generation_seed, and the
* passed parameter; prime.
* prime is used to allow the perlin noise generator to create useful random
* numbers from slightly different series.
*/
static double int_noise(const long x, const long y, const int prime)
{
long n = x + y * prime + _settings_game.game_creation.generation_seed;
n = (n << 13) ^ n;
/* Pseudo-random number generator, using several large primes */
return 1.0 - (double)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0;
}
/**
* This routine determines the interpolated value between a and b
*/
static inline double linear_interpolate(const double a, const double b, const double x)
{
return a + x * (b - a);
}
/**
* This routine returns the smoothed interpolated noise for an x and y, using
* the values from the surrounding positions.
*/
static double interpolated_noise(const double x, const double y, const int prime)
{
const int integer_X = (int)x;
const int integer_Y = (int)y;
const double fractional_X = x - (double)integer_X;
const double fractional_Y = y - (double)integer_Y;
const double v1 = int_noise(integer_X, integer_Y, prime);
const double v2 = int_noise(integer_X + 1, integer_Y, prime);
const double v3 = int_noise(integer_X, integer_Y + 1, prime);
const double v4 = int_noise(integer_X + 1, integer_Y + 1, prime);
const double i1 = linear_interpolate(v1, v2, fractional_X);
const double i2 = linear_interpolate(v3, v4, fractional_X);
return linear_interpolate(i1, i2, fractional_Y);
}
/**
* This is a similar function to the main perlin noise calculation, but uses
* the value p passed as a parameter rather than selected from the predefined
* sequences. as you can guess by its title, i use this to create the indented
* coastline, which is just another perlin sequence.
*/
static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime)
{
double total = 0.0;
for (int i = 0; i < 6; i++) {
const double frequency = (double)(1 << i);
const double amplitude = pow(p, (double)i);
total += interpolated_noise((x * frequency) / 64.0, (y * frequency) / 64.0, prime) * amplitude;
}
return total;
}
/** A small helper function to initialize the terrain */
static void TgenSetTileHeight(TileIndex tile, int height)
{
SetTileHeight(tile, height);
/* Only clear the tiles within the map area. */
if (IsInnerTile(tile)) {
MakeClear(tile, CLEAR_GRASS, 3);
}
}
/**
* The main new land generator using Perlin noise. Desert landscape is handled
* different to all others to give a desert valley between two high mountains.
* Clearly if a low height terrain (flat/very flat) is chosen, then the tropic
* areas won't be high enough, and there will be very little tropic on the map.
* Thus Tropic works best on Hilly or Mountainous.
*/
void GenerateTerrainPerlin()
{
if (!AllocHeightMap()) return;
GenerateWorldSetAbortCallback(FreeHeightMap);
HeightMapGenerate();
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
HeightMapNormalize();
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
/* First make sure the tiles at the north border are void tiles if needed. */
if (_settings_game.construction.freeform_edges) {
for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, 0));
for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(0, y));
}
int max_height = H2I(TGPGetMaxHeight());
/* Transfer height map into OTTD map */
for (int y = 0; y < _height_map.size_y; y++) {
for (int x = 0; x < _height_map.size_x; x++) {
TgenSetTileHeight(TileXY(x, y), Clamp(H2I(_height_map.height(x, y)), 0, max_height));
}
}
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
FreeHeightMap();
GenerateWorldSetAbortCallback(nullptr);
}
|