Files @ r28520:f9aebe299cae
Branch filter:

Location: cpp/openttd-patchpack/source/src/3rdparty/fmt/format.h

Patric Stout
Codechange: MacOS already has MIN/MAX macros defined

This is caused because we use PreCompile Headers, and one of them
includes a system headers which defines MIN/MAX.
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
/*
  Formatting library for C++

  Copyright (c) 2012 - present, Victor Zverovich

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be
  included in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

  --- Optional exception to the license ---

  As an exception, if, as a result of your compiling your source code, portions
  of this Software are embedded into a machine-executable object form of such
  source code, you may redistribute such embedded portions in such object form
  without including the above copyright and permission notices.
 */

#ifndef FMT_FORMAT_H_
#define FMT_FORMAT_H_

#include <cmath>             // std::signbit
#include <cstdint>           // uint32_t
#include <cstring>           // std::memcpy
#include <initializer_list>  // std::initializer_list
#include <limits>            // std::numeric_limits
#include <memory>            // std::uninitialized_copy
#include <stdexcept>         // std::runtime_error
#include <system_error>      // std::system_error

#ifdef __cpp_lib_bit_cast
#  include <bit>  // std::bitcast
#endif

#include "core.h"

#ifndef FMT_BEGIN_DETAIL_NAMESPACE
#  define FMT_BEGIN_DETAIL_NAMESPACE namespace detail {
#  define FMT_END_DETAIL_NAMESPACE }
#endif

#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
#  define FMT_FALLTHROUGH [[fallthrough]]
#elif defined(__clang__)
#  define FMT_FALLTHROUGH [[clang::fallthrough]]
#elif FMT_GCC_VERSION >= 700 && \
    (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
#  define FMT_FALLTHROUGH [[gnu::fallthrough]]
#else
#  define FMT_FALLTHROUGH
#endif

#ifndef FMT_DEPRECATED
#  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VERSION >= 1900
#    define FMT_DEPRECATED [[deprecated]]
#  else
#    if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
#      define FMT_DEPRECATED __attribute__((deprecated))
#    elif FMT_MSC_VERSION
#      define FMT_DEPRECATED __declspec(deprecated)
#    else
#      define FMT_DEPRECATED /* deprecated */
#    endif
#  endif
#endif

#if FMT_GCC_VERSION
#  define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#else
#  define FMT_GCC_VISIBILITY_HIDDEN
#endif

#ifdef __NVCC__
#  define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
#else
#  define FMT_CUDA_VERSION 0
#endif

#ifdef __has_builtin
#  define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
#  define FMT_HAS_BUILTIN(x) 0
#endif

#if FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_NOINLINE __attribute__((noinline))
#else
#  define FMT_NOINLINE
#endif

#ifndef FMT_THROW
#  if FMT_EXCEPTIONS
#    if FMT_MSC_VERSION || defined(__NVCC__)
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Exception> inline void do_throw(const Exception& x) {
  // Silence unreachable code warnings in MSVC and NVCC because these
  // are nearly impossible to fix in a generic code.
  volatile bool b = true;
  if (b) throw x;
}
}  // namespace detail
FMT_END_NAMESPACE
#      define FMT_THROW(x) detail::do_throw(x)
#    else
#      define FMT_THROW(x) throw x
#    endif
#  else
#    define FMT_THROW(x)               \
      do {                             \
        FMT_ASSERT(false, (x).what()); \
      } while (false)
#  endif
#endif

#if FMT_EXCEPTIONS
#  define FMT_TRY try
#  define FMT_CATCH(x) catch (x)
#else
#  define FMT_TRY if (true)
#  define FMT_CATCH(x) if (false)
#endif

#ifndef FMT_MAYBE_UNUSED
#  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
#    define FMT_MAYBE_UNUSED [[maybe_unused]]
#  else
#    define FMT_MAYBE_UNUSED
#  endif
#endif

#ifndef FMT_USE_USER_DEFINED_LITERALS
// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
       FMT_MSC_VERSION >= 1900) &&                                     \
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
#    define FMT_USE_USER_DEFINED_LITERALS 1
#  else
#    define FMT_USE_USER_DEFINED_LITERALS 0
#  endif
#endif

// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
// integer formatter template instantiations to just one by only using the
// largest integer type. This results in a reduction in binary size but will
// cause a decrease in integer formatting performance.
#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
#  define FMT_REDUCE_INT_INSTANTIATIONS 0
#endif

// __builtin_clz is broken in clang with Microsoft CodeGen:
// https://github.com/fmtlib/fmt/issues/519.
#if !FMT_MSC_VERSION
#  if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
#    define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
#  endif
#  if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
#    define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
#  endif
#endif

// __builtin_ctz is broken in Intel Compiler Classic on Windows:
// https://github.com/fmtlib/fmt/issues/2510.
#ifndef __ICL
#  if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \
      defined(__NVCOMPILER)
#    define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
#  endif
#  if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \
      FMT_ICC_VERSION || defined(__NVCOMPILER)
#    define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
#  endif
#endif

#if FMT_MSC_VERSION
#  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128
#endif

// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
// MSVC intrinsics if the clz and clzll builtins are not available.
#if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \
    !defined(FMT_BUILTIN_CTZLL)
FMT_BEGIN_NAMESPACE
namespace detail {
// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
#  if !defined(__clang__)
#    pragma intrinsic(_BitScanForward)
#    pragma intrinsic(_BitScanReverse)
#    if defined(_WIN64)
#      pragma intrinsic(_BitScanForward64)
#      pragma intrinsic(_BitScanReverse64)
#    endif
#  endif

inline auto clz(uint32_t x) -> int {
  unsigned long r = 0;
  _BitScanReverse(&r, x);
  FMT_ASSERT(x != 0, "");
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
  FMT_MSC_WARNING(suppress : 6102)
  return 31 ^ static_cast<int>(r);
}
#  define FMT_BUILTIN_CLZ(n) detail::clz(n)

inline auto clzll(uint64_t x) -> int {
  unsigned long r = 0;
#  ifdef _WIN64
  _BitScanReverse64(&r, x);
#  else
  // Scan the high 32 bits.
  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
    return 63 ^ static_cast<int>(r + 32);
  // Scan the low 32 bits.
  _BitScanReverse(&r, static_cast<uint32_t>(x));
#  endif
  FMT_ASSERT(x != 0, "");
  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
  return 63 ^ static_cast<int>(r);
}
#  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)

inline auto ctz(uint32_t x) -> int {
  unsigned long r = 0;
  _BitScanForward(&r, x);
  FMT_ASSERT(x != 0, "");
  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
  return static_cast<int>(r);
}
#  define FMT_BUILTIN_CTZ(n) detail::ctz(n)

inline auto ctzll(uint64_t x) -> int {
  unsigned long r = 0;
  FMT_ASSERT(x != 0, "");
  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
#  ifdef _WIN64
  _BitScanForward64(&r, x);
#  else
  // Scan the low 32 bits.
  if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
  // Scan the high 32 bits.
  _BitScanForward(&r, static_cast<uint32_t>(x >> 32));
  r += 32;
#  endif
  return static_cast<int>(r);
}
#  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
}  // namespace detail
FMT_END_NAMESPACE
#endif

FMT_BEGIN_NAMESPACE

template <typename...> struct disjunction : std::false_type {};
template <typename P> struct disjunction<P> : P {};
template <typename P1, typename... Pn>
struct disjunction<P1, Pn...>
    : conditional_t<bool(P1::value), P1, disjunction<Pn...>> {};

template <typename...> struct conjunction : std::true_type {};
template <typename P> struct conjunction<P> : P {};
template <typename P1, typename... Pn>
struct conjunction<P1, Pn...>
    : conditional_t<bool(P1::value), conjunction<Pn...>, P1> {};

namespace detail {

FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
  ignore_unused(condition);
#ifdef FMT_FUZZ
  if (condition) throw std::runtime_error("fuzzing limit reached");
#endif
}

template <typename CharT, CharT... C> struct string_literal {
  static constexpr CharT value[sizeof...(C)] = {C...};
  constexpr operator basic_string_view<CharT>() const {
    return {value, sizeof...(C)};
  }
};

#if FMT_CPLUSPLUS < 201703L
template <typename CharT, CharT... C>
constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)];
#endif

template <typename Streambuf> class formatbuf : public Streambuf {
 private:
  using char_type = typename Streambuf::char_type;
  using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0));
  using int_type = typename Streambuf::int_type;
  using traits_type = typename Streambuf::traits_type;

  buffer<char_type>& buffer_;

 public:
  explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {}

 protected:
  // The put area is always empty. This makes the implementation simpler and has
  // the advantage that the streambuf and the buffer are always in sync and
  // sputc never writes into uninitialized memory. A disadvantage is that each
  // call to sputc always results in a (virtual) call to overflow. There is no
  // disadvantage here for sputn since this always results in a call to xsputn.

  auto overflow(int_type ch) -> int_type override {
    if (!traits_type::eq_int_type(ch, traits_type::eof()))
      buffer_.push_back(static_cast<char_type>(ch));
    return ch;
  }

  auto xsputn(const char_type* s, streamsize count) -> streamsize override {
    buffer_.append(s, s + count);
    return count;
  }
};

// Implementation of std::bit_cast for pre-C++20.
template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
#ifdef __cpp_lib_bit_cast
  if (is_constant_evaluated()) return std::bit_cast<To>(from);
#endif
  auto to = To();
  // The cast suppresses a bogus -Wclass-memaccess on GCC.
  std::memcpy(static_cast<void*>(&to), &from, sizeof(to));
  return to;
}

inline auto is_big_endian() -> bool {
#ifdef _WIN32
  return false;
#elif defined(__BIG_ENDIAN__)
  return true;
#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
  return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
#else
  struct bytes {
    char data[sizeof(int)];
  };
  return bit_cast<bytes>(1).data[0] == 0;
#endif
}

class uint128_fallback {
 private:
  uint64_t lo_, hi_;

  friend uint128_fallback umul128(uint64_t x, uint64_t y) noexcept;

 public:
  constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
  constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}

  constexpr uint64_t high() const noexcept { return hi_; }
  constexpr uint64_t low() const noexcept { return lo_; }

  template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
  constexpr explicit operator T() const {
    return static_cast<T>(lo_);
  }

  friend constexpr auto operator==(const uint128_fallback& lhs,
                                   const uint128_fallback& rhs) -> bool {
    return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_;
  }
  friend constexpr auto operator!=(const uint128_fallback& lhs,
                                   const uint128_fallback& rhs) -> bool {
    return !(lhs == rhs);
  }
  friend constexpr auto operator>(const uint128_fallback& lhs,
                                  const uint128_fallback& rhs) -> bool {
    return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_;
  }
  friend constexpr auto operator|(const uint128_fallback& lhs,
                                  const uint128_fallback& rhs)
      -> uint128_fallback {
    return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_};
  }
  friend constexpr auto operator&(const uint128_fallback& lhs,
                                  const uint128_fallback& rhs)
      -> uint128_fallback {
    return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_};
  }
  friend constexpr auto operator~(const uint128_fallback& n)
      -> uint128_fallback {
    return {~n.hi_, ~n.lo_};
  }
  friend auto operator+(const uint128_fallback& lhs,
                        const uint128_fallback& rhs) -> uint128_fallback {
    auto result = uint128_fallback(lhs);
    result += rhs;
    return result;
  }
  friend auto operator*(const uint128_fallback& lhs, uint32_t rhs)
      -> uint128_fallback {
    FMT_ASSERT(lhs.hi_ == 0, "");
    uint64_t hi = (lhs.lo_ >> 32) * rhs;
    uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs;
    uint64_t new_lo = (hi << 32) + lo;
    return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo};
  }
  friend auto operator-(const uint128_fallback& lhs, uint64_t rhs)
      -> uint128_fallback {
    return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs};
  }
  FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback {
    if (shift == 64) return {0, hi_};
    if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64);
    return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)};
  }
  FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback {
    if (shift == 64) return {lo_, 0};
    if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64);
    return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)};
  }
  FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& {
    return *this = *this >> shift;
  }
  FMT_CONSTEXPR void operator+=(uint128_fallback n) {
    uint64_t new_lo = lo_ + n.lo_;
    uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0);
    FMT_ASSERT(new_hi >= hi_, "");
    lo_ = new_lo;
    hi_ = new_hi;
  }
  FMT_CONSTEXPR void operator&=(uint128_fallback n) {
    lo_ &= n.lo_;
    hi_ &= n.hi_;
  }

  FMT_CONSTEXPR20 uint128_fallback& operator+=(uint64_t n) noexcept {
    if (is_constant_evaluated()) {
      lo_ += n;
      hi_ += (lo_ < n ? 1 : 0);
      return *this;
    }
#if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
    unsigned long long carry;
    lo_ = __builtin_addcll(lo_, n, 0, &carry);
    hi_ += carry;
#elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
    unsigned long long result;
    auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
    lo_ = result;
    hi_ += carry;
#elif defined(_MSC_VER) && defined(_M_X64)
    auto carry = _addcarry_u64(0, lo_, n, &lo_);
    _addcarry_u64(carry, hi_, 0, &hi_);
#else
    lo_ += n;
    hi_ += (lo_ < n ? 1 : 0);
#endif
    return *this;
  }
};

using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>;

#ifdef UINTPTR_MAX
using uintptr_t = ::uintptr_t;
#else
using uintptr_t = uint128_t;
#endif

// Returns the largest possible value for type T. Same as
// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
template <typename T> constexpr auto max_value() -> T {
  return (std::numeric_limits<T>::max)();
}
template <typename T> constexpr auto num_bits() -> int {
  return std::numeric_limits<T>::digits;
}
// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
template <> constexpr auto num_bits<int128_opt>() -> int { return 128; }
template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }

// A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
// and 128-bit pointers to uint128_fallback.
template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))>
inline auto bit_cast(const From& from) -> To {
  constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned));
  struct data_t {
    unsigned value[static_cast<unsigned>(size)];
  } data = bit_cast<data_t>(from);
  auto result = To();
  if (const_check(is_big_endian())) {
    for (int i = 0; i < size; ++i)
      result = (result << num_bits<unsigned>()) | data.value[i];
  } else {
    for (int i = size - 1; i >= 0; --i)
      result = (result << num_bits<unsigned>()) | data.value[i];
  }
  return result;
}

template <typename UInt>
FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int {
  int lz = 0;
  constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1);
  for (; (n & msb_mask) == 0; n <<= 1) lz++;
  return lz;
}

FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int {
#ifdef FMT_BUILTIN_CLZ
  if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n);
#endif
  return countl_zero_fallback(n);
}

FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int {
#ifdef FMT_BUILTIN_CLZLL
  if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n);
#endif
  return countl_zero_fallback(n);
}

FMT_INLINE void assume(bool condition) {
  (void)condition;
#if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
  __builtin_assume(condition);
#endif
}

// An approximation of iterator_t for pre-C++20 systems.
template <typename T>
using iterator_t = decltype(std::begin(std::declval<T&>()));
template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));

// A workaround for std::string not having mutable data() until C++17.
template <typename Char>
inline auto get_data(std::basic_string<Char>& s) -> Char* {
  return &s[0];
}
template <typename Container>
inline auto get_data(Container& c) -> typename Container::value_type* {
  return c.data();
}

#if defined(_SECURE_SCL) && _SECURE_SCL
// Make a checked iterator to avoid MSVC warnings.
template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
template <typename T>
constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> {
  return {p, size};
}
#else
template <typename T> using checked_ptr = T*;
template <typename T> constexpr auto make_checked(T* p, size_t) -> T* {
  return p;
}
#endif

// Attempts to reserve space for n extra characters in the output range.
// Returns a pointer to the reserved range or a reference to it.
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
__attribute__((no_sanitize("undefined")))
#endif
inline auto
reserve(std::back_insert_iterator<Container> it, size_t n)
    -> checked_ptr<typename Container::value_type> {
  Container& c = get_container(it);
  size_t size = c.size();
  c.resize(size + n);
  return make_checked(get_data(c) + size, n);
}

template <typename T>
inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
  buffer<T>& buf = get_container(it);
  buf.try_reserve(buf.size() + n);
  return it;
}

template <typename Iterator>
constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
  return it;
}

template <typename OutputIt>
using reserve_iterator =
    remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;

template <typename T, typename OutputIt>
constexpr auto to_pointer(OutputIt, size_t) -> T* {
  return nullptr;
}
template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
  buffer<T>& buf = get_container(it);
  auto size = buf.size();
  if (buf.capacity() < size + n) return nullptr;
  buf.try_resize(size + n);
  return buf.data() + size;
}

template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
inline auto base_iterator(std::back_insert_iterator<Container>& it,
                          checked_ptr<typename Container::value_type>)
    -> std::back_insert_iterator<Container> {
  return it;
}

template <typename Iterator>
constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
  return it;
}

// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
// instead (#1998).
template <typename OutputIt, typename Size, typename T>
FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
    -> OutputIt {
  for (Size i = 0; i < count; ++i) *out++ = value;
  return out;
}
template <typename T, typename Size>
FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
  if (is_constant_evaluated()) {
    return fill_n<T*, Size, T>(out, count, value);
  }
  std::memset(out, value, to_unsigned(count));
  return out + count;
}

#ifdef __cpp_char8_t
using char8_type = char8_t;
#else
enum char8_type : unsigned char {};
#endif

template <typename OutChar, typename InputIt, typename OutputIt>
FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
                                                  OutputIt out) -> OutputIt {
  return copy_str<OutChar>(begin, end, out);
}

// A public domain branchless UTF-8 decoder by Christopher Wellons:
// https://github.com/skeeto/branchless-utf8
/* Decode the next character, c, from s, reporting errors in e.
 *
 * Since this is a branchless decoder, four bytes will be read from the
 * buffer regardless of the actual length of the next character. This
 * means the buffer _must_ have at least three bytes of zero padding
 * following the end of the data stream.
 *
 * Errors are reported in e, which will be non-zero if the parsed
 * character was somehow invalid: invalid byte sequence, non-canonical
 * encoding, or a surrogate half.
 *
 * The function returns a pointer to the next character. When an error
 * occurs, this pointer will be a guess that depends on the particular
 * error, but it will always advance at least one byte.
 */
FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
    -> const char* {
  constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
  constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
  constexpr const int shiftc[] = {0, 18, 12, 6, 0};
  constexpr const int shifte[] = {0, 6, 4, 2, 0};

  int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4"
      [static_cast<unsigned char>(*s) >> 3];
  // Compute the pointer to the next character early so that the next
  // iteration can start working on the next character. Neither Clang
  // nor GCC figure out this reordering on their own.
  const char* next = s + len + !len;

  using uchar = unsigned char;

  // Assume a four-byte character and load four bytes. Unused bits are
  // shifted out.
  *c = uint32_t(uchar(s[0]) & masks[len]) << 18;
  *c |= uint32_t(uchar(s[1]) & 0x3f) << 12;
  *c |= uint32_t(uchar(s[2]) & 0x3f) << 6;
  *c |= uint32_t(uchar(s[3]) & 0x3f) << 0;
  *c >>= shiftc[len];

  // Accumulate the various error conditions.
  *e = (*c < mins[len]) << 6;       // non-canonical encoding
  *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
  *e |= (*c > 0x10FFFF) << 8;       // out of range?
  *e |= (uchar(s[1]) & 0xc0) >> 2;
  *e |= (uchar(s[2]) & 0xc0) >> 4;
  *e |= uchar(s[3]) >> 6;
  *e ^= 0x2a;  // top two bits of each tail byte correct?
  *e >>= shifte[len];

  return next;
}

constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t();

// Invokes f(cp, sv) for every code point cp in s with sv being the string view
// corresponding to the code point. cp is invalid_code_point on error.
template <typename F>
FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
  auto decode = [f](const char* buf_ptr, const char* ptr) {
    auto cp = uint32_t();
    auto error = 0;
    auto end = utf8_decode(buf_ptr, &cp, &error);
    bool result = f(error ? invalid_code_point : cp,
                    string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr)));
    return result ? (error ? buf_ptr + 1 : end) : nullptr;
  };
  auto p = s.data();
  const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
  if (s.size() >= block_size) {
    for (auto end = p + s.size() - block_size + 1; p < end;) {
      p = decode(p, p);
      if (!p) return;
    }
  }
  if (auto num_chars_left = s.data() + s.size() - p) {
    char buf[2 * block_size - 1] = {};
    copy_str<char>(p, p + num_chars_left, buf);
    const char* buf_ptr = buf;
    do {
      auto end = decode(buf_ptr, p);
      if (!end) return;
      p += end - buf_ptr;
      buf_ptr = end;
    } while (buf_ptr - buf < num_chars_left);
  }
}

template <typename Char>
inline auto compute_width(basic_string_view<Char> s) -> size_t {
  return s.size();
}

// Computes approximate display width of a UTF-8 string.
FMT_CONSTEXPR inline size_t compute_width(string_view s) {
  size_t num_code_points = 0;
  // It is not a lambda for compatibility with C++14.
  struct count_code_points {
    size_t* count;
    FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
      *count += detail::to_unsigned(
          1 +
          (cp >= 0x1100 &&
           (cp <= 0x115f ||  // Hangul Jamo init. consonants
            cp == 0x2329 ||  // LEFT-POINTING ANGLE BRACKET
            cp == 0x232a ||  // RIGHT-POINTING ANGLE BRACKET
            // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
            (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
            (cp >= 0xac00 && cp <= 0xd7a3) ||    // Hangul Syllables
            (cp >= 0xf900 && cp <= 0xfaff) ||    // CJK Compatibility Ideographs
            (cp >= 0xfe10 && cp <= 0xfe19) ||    // Vertical Forms
            (cp >= 0xfe30 && cp <= 0xfe6f) ||    // CJK Compatibility Forms
            (cp >= 0xff00 && cp <= 0xff60) ||    // Fullwidth Forms
            (cp >= 0xffe0 && cp <= 0xffe6) ||    // Fullwidth Forms
            (cp >= 0x20000 && cp <= 0x2fffd) ||  // CJK
            (cp >= 0x30000 && cp <= 0x3fffd) ||
            // Miscellaneous Symbols and Pictographs + Emoticons:
            (cp >= 0x1f300 && cp <= 0x1f64f) ||
            // Supplemental Symbols and Pictographs:
            (cp >= 0x1f900 && cp <= 0x1f9ff))));
      return true;
    }
  };
  // We could avoid branches by using utf8_decode directly.
  for_each_codepoint(s, count_code_points{&num_code_points});
  return num_code_points;
}

inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
  return compute_width(
      string_view(reinterpret_cast<const char*>(s.data()), s.size()));
}

template <typename Char>
inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
  size_t size = s.size();
  return n < size ? n : size;
}

// Calculates the index of the nth code point in a UTF-8 string.
inline auto code_point_index(string_view s, size_t n) -> size_t {
  const char* data = s.data();
  size_t num_code_points = 0;
  for (size_t i = 0, size = s.size(); i != size; ++i) {
    if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i;
  }
  return s.size();
}

inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
    -> size_t {
  return code_point_index(
      string_view(reinterpret_cast<const char*>(s.data()), s.size()), n);
}

template <typename T> struct is_integral : std::is_integral<T> {};
template <> struct is_integral<int128_opt> : std::true_type {};
template <> struct is_integral<uint128_t> : std::true_type {};

template <typename T>
using is_signed =
    std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
                                     std::is_same<T, int128_opt>::value>;

template <typename T>
using is_integer =
    bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
                  !std::is_same<T, char>::value &&
                  !std::is_same<T, wchar_t>::value>;

#ifndef FMT_USE_FLOAT
#  define FMT_USE_FLOAT 1
#endif
#ifndef FMT_USE_DOUBLE
#  define FMT_USE_DOUBLE 1
#endif
#ifndef FMT_USE_LONG_DOUBLE
#  define FMT_USE_LONG_DOUBLE 1
#endif

#ifndef FMT_USE_FLOAT128
#  ifdef __clang__
// Clang emulates GCC, so it has to appear early.
#    if FMT_HAS_INCLUDE(<quadmath.h>)
#      define FMT_USE_FLOAT128 1
#    endif
#  elif defined(__GNUC__)
// GNU C++:
#    if defined(_GLIBCXX_USE_FLOAT128) && !defined(__STRICT_ANSI__)
#      define FMT_USE_FLOAT128 1
#    endif
#  endif
#  ifndef FMT_USE_FLOAT128
#    define FMT_USE_FLOAT128 0
#  endif
#endif

#if FMT_USE_FLOAT128
using float128 = __float128;
#else
using float128 = void;
#endif
template <typename T> using is_float128 = std::is_same<T, float128>;

template <typename T>
using is_floating_point =
    bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>;

template <typename T, bool = std::is_floating_point<T>::value>
struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
                                     sizeof(T) <= sizeof(double)> {};
template <typename T> struct is_fast_float<T, false> : std::false_type {};

template <typename T>
using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>;

#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
#  define FMT_USE_FULL_CACHE_DRAGONBOX 0
#endif

template <typename T>
template <typename U>
void buffer<T>::append(const U* begin, const U* end) {
  while (begin != end) {
    auto count = to_unsigned(end - begin);
    try_reserve(size_ + count);
    auto free_cap = capacity_ - size_;
    if (free_cap < count) count = free_cap;
    std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
    size_ += count;
    begin += count;
  }
}

template <typename T, typename Enable = void>
struct is_locale : std::false_type {};
template <typename T>
struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
}  // namespace detail

FMT_BEGIN_EXPORT

// The number of characters to store in the basic_memory_buffer object itself
// to avoid dynamic memory allocation.
enum { inline_buffer_size = 500 };

/**
  \rst
  A dynamically growing memory buffer for trivially copyable/constructible types
  with the first ``SIZE`` elements stored in the object itself.

  You can use the ``memory_buffer`` type alias for ``char`` instead.

  **Example**::

     auto out = fmt::memory_buffer();
     format_to(std::back_inserter(out), "The answer is {}.", 42);

  This will append the following output to the ``out`` object:

  .. code-block:: none

     The answer is 42.

  The output can be converted to an ``std::string`` with ``to_string(out)``.
  \endrst
 */
template <typename T, size_t SIZE = inline_buffer_size,
          typename Allocator = std::allocator<T>>
class basic_memory_buffer final : public detail::buffer<T> {
 private:
  T store_[SIZE];

  // Don't inherit from Allocator avoid generating type_info for it.
  Allocator alloc_;

  // Deallocate memory allocated by the buffer.
  FMT_CONSTEXPR20 void deallocate() {
    T* data = this->data();
    if (data != store_) alloc_.deallocate(data, this->capacity());
  }

 protected:
  FMT_CONSTEXPR20 void grow(size_t size) override {
    detail::abort_fuzzing_if(size > 5000);
    const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
    size_t old_capacity = this->capacity();
    size_t new_capacity = old_capacity + old_capacity / 2;
    if (size > new_capacity)
      new_capacity = size;
    else if (new_capacity > max_size)
      new_capacity = size > max_size ? size : max_size;
    T* old_data = this->data();
    T* new_data =
        std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
    // The following code doesn't throw, so the raw pointer above doesn't leak.
    std::uninitialized_copy(old_data, old_data + this->size(),
                            detail::make_checked(new_data, new_capacity));
    this->set(new_data, new_capacity);
    // deallocate must not throw according to the standard, but even if it does,
    // the buffer already uses the new storage and will deallocate it in
    // destructor.
    if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
  }

 public:
  using value_type = T;
  using const_reference = const T&;

  FMT_CONSTEXPR20 explicit basic_memory_buffer(
      const Allocator& alloc = Allocator())
      : alloc_(alloc) {
    this->set(store_, SIZE);
    if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T());
  }
  FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }

 private:
  // Move data from other to this buffer.
  FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
    alloc_ = std::move(other.alloc_);
    T* data = other.data();
    size_t size = other.size(), capacity = other.capacity();
    if (data == other.store_) {
      this->set(store_, capacity);
      detail::copy_str<T>(other.store_, other.store_ + size,
                          detail::make_checked(store_, capacity));
    } else {
      this->set(data, capacity);
      // Set pointer to the inline array so that delete is not called
      // when deallocating.
      other.set(other.store_, 0);
      other.clear();
    }
    this->resize(size);
  }

 public:
  /**
    \rst
    Constructs a :class:`fmt::basic_memory_buffer` object moving the content
    of the other object to it.
    \endrst
   */
  FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept {
    move(other);
  }

  /**
    \rst
    Moves the content of the other ``basic_memory_buffer`` object to this one.
    \endrst
   */
  auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& {
    FMT_ASSERT(this != &other, "");
    deallocate();
    move(other);
    return *this;
  }

  // Returns a copy of the allocator associated with this buffer.
  auto get_allocator() const -> Allocator { return alloc_; }

  /**
    Resizes the buffer to contain *count* elements. If T is a POD type new
    elements may not be initialized.
   */
  FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); }

  /** Increases the buffer capacity to *new_capacity*. */
  void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }

  // Directly append data into the buffer
  using detail::buffer<T>::append;
  template <typename ContiguousRange>
  void append(const ContiguousRange& range) {
    append(range.data(), range.data() + range.size());
  }
};

using memory_buffer = basic_memory_buffer<char>;

template <typename T, size_t SIZE, typename Allocator>
struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
};

FMT_END_EXPORT
namespace detail {
FMT_API bool write_console(std::FILE* f, string_view text);
FMT_API void print(std::FILE*, string_view);
}  // namespace detail
FMT_BEGIN_EXPORT

// Suppress a misleading warning in older versions of clang.
#if FMT_CLANG_VERSION
#  pragma clang diagnostic ignored "-Wweak-vtables"
#endif

/** An error reported from a formatting function. */
class FMT_API format_error : public std::runtime_error {
 public:
  using std::runtime_error::runtime_error;
};

namespace detail_exported {
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
template <typename Char, size_t N> struct fixed_string {
  constexpr fixed_string(const Char (&str)[N]) {
    detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
                                               str + N, data);
  }
  Char data[N] = {};
};
#endif

// Converts a compile-time string to basic_string_view.
template <typename Char, size_t N>
constexpr auto compile_string_to_view(const Char (&s)[N])
    -> basic_string_view<Char> {
  // Remove trailing NUL character if needed. Won't be present if this is used
  // with a raw character array (i.e. not defined as a string).
  return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
}
template <typename Char>
constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
    -> basic_string_view<Char> {
  return {s.data(), s.size()};
}
}  // namespace detail_exported

class loc_value {
 private:
  basic_format_arg<format_context> value_;

 public:
  template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)>
  loc_value(T value) : value_(detail::make_arg<format_context>(value)) {}

  template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)>
  loc_value(T) {}

  template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) {
    return visit_format_arg(vis, value_);
  }
};

// A locale facet that formats values in UTF-8.
// It is parameterized on the locale to avoid the heavy <locale> include.
template <typename Locale> class format_facet : public Locale::facet {
 private:
  std::string separator_;
  std::string grouping_;
  std::string decimal_point_;

 protected:
  virtual auto do_put(appender out, loc_value val,
                      const format_specs<>& specs) const -> bool;

 public:
  static FMT_API typename Locale::id id;

  explicit format_facet(Locale& loc);
  explicit format_facet(string_view sep = "",
                        std::initializer_list<unsigned char> g = {3},
                        std::string decimal_point = ".")
      : separator_(sep.data(), sep.size()),
        grouping_(g.begin(), g.end()),
        decimal_point_(decimal_point) {}

  auto put(appender out, loc_value val, const format_specs<>& specs) const
      -> bool {
    return do_put(out, val, specs);
  }
};

FMT_BEGIN_DETAIL_NAMESPACE

// Returns true if value is negative, false otherwise.
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
constexpr auto is_negative(T value) -> bool {
  return value < 0;
}
template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
constexpr auto is_negative(T) -> bool {
  return false;
}

template <typename T>
FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool {
  if (std::is_same<T, float>()) return FMT_USE_FLOAT;
  if (std::is_same<T, double>()) return FMT_USE_DOUBLE;
  if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE;
  return true;
}

// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
// represent all values of an integral type T.
template <typename T>
using uint32_or_64_or_128_t =
    conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
                  uint32_t,
                  conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
template <typename T>
using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;

#define FMT_POWERS_OF_10(factor)                                             \
  factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
      (factor)*1000000, (factor)*10000000, (factor)*100000000,               \
      (factor)*1000000000

// Converts value in the range [0, 100) to a string.
constexpr const char* digits2(size_t value) {
  // GCC generates slightly better code when value is pointer-size.
  return &"0001020304050607080910111213141516171819"
         "2021222324252627282930313233343536373839"
         "4041424344454647484950515253545556575859"
         "6061626364656667686970717273747576777879"
         "8081828384858687888990919293949596979899"[value * 2];
}

// Sign is a template parameter to workaround a bug in gcc 4.8.
template <typename Char, typename Sign> constexpr Char sign(Sign s) {
#if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
  static_assert(std::is_same<Sign, sign_t>::value, "");
#endif
  return static_cast<Char>("\0-+ "[s]);
}

template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
  int count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000u;
    count += 4;
  }
}
#if FMT_USE_INT128
FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int {
  return count_digits_fallback(n);
}
#endif

#ifdef FMT_BUILTIN_CLZLL
// It is a separate function rather than a part of count_digits to workaround
// the lack of static constexpr in constexpr functions.
inline auto do_count_digits(uint64_t n) -> int {
  // This has comparable performance to the version by Kendall Willets
  // (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
  // but uses smaller tables.
  // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
  static constexpr uint8_t bsr2log10[] = {
      1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,
      6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10,
      10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
      15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
  auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
  static constexpr const uint64_t zero_or_powers_of_10[] = {
      0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
      10000000000000000000ULL};
  return t - (n < zero_or_powers_of_10[t]);
}
#endif

// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
#ifdef FMT_BUILTIN_CLZLL
  if (!is_constant_evaluated()) {
    return do_count_digits(n);
  }
#endif
  return count_digits_fallback(n);
}

// Counts the number of digits in n. BITS = log2(radix).
template <int BITS, typename UInt>
FMT_CONSTEXPR auto count_digits(UInt n) -> int {
#ifdef FMT_BUILTIN_CLZ
  if (!is_constant_evaluated() && num_bits<UInt>() == 32)
    return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
#endif
  // Lambda avoids unreachable code warnings from NVHPC.
  return [](UInt m) {
    int num_digits = 0;
    do {
      ++num_digits;
    } while ((m >>= BITS) != 0);
    return num_digits;
  }(n);
}

#ifdef FMT_BUILTIN_CLZ
// It is a separate function rather than a part of count_digits to workaround
// the lack of static constexpr in constexpr functions.
FMT_INLINE auto do_count_digits(uint32_t n) -> int {
// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
#  define FMT_INC(T) (((sizeof(#  T) - 1ull) << 32) - T)
  static constexpr uint64_t table[] = {
      FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8
      FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64
      FMT_INC(100),        FMT_INC(100),        FMT_INC(100),         // 512
      FMT_INC(1000),       FMT_INC(1000),       FMT_INC(1000),        // 4096
      FMT_INC(10000),      FMT_INC(10000),      FMT_INC(10000),       // 32k
      FMT_INC(100000),     FMT_INC(100000),     FMT_INC(100000),      // 256k
      FMT_INC(1000000),    FMT_INC(1000000),    FMT_INC(1000000),     // 2048k
      FMT_INC(10000000),   FMT_INC(10000000),   FMT_INC(10000000),    // 16M
      FMT_INC(100000000),  FMT_INC(100000000),  FMT_INC(100000000),   // 128M
      FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000),  // 1024M
      FMT_INC(1000000000), FMT_INC(1000000000)                        // 4B
  };
  auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
  return static_cast<int>((n + inc) >> 32);
}
#endif

// Optional version of count_digits for better performance on 32-bit platforms.
FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
#ifdef FMT_BUILTIN_CLZ
  if (!is_constant_evaluated()) {
    return do_count_digits(n);
  }
#endif
  return count_digits_fallback(n);
}

template <typename Int> constexpr auto digits10() noexcept -> int {
  return std::numeric_limits<Int>::digits10;
}
template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; }
template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; }

template <typename Char> struct thousands_sep_result {
  std::string grouping;
  Char thousands_sep;
};

template <typename Char>
FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
template <typename Char>
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
  auto result = thousands_sep_impl<char>(loc);
  return {result.grouping, Char(result.thousands_sep)};
}
template <>
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
  return thousands_sep_impl<wchar_t>(loc);
}

template <typename Char>
FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
  return Char(decimal_point_impl<char>(loc));
}
template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
  return decimal_point_impl<wchar_t>(loc);
}

// Compares two characters for equality.
template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
  return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
}
inline auto equal2(const char* lhs, const char* rhs) -> bool {
  return memcmp(lhs, rhs, 2) == 0;
}

// Copies two characters from src to dst.
template <typename Char>
FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) {
  if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) {
    memcpy(dst, src, 2);
    return;
  }
  *dst++ = static_cast<Char>(*src++);
  *dst = static_cast<Char>(*src);
}

template <typename Iterator> struct format_decimal_result {
  Iterator begin;
  Iterator end;
};

// Formats a decimal unsigned integer value writing into out pointing to a
// buffer of specified size. The caller must ensure that the buffer is large
// enough.
template <typename Char, typename UInt>
FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
    -> format_decimal_result<Char*> {
  FMT_ASSERT(size >= count_digits(value), "invalid digit count");
  out += size;
  Char* end = out;
  while (value >= 100) {
    // Integer division is slow so do it for a group of two digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    out -= 2;
    copy2(out, digits2(static_cast<size_t>(value % 100)));
    value /= 100;
  }
  if (value < 10) {
    *--out = static_cast<Char>('0' + value);
    return {out, end};
  }
  out -= 2;
  copy2(out, digits2(static_cast<size_t>(value)));
  return {out, end};
}

template <typename Char, typename UInt, typename Iterator,
          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size)
    -> format_decimal_result<Iterator> {
  // Buffer is large enough to hold all digits (digits10 + 1).
  Char buffer[digits10<UInt>() + 1] = {};
  auto end = format_decimal(buffer, value, size).end;
  return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
}

template <unsigned BASE_BITS, typename Char, typename UInt>
FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
                               bool upper = false) -> Char* {
  buffer += num_digits;
  Char* end = buffer;
  do {
    const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
    unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1));
    *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
                                                : digits[digit]);
  } while ((value >>= BASE_BITS) != 0);
  return end;
}

template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
inline auto format_uint(It out, UInt value, int num_digits, bool upper = false)
    -> It {
  if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
    format_uint<BASE_BITS>(ptr, value, num_digits, upper);
    return out;
  }
  // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
  char buffer[num_bits<UInt>() / BASE_BITS + 1];
  format_uint<BASE_BITS>(buffer, value, num_digits, upper);
  return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
}

// A converter from UTF-8 to UTF-16.
class utf8_to_utf16 {
 private:
  basic_memory_buffer<wchar_t> buffer_;

 public:
  FMT_API explicit utf8_to_utf16(string_view s);
  operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
  auto size() const -> size_t { return buffer_.size() - 1; }
  auto c_str() const -> const wchar_t* { return &buffer_[0]; }
  auto str() const -> std::wstring { return {&buffer_[0], size()}; }
};

// A converter from UTF-16/UTF-32 (host endian) to UTF-8.
template <typename WChar, typename Buffer = memory_buffer>
class unicode_to_utf8 {
 private:
  Buffer buffer_;

 public:
  unicode_to_utf8() {}
  explicit unicode_to_utf8(basic_string_view<WChar> s) {
    static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
                  "Expect utf16 or utf32");

    if (!convert(s))
      FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
                                                      : "invalid utf32"));
  }
  operator string_view() const { return string_view(&buffer_[0], size()); }
  size_t size() const { return buffer_.size() - 1; }
  const char* c_str() const { return &buffer_[0]; }
  std::string str() const { return std::string(&buffer_[0], size()); }

  // Performs conversion returning a bool instead of throwing exception on
  // conversion error. This method may still throw in case of memory allocation
  // error.
  bool convert(basic_string_view<WChar> s) {
    if (!convert(buffer_, s)) return false;
    buffer_.push_back(0);
    return true;
  }
  static bool convert(Buffer& buf, basic_string_view<WChar> s) {
    for (auto p = s.begin(); p != s.end(); ++p) {
      uint32_t c = static_cast<uint32_t>(*p);
      if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
        // surrogate pair
        ++p;
        if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
          return false;
        }
        c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
      }
      if (c < 0x80) {
        buf.push_back(static_cast<char>(c));
      } else if (c < 0x800) {
        buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
      } else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) {
        buf.push_back(static_cast<char>(0xe0 | (c >> 12)));
        buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
      } else if (c >= 0x10000 && c <= 0x10ffff) {
        buf.push_back(static_cast<char>(0xf0 | (c >> 18)));
        buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12)));
        buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
      } else {
        return false;
      }
    }
    return true;
  }
};

// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
inline uint128_fallback umul128(uint64_t x, uint64_t y) noexcept {
#if FMT_USE_INT128
  auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
  return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
#elif defined(_MSC_VER) && defined(_M_X64)
  auto result = uint128_fallback();
  result.lo_ = _umul128(x, y, &result.hi_);
  return result;
#else
  const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());

  uint64_t a = x >> 32;
  uint64_t b = x & mask;
  uint64_t c = y >> 32;
  uint64_t d = y & mask;

  uint64_t ac = a * c;
  uint64_t bc = b * c;
  uint64_t ad = a * d;
  uint64_t bd = b * d;

  uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);

  return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
          (intermediate << 32) + (bd & mask)};
#endif
}

namespace dragonbox {
// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
inline int floor_log10_pow2(int e) noexcept {
  FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
  static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
  return (e * 315653) >> 20;
}

inline int floor_log2_pow10(int e) noexcept {
  FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
  return (e * 1741647) >> 19;
}

// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
inline uint64_t umul128_upper64(uint64_t x, uint64_t y) noexcept {
#if FMT_USE_INT128
  auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
  return static_cast<uint64_t>(p >> 64);
#elif defined(_MSC_VER) && defined(_M_X64)
  return __umulh(x, y);
#else
  return umul128(x, y).high();
#endif
}

// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
inline uint128_fallback umul192_upper128(uint64_t x,
                                         uint128_fallback y) noexcept {
  uint128_fallback r = umul128(x, y.high());
  r += umul128_upper64(x, y.low());
  return r;
}

FMT_API uint128_fallback get_cached_power(int k) noexcept;

// Type-specific information that Dragonbox uses.
template <typename T, typename Enable = void> struct float_info;

template <> struct float_info<float> {
  using carrier_uint = uint32_t;
  static const int exponent_bits = 8;
  static const int kappa = 1;
  static const int big_divisor = 100;
  static const int small_divisor = 10;
  static const int min_k = -31;
  static const int max_k = 46;
  static const int shorter_interval_tie_lower_threshold = -35;
  static const int shorter_interval_tie_upper_threshold = -35;
};

template <> struct float_info<double> {
  using carrier_uint = uint64_t;
  static const int exponent_bits = 11;
  static const int kappa = 2;
  static const int big_divisor = 1000;
  static const int small_divisor = 100;
  static const int min_k = -292;
  static const int max_k = 341;
  static const int shorter_interval_tie_lower_threshold = -77;
  static const int shorter_interval_tie_upper_threshold = -77;
};

// An 80- or 128-bit floating point number.
template <typename T>
struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 ||
                                 std::numeric_limits<T>::digits == 113 ||
                                 is_float128<T>::value>> {
  using carrier_uint = detail::uint128_t;
  static const int exponent_bits = 15;
};

// A double-double floating point number.
template <typename T>
struct float_info<T, enable_if_t<is_double_double<T>::value>> {
  using carrier_uint = detail::uint128_t;
};

template <typename T> struct decimal_fp {
  using significand_type = typename float_info<T>::carrier_uint;
  significand_type significand;
  int exponent;
};

template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>;
}  // namespace dragonbox

// Returns true iff Float has the implicit bit which is not stored.
template <typename Float> constexpr bool has_implicit_bit() {
  // An 80-bit FP number has a 64-bit significand an no implicit bit.
  return std::numeric_limits<Float>::digits != 64;
}

// Returns the number of significand bits stored in Float. The implicit bit is
// not counted since it is not stored.
template <typename Float> constexpr int num_significand_bits() {
  // std::numeric_limits may not support __float128.
  return is_float128<Float>() ? 112
                              : (std::numeric_limits<Float>::digits -
                                 (has_implicit_bit<Float>() ? 1 : 0));
}

template <typename Float>
constexpr auto exponent_mask() ->
    typename dragonbox::float_info<Float>::carrier_uint {
  using float_uint = typename dragonbox::float_info<Float>::carrier_uint;
  return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1)
         << num_significand_bits<Float>();
}
template <typename Float> constexpr auto exponent_bias() -> int {
  // std::numeric_limits may not support __float128.
  return is_float128<Float>() ? 16383
                              : std::numeric_limits<Float>::max_exponent - 1;
}

// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
template <typename Char, typename It>
FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It {
  FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
  if (exp < 0) {
    *it++ = static_cast<Char>('-');
    exp = -exp;
  } else {
    *it++ = static_cast<Char>('+');
  }
  if (exp >= 100) {
    const char* top = digits2(to_unsigned(exp / 100));
    if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
    *it++ = static_cast<Char>(top[1]);
    exp %= 100;
  }
  const char* d = digits2(to_unsigned(exp));
  *it++ = static_cast<Char>(d[0]);
  *it++ = static_cast<Char>(d[1]);
  return it;
}

// A floating-point number f * pow(2, e) where F is an unsigned type.
template <typename F> struct basic_fp {
  F f;
  int e;

  static constexpr const int num_significand_bits =
      static_cast<int>(sizeof(F) * num_bits<unsigned char>());

  constexpr basic_fp() : f(0), e(0) {}
  constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}

  // Constructs fp from an IEEE754 floating-point number.
  template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }

  // Assigns n to this and return true iff predecessor is closer than successor.
  template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
  FMT_CONSTEXPR auto assign(Float n) -> bool {
    static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP");
    // Assume Float is in the format [sign][exponent][significand].
    using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
    const auto num_float_significand_bits =
        detail::num_significand_bits<Float>();
    const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
    const auto significand_mask = implicit_bit - 1;
    auto u = bit_cast<carrier_uint>(n);
    f = static_cast<F>(u & significand_mask);
    auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
                                     num_float_significand_bits);
    // The predecessor is closer if n is a normalized power of 2 (f == 0)
    // other than the smallest normalized number (biased_e > 1).
    auto is_predecessor_closer = f == 0 && biased_e > 1;
    if (biased_e == 0)
      biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
    else if (has_implicit_bit<Float>())
      f += static_cast<F>(implicit_bit);
    e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
    if (!has_implicit_bit<Float>()) ++e;
    return is_predecessor_closer;
  }

  template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
  FMT_CONSTEXPR auto assign(Float n) -> bool {
    static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP");
    return assign(static_cast<double>(n));
  }
};

using fp = basic_fp<unsigned long long>;

// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template <int SHIFT = 0, typename F>
FMT_CONSTEXPR basic_fp<F> normalize(basic_fp<F> value) {
  // Handle subnormals.
  const auto implicit_bit = F(1) << num_significand_bits<double>();
  const auto shifted_implicit_bit = implicit_bit << SHIFT;
  while ((value.f & shifted_implicit_bit) == 0) {
    value.f <<= 1;
    --value.e;
  }
  // Subtract 1 to account for hidden bit.
  const auto offset = basic_fp<F>::num_significand_bits -
                      num_significand_bits<double>() - SHIFT - 1;
  value.f <<= offset;
  value.e -= offset;
  return value;
}

// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
#if FMT_USE_INT128
  auto product = static_cast<__uint128_t>(lhs) * rhs;
  auto f = static_cast<uint64_t>(product >> 64);
  return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
#else
  // Multiply 32-bit parts of significands.
  uint64_t mask = (1ULL << 32) - 1;
  uint64_t a = lhs >> 32, b = lhs & mask;
  uint64_t c = rhs >> 32, d = rhs & mask;
  uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
  // Compute mid 64-bit of result and round.
  uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
  return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
#endif
}

FMT_CONSTEXPR inline fp operator*(fp x, fp y) {
  return {multiply(x.f, y.f), x.e + y.e + 64};
}

template <typename T = void> struct basic_data {
  // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
  // These are generated by support/compute-powers.py.
  static constexpr uint64_t pow10_significands[87] = {
      0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
      0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
      0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
      0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
      0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
      0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
      0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
      0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
      0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
      0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
      0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
      0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
      0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
      0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
      0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
      0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
      0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
      0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
      0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
      0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
      0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
      0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
      0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
      0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
      0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
      0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
      0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
      0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
      0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
  };

#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wnarrowing"
#endif
  // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
  // to significands above.
  static constexpr int16_t pow10_exponents[87] = {
      -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
      -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,  -688, -661,
      -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,  -422,  -396, -369,
      -343,  -316,  -289,  -263,  -236,  -210,  -183,  -157,  -130,  -103, -77,
      -50,   -24,   3,     30,    56,    83,    109,   136,   162,   189,  216,
      242,   269,   295,   322,   348,   375,   402,   428,   455,   481,  508,
      534,   561,   588,   614,   641,   667,   694,   720,   747,   774,  800,
      827,   853,   880,   907,   933,   960,   986,   1013,  1039,  1066};
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
#  pragma GCC diagnostic pop
#endif

  static constexpr uint64_t power_of_10_64[20] = {
      1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL),
      10000000000000000000ULL};

  // For checking rounding thresholds.
  // The kth entry is chosen to be the smallest integer such that the
  // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
  static constexpr uint32_t fractional_part_rounding_thresholds[8] = {
      2576980378,  // ceil(2^31 + 2^32/10^1)
      2190433321,  // ceil(2^31 + 2^32/10^2)
      2151778616,  // ceil(2^31 + 2^32/10^3)
      2147913145,  // ceil(2^31 + 2^32/10^4)
      2147526598,  // ceil(2^31 + 2^32/10^5)
      2147487943,  // ceil(2^31 + 2^32/10^6)
      2147484078,  // ceil(2^31 + 2^32/10^7)
      2147483691   // ceil(2^31 + 2^32/10^8)
  };
};

#if FMT_CPLUSPLUS < 201703L
template <typename T> constexpr uint64_t basic_data<T>::pow10_significands[];
template <typename T> constexpr int16_t basic_data<T>::pow10_exponents[];
template <typename T> constexpr uint64_t basic_data<T>::power_of_10_64[];
template <typename T>
constexpr uint32_t basic_data<T>::fractional_part_rounding_thresholds[];
#endif

// This is a struct rather than an alias to avoid shadowing warnings in gcc.
struct data : basic_data<> {};

// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
FMT_CONSTEXPR inline fp get_cached_power(int min_exponent,
                                         int& pow10_exponent) {
  const int shift = 32;
  // log10(2) = 0x0.4d104d427de7fbcc...
  const int64_t significand = 0x4d104d427de7fbcc;
  int index = static_cast<int>(
      ((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) +
       ((int64_t(1) << shift) - 1))  // ceil
      >> 32                          // arithmetic shift
  );
  // Decimal exponent of the first (smallest) cached power of 10.
  const int first_dec_exp = -348;
  // Difference between 2 consecutive decimal exponents in cached powers of 10.
  const int dec_exp_step = 8;
  index = (index - first_dec_exp - 1) / dec_exp_step + 1;
  pow10_exponent = first_dec_exp + index * dec_exp_step;
  // Using *(x + index) instead of x[index] avoids an issue with some compilers
  // using the EDG frontend (e.g. nvhpc/22.3 in C++17 mode).
  return {*(data::pow10_significands + index),
          *(data::pow10_exponents + index)};
}

template <typename T>
using convert_float_result =
    conditional_t<std::is_same<T, float>::value ||
                      std::numeric_limits<T>::digits ==
                          std::numeric_limits<double>::digits,
                  double, T>;

template <typename T>
constexpr auto convert_float(T value) -> convert_float_result<T> {
  return static_cast<convert_float_result<T>>(value);
}

template <typename OutputIt, typename Char>
FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
                                     const fill_t<Char>& fill) -> OutputIt {
  auto fill_size = fill.size();
  if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
  auto data = fill.data();
  for (size_t i = 0; i < n; ++i)
    it = copy_str<Char>(data, data + fill_size, it);
  return it;
}

// Writes the output of f, padded according to format specifications in specs.
// size: output size in code units.
// width: output display width in (terminal) column positions.
template <align::type align = align::left, typename OutputIt, typename Char,
          typename F>
FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs<Char>& specs,
                                size_t size, size_t width, F&& f) -> OutputIt {
  static_assert(align == align::left || align == align::right, "");
  unsigned spec_width = to_unsigned(specs.width);
  size_t padding = spec_width > width ? spec_width - width : 0;
  // Shifts are encoded as string literals because static constexpr is not
  // supported in constexpr functions.
  auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
  size_t left_padding = padding >> shifts[specs.align];
  size_t right_padding = padding - left_padding;
  auto it = reserve(out, size + padding * specs.fill.size());
  if (left_padding != 0) it = fill(it, left_padding, specs.fill);
  it = f(it);
  if (right_padding != 0) it = fill(it, right_padding, specs.fill);
  return base_iterator(out, it);
}

template <align::type align = align::left, typename OutputIt, typename Char,
          typename F>
constexpr auto write_padded(OutputIt out, const format_specs<Char>& specs,
                            size_t size, F&& f) -> OutputIt {
  return write_padded<align>(out, specs, size, size, f);
}

template <align::type align = align::left, typename Char, typename OutputIt>
FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
                               const format_specs<Char>& specs) -> OutputIt {
  return write_padded<align>(
      out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
        const char* data = bytes.data();
        return copy_str<Char>(data, data + bytes.size(), it);
      });
}

template <typename Char, typename OutputIt, typename UIntPtr>
auto write_ptr(OutputIt out, UIntPtr value, const format_specs<Char>* specs)
    -> OutputIt {
  int num_digits = count_digits<4>(value);
  auto size = to_unsigned(num_digits) + size_t(2);
  auto write = [=](reserve_iterator<OutputIt> it) {
    *it++ = static_cast<Char>('0');
    *it++ = static_cast<Char>('x');
    return format_uint<4, Char>(it, value, num_digits);
  };
  return specs ? write_padded<align::right>(out, *specs, size, write)
               : base_iterator(out, write(reserve(out, size)));
}

// Returns true iff the code point cp is printable.
FMT_API auto is_printable(uint32_t cp) -> bool;

inline auto needs_escape(uint32_t cp) -> bool {
  return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' ||
         !is_printable(cp);
}

template <typename Char> struct find_escape_result {
  const Char* begin;
  const Char* end;
  uint32_t cp;
};

template <typename Char>
using make_unsigned_char =
    typename conditional_t<std::is_integral<Char>::value,
                           std::make_unsigned<Char>,
                           type_identity<uint32_t>>::type;

template <typename Char>
auto find_escape(const Char* begin, const Char* end)
    -> find_escape_result<Char> {
  for (; begin != end; ++begin) {
    uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin);
    if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue;
    if (needs_escape(cp)) return {begin, begin + 1, cp};
  }
  return {begin, nullptr, 0};
}

inline auto find_escape(const char* begin, const char* end)
    -> find_escape_result<char> {
  if (!is_utf8()) return find_escape<char>(begin, end);
  auto result = find_escape_result<char>{end, nullptr, 0};
  for_each_codepoint(string_view(begin, to_unsigned(end - begin)),
                     [&](uint32_t cp, string_view sv) {
                       if (needs_escape(cp)) {
                         result = {sv.begin(), sv.end(), cp};
                         return false;
                       }
                       return true;
                     });
  return result;
}

#define FMT_STRING_IMPL(s, base, explicit)                                    \
  [] {                                                                        \
    /* Use the hidden visibility as a workaround for a GCC bug (#1973). */    \
    /* Use a macro-like name to avoid shadowing warnings. */                  \
    struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base {              \
      using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \
      FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                                 \
      operator fmt::basic_string_view<char_type>() const {                    \
        return fmt::detail_exported::compile_string_to_view<char_type>(s);    \
      }                                                                       \
    };                                                                        \
    return FMT_COMPILE_STRING();                                              \
  }()

/**
  \rst
  Constructs a compile-time format string from a string literal *s*.

  **Example**::

    // A compile-time error because 'd' is an invalid specifier for strings.
    std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
  \endrst
 */
#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, )

template <size_t width, typename Char, typename OutputIt>
auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt {
  *out++ = static_cast<Char>('\\');
  *out++ = static_cast<Char>(prefix);
  Char buf[width];
  fill_n(buf, width, static_cast<Char>('0'));
  format_uint<4>(buf, cp, width);
  return copy_str<Char>(buf, buf + width, out);
}

template <typename OutputIt, typename Char>
auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape)
    -> OutputIt {
  auto c = static_cast<Char>(escape.cp);
  switch (escape.cp) {
  case '\n':
    *out++ = static_cast<Char>('\\');
    c = static_cast<Char>('n');
    break;
  case '\r':
    *out++ = static_cast<Char>('\\');
    c = static_cast<Char>('r');
    break;
  case '\t':
    *out++ = static_cast<Char>('\\');
    c = static_cast<Char>('t');
    break;
  case '"':
    FMT_FALLTHROUGH;
  case '\'':
    FMT_FALLTHROUGH;
  case '\\':
    *out++ = static_cast<Char>('\\');
    break;
  default:
    if (escape.cp < 0x100) {
      return write_codepoint<2, Char>(out, 'x', escape.cp);
    }
    if (escape.cp < 0x10000) {
      return write_codepoint<4, Char>(out, 'u', escape.cp);
    }
    if (escape.cp < 0x110000) {
      return write_codepoint<8, Char>(out, 'U', escape.cp);
    }
    for (Char escape_char : basic_string_view<Char>(
             escape.begin, to_unsigned(escape.end - escape.begin))) {
      out = write_codepoint<2, Char>(out, 'x',
                                     static_cast<uint32_t>(escape_char) & 0xFF);
    }
    return out;
  }
  *out++ = c;
  return out;
}

template <typename Char, typename OutputIt>
auto write_escaped_string(OutputIt out, basic_string_view<Char> str)
    -> OutputIt {
  *out++ = static_cast<Char>('"');
  auto begin = str.begin(), end = str.end();
  do {
    auto escape = find_escape(begin, end);
    out = copy_str<Char>(begin, escape.begin, out);
    begin = escape.end;
    if (!begin) break;
    out = write_escaped_cp<OutputIt, Char>(out, escape);
  } while (begin != end);
  *out++ = static_cast<Char>('"');
  return out;
}

template <typename Char, typename OutputIt>
auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
  *out++ = static_cast<Char>('\'');
  if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
      v == static_cast<Char>('\'')) {
    out = write_escaped_cp(
        out, find_escape_result<Char>{&v, &v + 1, static_cast<uint32_t>(v)});
  } else {
    *out++ = v;
  }
  *out++ = static_cast<Char>('\'');
  return out;
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
                              const format_specs<Char>& specs) -> OutputIt {
  bool is_debug = specs.type == presentation_type::debug;
  return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
    if (is_debug) return write_escaped_char(it, value);
    *it++ = value;
    return it;
  });
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, Char value,
                         const format_specs<Char>& specs, locale_ref loc = {})
    -> OutputIt {
  // char is formatted as unsigned char for consistency across platforms.
  using unsigned_type =
      conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>;
  return check_char_specs(specs)
             ? write_char(out, value, specs)
             : write(out, static_cast<unsigned_type>(value), specs, loc);
}

// Data for write_int that doesn't depend on output iterator type. It is used to
// avoid template code bloat.
template <typename Char> struct write_int_data {
  size_t size;
  size_t padding;

  FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
                               const format_specs<Char>& specs)
      : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
    if (specs.align == align::numeric) {
      auto width = to_unsigned(specs.width);
      if (width > size) {
        padding = width - size;
        size = width;
      }
    } else if (specs.precision > num_digits) {
      size = (prefix >> 24) + to_unsigned(specs.precision);
      padding = to_unsigned(specs.precision - num_digits);
    }
  }
};

// Writes an integer in the format
//   <left-padding><prefix><numeric-padding><digits><right-padding>
// where <digits> are written by write_digits(it).
// prefix contains chars in three lower bytes and the size in the fourth byte.
template <typename OutputIt, typename Char, typename W>
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
                                        unsigned prefix,
                                        const format_specs<Char>& specs,
                                        W write_digits) -> OutputIt {
  // Slightly faster check for specs.width == 0 && specs.precision == -1.
  if ((specs.width | (specs.precision + 1)) == 0) {
    auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
    if (prefix != 0) {
      for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
        *it++ = static_cast<Char>(p & 0xff);
    }
    return base_iterator(out, write_digits(it));
  }
  auto data = write_int_data<Char>(num_digits, prefix, specs);
  return write_padded<align::right>(
      out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
        for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
          *it++ = static_cast<Char>(p & 0xff);
        it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
        return write_digits(it);
      });
}

template <typename Char> class digit_grouping {
 private:
  std::string grouping_;
  std::basic_string<Char> thousands_sep_;

  struct next_state {
    std::string::const_iterator group;
    int pos;
  };
  next_state initial_state() const { return {grouping_.begin(), 0}; }

  // Returns the next digit group separator position.
  int next(next_state& state) const {
    if (thousands_sep_.empty()) return max_value<int>();
    if (state.group == grouping_.end()) return state.pos += grouping_.back();
    if (*state.group <= 0 || *state.group == max_value<char>())
      return max_value<int>();
    state.pos += *state.group++;
    return state.pos;
  }

 public:
  explicit digit_grouping(locale_ref loc, bool localized = true) {
    if (!localized) return;
    auto sep = thousands_sep<Char>(loc);
    grouping_ = sep.grouping;
    if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep);
  }
  digit_grouping(std::string grouping, std::basic_string<Char> sep)
      : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {}

  bool has_separator() const { return !thousands_sep_.empty(); }

  int count_separators(int num_digits) const {
    int count = 0;
    auto state = initial_state();
    while (num_digits > next(state)) ++count;
    return count;
  }

  // Applies grouping to digits and write the output to out.
  template <typename Out, typename C>
  Out apply(Out out, basic_string_view<C> digits) const {
    auto num_digits = static_cast<int>(digits.size());
    auto separators = basic_memory_buffer<int>();
    separators.push_back(0);
    auto state = initial_state();
    while (int i = next(state)) {
      if (i >= num_digits) break;
      separators.push_back(i);
    }
    for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
         i < num_digits; ++i) {
      if (num_digits - i == separators[sep_index]) {
        out =
            copy_str<Char>(thousands_sep_.data(),
                           thousands_sep_.data() + thousands_sep_.size(), out);
        --sep_index;
      }
      *out++ = static_cast<Char>(digits[to_unsigned(i)]);
    }
    return out;
  }
};

// Writes a decimal integer with digit grouping.
template <typename OutputIt, typename UInt, typename Char>
auto write_int(OutputIt out, UInt value, unsigned prefix,
               const format_specs<Char>& specs,
               const digit_grouping<Char>& grouping) -> OutputIt {
  static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
  int num_digits = count_digits(value);
  char digits[40];
  format_decimal(digits, value, num_digits);
  unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits +
                              grouping.count_separators(num_digits));
  return write_padded<align::right>(
      out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
        if (prefix != 0) {
          char sign = static_cast<char>(prefix);
          *it++ = static_cast<Char>(sign);
        }
        return grouping.apply(it, string_view(digits, to_unsigned(num_digits)));
      });
}

// Writes a localized value.
FMT_API auto write_loc(appender out, loc_value value,
                       const format_specs<>& specs, locale_ref loc) -> bool;
template <typename OutputIt, typename Char>
inline auto write_loc(OutputIt, loc_value, const format_specs<Char>&,
                      locale_ref) -> bool {
  return false;
}

FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
  prefix |= prefix != 0 ? value << 8 : value;
  prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
}

template <typename UInt> struct write_int_arg {
  UInt abs_value;
  unsigned prefix;
};

template <typename T>
FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
    -> write_int_arg<uint32_or_64_or_128_t<T>> {
  auto prefix = 0u;
  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
  if (is_negative(value)) {
    prefix = 0x01000000 | '-';
    abs_value = 0 - abs_value;
  } else {
    constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
                                            0x1000000u | ' '};
    prefix = prefixes[sign];
  }
  return {abs_value, prefix};
}

template <typename Char = char> struct loc_writer {
  buffer_appender<Char> out;
  const format_specs<Char>& specs;
  std::basic_string<Char> sep;
  std::string grouping;
  std::basic_string<Char> decimal_point;

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  auto operator()(T value) -> bool {
    auto arg = make_write_int_arg(value, specs.sign);
    write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix,
              specs, digit_grouping<Char>(grouping, sep));
    return true;
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  auto operator()(T) -> bool {
    return false;
  }
};

template <typename Char, typename OutputIt, typename T>
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
                                        const format_specs<Char>& specs,
                                        locale_ref) -> OutputIt {
  static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
  auto abs_value = arg.abs_value;
  auto prefix = arg.prefix;
  switch (specs.type) {
  case presentation_type::none:
  case presentation_type::dec: {
    auto num_digits = count_digits(abs_value);
    return write_int(
        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
          return format_decimal<Char>(it, abs_value, num_digits).end;
        });
  }
  case presentation_type::hex_lower:
  case presentation_type::hex_upper: {
    bool upper = specs.type == presentation_type::hex_upper;
    if (specs.alt)
      prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
    int num_digits = count_digits<4>(abs_value);
    return write_int(
        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
          return format_uint<4, Char>(it, abs_value, num_digits, upper);
        });
  }
  case presentation_type::bin_lower:
  case presentation_type::bin_upper: {
    bool upper = specs.type == presentation_type::bin_upper;
    if (specs.alt)
      prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
    int num_digits = count_digits<1>(abs_value);
    return write_int(out, num_digits, prefix, specs,
                     [=](reserve_iterator<OutputIt> it) {
                       return format_uint<1, Char>(it, abs_value, num_digits);
                     });
  }
  case presentation_type::oct: {
    int num_digits = count_digits<3>(abs_value);
    // Octal prefix '0' is counted as a digit, so only add it if precision
    // is not greater than the number of digits.
    if (specs.alt && specs.precision <= num_digits && abs_value != 0)
      prefix_append(prefix, '0');
    return write_int(out, num_digits, prefix, specs,
                     [=](reserve_iterator<OutputIt> it) {
                       return format_uint<3, Char>(it, abs_value, num_digits);
                     });
  }
  case presentation_type::chr:
    return write_char(out, static_cast<Char>(abs_value), specs);
  default:
    throw_format_error("invalid format specifier");
  }
  return out;
}
template <typename Char, typename OutputIt, typename T>
FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(
    OutputIt out, write_int_arg<T> arg, const format_specs<Char>& specs,
    locale_ref loc) -> OutputIt {
  return write_int(out, arg, specs, loc);
}
template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_integral<T>::value &&
                        !std::is_same<T, bool>::value &&
                        std::is_same<OutputIt, buffer_appender<Char>>::value)>
FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
                                    const format_specs<Char>& specs,
                                    locale_ref loc) -> OutputIt {
  if (specs.localized && write_loc(out, value, specs, loc)) return out;
  return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs,
                            loc);
}
// An inlined version of write used in format string compilation.
template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_integral<T>::value &&
                        !std::is_same<T, bool>::value &&
                        !std::is_same<OutputIt, buffer_appender<Char>>::value)>
FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
                                    const format_specs<Char>& specs,
                                    locale_ref loc) -> OutputIt {
  if (specs.localized && write_loc(out, value, specs, loc)) return out;
  return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
}

// An output iterator that counts the number of objects written to it and
// discards them.
class counting_iterator {
 private:
  size_t count_;

 public:
  using iterator_category = std::output_iterator_tag;
  using difference_type = std::ptrdiff_t;
  using pointer = void;
  using reference = void;
  FMT_UNCHECKED_ITERATOR(counting_iterator);

  struct value_type {
    template <typename T> FMT_CONSTEXPR void operator=(const T&) {}
  };

  FMT_CONSTEXPR counting_iterator() : count_(0) {}

  FMT_CONSTEXPR size_t count() const { return count_; }

  FMT_CONSTEXPR counting_iterator& operator++() {
    ++count_;
    return *this;
  }
  FMT_CONSTEXPR counting_iterator operator++(int) {
    auto it = *this;
    ++*this;
    return it;
  }

  FMT_CONSTEXPR friend counting_iterator operator+(counting_iterator it,
                                                   difference_type n) {
    it.count_ += static_cast<size_t>(n);
    return it;
  }

  FMT_CONSTEXPR value_type operator*() const { return {}; }
};

template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
                         const format_specs<Char>& specs) -> OutputIt {
  auto data = s.data();
  auto size = s.size();
  if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
    size = code_point_index(s, to_unsigned(specs.precision));
  bool is_debug = specs.type == presentation_type::debug;
  size_t width = 0;
  if (specs.width != 0) {
    if (is_debug)
      width = write_escaped_string(counting_iterator{}, s).count();
    else
      width = compute_width(basic_string_view<Char>(data, size));
  }
  return write_padded(out, specs, size, width,
                      [=](reserve_iterator<OutputIt> it) {
                        if (is_debug) return write_escaped_string(it, s);
                        return copy_str<Char>(data, data + size, it);
                      });
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out,
                         basic_string_view<type_identity_t<Char>> s,
                         const format_specs<Char>& specs, locale_ref)
    -> OutputIt {
  return write(out, s, specs);
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
                         const format_specs<Char>& specs, locale_ref)
    -> OutputIt {
  return specs.type != presentation_type::pointer
             ? write(out, basic_string_view<Char>(s), specs, {})
             : write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_integral<T>::value &&
                        !std::is_same<T, bool>::value &&
                        !std::is_same<T, Char>::value)>
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
  bool negative = is_negative(value);
  // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
  if (negative) abs_value = ~abs_value + 1;
  int num_digits = count_digits(abs_value);
  auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
  auto it = reserve(out, size);
  if (auto ptr = to_pointer<Char>(it, size)) {
    if (negative) *ptr++ = static_cast<Char>('-');
    format_decimal<Char>(ptr, abs_value, num_digits);
    return out;
  }
  if (negative) *it++ = static_cast<Char>('-');
  it = format_decimal<Char>(it, abs_value, num_digits).end;
  return base_iterator(out, it);
}

// A floating-point presentation format.
enum class float_format : unsigned char {
  general,  // General: exponent notation or fixed point based on magnitude.
  exp,      // Exponent notation with the default precision of 6, e.g. 1.2e-3.
  fixed,    // Fixed point with the default precision of 6, e.g. 0.0012.
  hex
};

struct float_specs {
  int precision;
  float_format format : 8;
  sign_t sign : 8;
  bool upper : 1;
  bool locale : 1;
  bool binary32 : 1;
  bool showpoint : 1;
};

template <typename ErrorHandler = error_handler, typename Char>
FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs,
                                         ErrorHandler&& eh = {})
    -> float_specs {
  auto result = float_specs();
  result.showpoint = specs.alt;
  result.locale = specs.localized;
  switch (specs.type) {
  case presentation_type::none:
    result.format = float_format::general;
    break;
  case presentation_type::general_upper:
    result.upper = true;
    FMT_FALLTHROUGH;
  case presentation_type::general_lower:
    result.format = float_format::general;
    break;
  case presentation_type::exp_upper:
    result.upper = true;
    FMT_FALLTHROUGH;
  case presentation_type::exp_lower:
    result.format = float_format::exp;
    result.showpoint |= specs.precision != 0;
    break;
  case presentation_type::fixed_upper:
    result.upper = true;
    FMT_FALLTHROUGH;
  case presentation_type::fixed_lower:
    result.format = float_format::fixed;
    result.showpoint |= specs.precision != 0;
    break;
  case presentation_type::hexfloat_upper:
    result.upper = true;
    FMT_FALLTHROUGH;
  case presentation_type::hexfloat_lower:
    result.format = float_format::hex;
    break;
  default:
    eh.on_error("invalid format specifier");
    break;
  }
  return result;
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan,
                                     format_specs<Char> specs,
                                     const float_specs& fspecs) -> OutputIt {
  auto str =
      isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf");
  constexpr size_t str_size = 3;
  auto sign = fspecs.sign;
  auto size = str_size + (sign ? 1 : 0);
  // Replace '0'-padding with space for non-finite values.
  const bool is_zero_fill =
      specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
  if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
  return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
    if (sign) *it++ = detail::sign<Char>(sign);
    return copy_str<Char>(str, str + str_size, it);
  });
}

// A decimal floating-point number significand * pow(10, exp).
struct big_decimal_fp {
  const char* significand;
  int significand_size;
  int exponent;
};

constexpr auto get_significand_size(const big_decimal_fp& f) -> int {
  return f.significand_size;
}
template <typename T>
inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int {
  return count_digits(f.significand);
}

template <typename Char, typename OutputIt>
constexpr auto write_significand(OutputIt out, const char* significand,
                                 int significand_size) -> OutputIt {
  return copy_str<Char>(significand, significand + significand_size, out);
}
template <typename Char, typename OutputIt, typename UInt>
inline auto write_significand(OutputIt out, UInt significand,
                              int significand_size) -> OutputIt {
  return format_decimal<Char>(out, significand, significand_size).end;
}
template <typename Char, typename OutputIt, typename T, typename Grouping>
FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
                                       int significand_size, int exponent,
                                       const Grouping& grouping) -> OutputIt {
  if (!grouping.has_separator()) {
    out = write_significand<Char>(out, significand, significand_size);
    return detail::fill_n(out, exponent, static_cast<Char>('0'));
  }
  auto buffer = memory_buffer();
  write_significand<char>(appender(buffer), significand, significand_size);
  detail::fill_n(appender(buffer), exponent, '0');
  return grouping.apply(out, string_view(buffer.data(), buffer.size()));
}

template <typename Char, typename UInt,
          FMT_ENABLE_IF(std::is_integral<UInt>::value)>
inline auto write_significand(Char* out, UInt significand, int significand_size,
                              int integral_size, Char decimal_point) -> Char* {
  if (!decimal_point)
    return format_decimal(out, significand, significand_size).end;
  out += significand_size + 1;
  Char* end = out;
  int floating_size = significand_size - integral_size;
  for (int i = floating_size / 2; i > 0; --i) {
    out -= 2;
    copy2(out, digits2(static_cast<std::size_t>(significand % 100)));
    significand /= 100;
  }
  if (floating_size % 2 != 0) {
    *--out = static_cast<Char>('0' + significand % 10);
    significand /= 10;
  }
  *--out = decimal_point;
  format_decimal(out - integral_size, significand, integral_size);
  return end;
}

template <typename OutputIt, typename UInt, typename Char,
          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
inline auto write_significand(OutputIt out, UInt significand,
                              int significand_size, int integral_size,
                              Char decimal_point) -> OutputIt {
  // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
  Char buffer[digits10<UInt>() + 2];
  auto end = write_significand(buffer, significand, significand_size,
                               integral_size, decimal_point);
  return detail::copy_str_noinline<Char>(buffer, end, out);
}

template <typename OutputIt, typename Char>
FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
                                     int significand_size, int integral_size,
                                     Char decimal_point) -> OutputIt {
  out = detail::copy_str_noinline<Char>(significand,
                                        significand + integral_size, out);
  if (!decimal_point) return out;
  *out++ = decimal_point;
  return detail::copy_str_noinline<Char>(significand + integral_size,
                                         significand + significand_size, out);
}

template <typename OutputIt, typename Char, typename T, typename Grouping>
FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
                                       int significand_size, int integral_size,
                                       Char decimal_point,
                                       const Grouping& grouping) -> OutputIt {
  if (!grouping.has_separator()) {
    return write_significand(out, significand, significand_size, integral_size,
                             decimal_point);
  }
  auto buffer = basic_memory_buffer<Char>();
  write_significand(buffer_appender<Char>(buffer), significand,
                    significand_size, integral_size, decimal_point);
  grouping.apply(
      out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
  return detail::copy_str_noinline<Char>(buffer.data() + integral_size,
                                         buffer.end(), out);
}

template <typename OutputIt, typename DecimalFP, typename Char,
          typename Grouping = digit_grouping<Char>>
FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f,
                                    const format_specs<Char>& specs,
                                    float_specs fspecs, locale_ref loc)
    -> OutputIt {
  auto significand = f.significand;
  int significand_size = get_significand_size(f);
  const Char zero = static_cast<Char>('0');
  auto sign = fspecs.sign;
  size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
  using iterator = reserve_iterator<OutputIt>;

  Char decimal_point =
      fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.');

  int output_exp = f.exponent + significand_size - 1;
  auto use_exp_format = [=]() {
    if (fspecs.format == float_format::exp) return true;
    if (fspecs.format != float_format::general) return false;
    // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
    // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
    const int exp_lower = -4, exp_upper = 16;
    return output_exp < exp_lower ||
           output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
  };
  if (use_exp_format()) {
    int num_zeros = 0;
    if (fspecs.showpoint) {
      num_zeros = fspecs.precision - significand_size;
      if (num_zeros < 0) num_zeros = 0;
      size += to_unsigned(num_zeros);
    } else if (significand_size == 1) {
      decimal_point = Char();
    }
    auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
    int exp_digits = 2;
    if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;

    size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
    char exp_char = fspecs.upper ? 'E' : 'e';
    auto write = [=](iterator it) {
      if (sign) *it++ = detail::sign<Char>(sign);
      // Insert a decimal point after the first digit and add an exponent.
      it = write_significand(it, significand, significand_size, 1,
                             decimal_point);
      if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
      *it++ = static_cast<Char>(exp_char);
      return write_exponent<Char>(output_exp, it);
    };
    return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
                           : base_iterator(out, write(reserve(out, size)));
  }

  int exp = f.exponent + significand_size;
  if (f.exponent >= 0) {
    // 1234e5 -> 123400000[.0+]
    size += to_unsigned(f.exponent);
    int num_zeros = fspecs.precision - exp;
    abort_fuzzing_if(num_zeros > 5000);
    if (fspecs.showpoint) {
      ++size;
      if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 0;
      if (num_zeros > 0) size += to_unsigned(num_zeros);
    }
    auto grouping = Grouping(loc, fspecs.locale);
    size += to_unsigned(grouping.count_separators(exp));
    return write_padded<align::right>(out, specs, size, [&](iterator it) {
      if (sign) *it++ = detail::sign<Char>(sign);
      it = write_significand<Char>(it, significand, significand_size,
                                   f.exponent, grouping);
      if (!fspecs.showpoint) return it;
      *it++ = decimal_point;
      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
    });
  } else if (exp > 0) {
    // 1234e-2 -> 12.34[0+]
    int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
    size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
    auto grouping = Grouping(loc, fspecs.locale);
    size += to_unsigned(grouping.count_separators(exp));
    return write_padded<align::right>(out, specs, size, [&](iterator it) {
      if (sign) *it++ = detail::sign<Char>(sign);
      it = write_significand(it, significand, significand_size, exp,
                             decimal_point, grouping);
      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
    });
  }
  // 1234e-6 -> 0.001234
  int num_zeros = -exp;
  if (significand_size == 0 && fspecs.precision >= 0 &&
      fspecs.precision < num_zeros) {
    num_zeros = fspecs.precision;
  }
  bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
  size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
  return write_padded<align::right>(out, specs, size, [&](iterator it) {
    if (sign) *it++ = detail::sign<Char>(sign);
    *it++ = zero;
    if (!pointy) return it;
    *it++ = decimal_point;
    it = detail::fill_n(it, num_zeros, zero);
    return write_significand<Char>(it, significand, significand_size);
  });
}

template <typename Char> class fallback_digit_grouping {
 public:
  constexpr fallback_digit_grouping(locale_ref, bool) {}

  constexpr bool has_separator() const { return false; }

  constexpr int count_separators(int) const { return 0; }

  template <typename Out, typename C>
  constexpr Out apply(Out out, basic_string_view<C>) const {
    return out;
  }
};

template <typename OutputIt, typename DecimalFP, typename Char>
FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f,
                                 const format_specs<Char>& specs,
                                 float_specs fspecs, locale_ref loc)
    -> OutputIt {
  if (is_constant_evaluated()) {
    return do_write_float<OutputIt, DecimalFP, Char,
                          fallback_digit_grouping<Char>>(out, f, specs, fspecs,
                                                         loc);
  } else {
    return do_write_float(out, f, specs, fspecs, loc);
  }
}

template <typename T> constexpr bool isnan(T value) {
  return !(value >= value);  // std::isnan doesn't support __float128.
}

template <typename T, typename Enable = void>
struct has_isfinite : std::false_type {};

template <typename T>
struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>>
    : std::true_type {};

template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
                                        has_isfinite<T>::value)>
FMT_CONSTEXPR20 bool isfinite(T value) {
  constexpr T inf = T(std::numeric_limits<double>::infinity());
  if (is_constant_evaluated())
    return !detail::isnan(value) && value < inf && value > -inf;
  return std::isfinite(value);
}
template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
FMT_CONSTEXPR bool isfinite(T value) {
  T inf = T(std::numeric_limits<double>::infinity());
  // std::isfinite doesn't support __float128.
  return !detail::isnan(value) && value < inf && value > -inf;
}

template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)>
FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
  if (is_constant_evaluated()) {
#ifdef __cpp_if_constexpr
    if constexpr (std::numeric_limits<double>::is_iec559) {
      auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
      return (bits >> (num_bits<uint64_t>() - 1)) != 0;
    }
#endif
  }
  return std::signbit(static_cast<double>(value));
}

enum class round_direction { unknown, up, down };

// Given the divisor (normally a power of 10), the remainder = v % divisor for
// some number v and the error, returns whether v should be rounded up, down, or
// whether the rounding direction can't be determined due to error.
// error should be less than divisor / 2.
FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor,
                                                         uint64_t remainder,
                                                         uint64_t error) {
  FMT_ASSERT(remainder < divisor, "");  // divisor - remainder won't overflow.
  FMT_ASSERT(error < divisor, "");      // divisor - error won't overflow.
  FMT_ASSERT(error < divisor - error, "");  // error * 2 won't overflow.
  // Round down if (remainder + error) * 2 <= divisor.
  if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
    return round_direction::down;
  // Round up if (remainder - error) * 2 >= divisor.
  if (remainder >= error &&
      remainder - error >= divisor - (remainder - error)) {
    return round_direction::up;
  }
  return round_direction::unknown;
}

namespace digits {
enum result {
  more,  // Generate more digits.
  done,  // Done generating digits.
  error  // Digit generation cancelled due to an error.
};
}

struct gen_digits_handler {
  char* buf;
  int size;
  int precision;
  int exp10;
  bool fixed;

  FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor,
                                        uint64_t remainder, uint64_t error,
                                        bool integral) {
    FMT_ASSERT(remainder < divisor, "");
    buf[size++] = digit;
    if (!integral && error >= remainder) return digits::error;
    if (size < precision) return digits::more;
    if (!integral) {
      // Check if error * 2 < divisor with overflow prevention.
      // The check is not needed for the integral part because error = 1
      // and divisor > (1 << 32) there.
      if (error >= divisor || error >= divisor - error) return digits::error;
    } else {
      FMT_ASSERT(error == 1 && divisor > 2, "");
    }
    auto dir = get_round_direction(divisor, remainder, error);
    if (dir != round_direction::up)
      return dir == round_direction::down ? digits::done : digits::error;
    ++buf[size - 1];
    for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
      buf[i] = '0';
      ++buf[i - 1];
    }
    if (buf[0] > '9') {
      buf[0] = '1';
      if (fixed)
        buf[size++] = '0';
      else
        ++exp10;
    }
    return digits::done;
  }
};

inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
  // Adjust fixed precision by exponent because it is relative to decimal
  // point.
  if (exp10 > 0 && precision > max_value<int>() - exp10)
    FMT_THROW(format_error("number is too big"));
  precision += exp10;
}

// Generates output using the Grisu digit-gen algorithm.
// error: the size of the region (lower, upper) outside of which numbers
// definitely do not round to value (Delta in Grisu3).
FMT_INLINE FMT_CONSTEXPR20 auto grisu_gen_digits(fp value, uint64_t error,
                                                 int& exp,
                                                 gen_digits_handler& handler)
    -> digits::result {
  const fp one(1ULL << -value.e, value.e);
  // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
  // zero because it contains a product of two 64-bit numbers with MSB set (due
  // to normalization) - 1, shifted right by at most 60 bits.
  auto integral = static_cast<uint32_t>(value.f >> -one.e);
  FMT_ASSERT(integral != 0, "");
  FMT_ASSERT(integral == value.f >> -one.e, "");
  // The fractional part of scaled value (p2 in Grisu) c = value % one.
  uint64_t fractional = value.f & (one.f - 1);
  exp = count_digits(integral);  // kappa in Grisu.
  // Non-fixed formats require at least one digit and no precision adjustment.
  if (handler.fixed) {
    adjust_precision(handler.precision, exp + handler.exp10);
    // Check if precision is satisfied just by leading zeros, e.g.
    // format("{:.2f}", 0.001) gives "0.00" without generating any digits.
    if (handler.precision <= 0) {
      if (handler.precision < 0) return digits::done;
      // Divide by 10 to prevent overflow.
      uint64_t divisor = data::power_of_10_64[exp - 1] << -one.e;
      auto dir = get_round_direction(divisor, value.f / 10, error * 10);
      if (dir == round_direction::unknown) return digits::error;
      handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0';
      return digits::done;
    }
  }
  // Generate digits for the integral part. This can produce up to 10 digits.
  do {
    uint32_t digit = 0;
    auto divmod_integral = [&](uint32_t divisor) {
      digit = integral / divisor;
      integral %= divisor;
    };
    // This optimization by Milo Yip reduces the number of integer divisions by
    // one per iteration.
    switch (exp) {
    case 10:
      divmod_integral(1000000000);
      break;
    case 9:
      divmod_integral(100000000);
      break;
    case 8:
      divmod_integral(10000000);
      break;
    case 7:
      divmod_integral(1000000);
      break;
    case 6:
      divmod_integral(100000);
      break;
    case 5:
      divmod_integral(10000);
      break;
    case 4:
      divmod_integral(1000);
      break;
    case 3:
      divmod_integral(100);
      break;
    case 2:
      divmod_integral(10);
      break;
    case 1:
      digit = integral;
      integral = 0;
      break;
    default:
      FMT_ASSERT(false, "invalid number of digits");
    }
    --exp;
    auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
    auto result = handler.on_digit(static_cast<char>('0' + digit),
                                   data::power_of_10_64[exp] << -one.e,
                                   remainder, error, true);
    if (result != digits::more) return result;
  } while (exp > 0);
  // Generate digits for the fractional part.
  for (;;) {
    fractional *= 10;
    error *= 10;
    char digit = static_cast<char>('0' + (fractional >> -one.e));
    fractional &= one.f - 1;
    --exp;
    auto result = handler.on_digit(digit, one.f, fractional, error, false);
    if (result != digits::more) return result;
  }
}

class bigint {
 private:
  // A bigint is stored as an array of bigits (big digits), with bigit at index
  // 0 being the least significant one.
  using bigit = uint32_t;
  using double_bigit = uint64_t;
  enum { bigits_capacity = 32 };
  basic_memory_buffer<bigit, bigits_capacity> bigits_;
  int exp_;

  FMT_CONSTEXPR20 bigit operator[](int index) const {
    return bigits_[to_unsigned(index)];
  }
  FMT_CONSTEXPR20 bigit& operator[](int index) {
    return bigits_[to_unsigned(index)];
  }

  static constexpr const int bigit_bits = num_bits<bigit>();

  friend struct formatter<bigint>;

  FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) {
    auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
    (*this)[index] = static_cast<bigit>(result);
    borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
  }

  FMT_CONSTEXPR20 void remove_leading_zeros() {
    int num_bigits = static_cast<int>(bigits_.size()) - 1;
    while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
    bigits_.resize(to_unsigned(num_bigits + 1));
  }

  // Computes *this -= other assuming aligned bigints and *this >= other.
  FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) {
    FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
    FMT_ASSERT(compare(*this, other) >= 0, "");
    bigit borrow = 0;
    int i = other.exp_ - exp_;
    for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
      subtract_bigits(i, other.bigits_[j], borrow);
    while (borrow > 0) subtract_bigits(i, 0, borrow);
    remove_leading_zeros();
  }

  FMT_CONSTEXPR20 void multiply(uint32_t value) {
    const double_bigit wide_value = value;
    bigit carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      double_bigit result = bigits_[i] * wide_value + carry;
      bigits_[i] = static_cast<bigit>(result);
      carry = static_cast<bigit>(result >> bigit_bits);
    }
    if (carry != 0) bigits_.push_back(carry);
  }

  template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
                                         std::is_same<UInt, uint128_t>::value)>
  FMT_CONSTEXPR20 void multiply(UInt value) {
    using half_uint =
        conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
    const int shift = num_bits<half_uint>() - bigit_bits;
    const UInt lower = static_cast<half_uint>(value);
    const UInt upper = value >> num_bits<half_uint>();
    UInt carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
      carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
              (carry >> bigit_bits);
      bigits_[i] = static_cast<bigit>(result);
    }
    while (carry != 0) {
      bigits_.push_back(static_cast<bigit>(carry));
      carry >>= bigit_bits;
    }
  }

  template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
                                         std::is_same<UInt, uint128_t>::value)>
  FMT_CONSTEXPR20 void assign(UInt n) {
    size_t num_bigits = 0;
    do {
      bigits_[num_bigits++] = static_cast<bigit>(n);
      n >>= bigit_bits;
    } while (n != 0);
    bigits_.resize(num_bigits);
    exp_ = 0;
  }

 public:
  FMT_CONSTEXPR20 bigint() : exp_(0) {}
  explicit bigint(uint64_t n) { assign(n); }

  bigint(const bigint&) = delete;
  void operator=(const bigint&) = delete;

  FMT_CONSTEXPR20 void assign(const bigint& other) {
    auto size = other.bigits_.size();
    bigits_.resize(size);
    auto data = other.bigits_.data();
    std::copy(data, data + size, make_checked(bigits_.data(), size));
    exp_ = other.exp_;
  }

  template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) {
    FMT_ASSERT(n > 0, "");
    assign(uint64_or_128_t<Int>(n));
  }

  FMT_CONSTEXPR20 int num_bigits() const {
    return static_cast<int>(bigits_.size()) + exp_;
  }

  FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) {
    FMT_ASSERT(shift >= 0, "");
    exp_ += shift / bigit_bits;
    shift %= bigit_bits;
    if (shift == 0) return *this;
    bigit carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      bigit c = bigits_[i] >> (bigit_bits - shift);
      bigits_[i] = (bigits_[i] << shift) + carry;
      carry = c;
    }
    if (carry != 0) bigits_.push_back(carry);
    return *this;
  }

  template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) {
    FMT_ASSERT(value > 0, "");
    multiply(uint32_or_64_or_128_t<Int>(value));
    return *this;
  }

  friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) {
    int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
    if (num_lhs_bigits != num_rhs_bigits)
      return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
    int i = static_cast<int>(lhs.bigits_.size()) - 1;
    int j = static_cast<int>(rhs.bigits_.size()) - 1;
    int end = i - j;
    if (end < 0) end = 0;
    for (; i >= end; --i, --j) {
      bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
      if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
    }
    if (i != j) return i > j ? 1 : -1;
    return 0;
  }

  // Returns compare(lhs1 + lhs2, rhs).
  friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2,
                                         const bigint& rhs) {
    auto minimum = [](int a, int b) { return a < b ? a : b; };
    auto maximum = [](int a, int b) { return a > b ? a : b; };
    int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits());
    int num_rhs_bigits = rhs.num_bigits();
    if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
    if (max_lhs_bigits > num_rhs_bigits) return 1;
    auto get_bigit = [](const bigint& n, int i) -> bigit {
      return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
    };
    double_bigit borrow = 0;
    int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_);
    for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
      double_bigit sum =
          static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
      bigit rhs_bigit = get_bigit(rhs, i);
      if (sum > rhs_bigit + borrow) return 1;
      borrow = rhs_bigit + borrow - sum;
      if (borrow > 1) return -1;
      borrow <<= bigit_bits;
    }
    return borrow != 0 ? -1 : 0;
  }

  // Assigns pow(10, exp) to this bigint.
  FMT_CONSTEXPR20 void assign_pow10(int exp) {
    FMT_ASSERT(exp >= 0, "");
    if (exp == 0) return *this = 1;
    // Find the top bit.
    int bitmask = 1;
    while (exp >= bitmask) bitmask <<= 1;
    bitmask >>= 1;
    // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
    // repeated squaring and multiplication.
    *this = 5;
    bitmask >>= 1;
    while (bitmask != 0) {
      square();
      if ((exp & bitmask) != 0) *this *= 5;
      bitmask >>= 1;
    }
    *this <<= exp;  // Multiply by pow(2, exp) by shifting.
  }

  FMT_CONSTEXPR20 void square() {
    int num_bigits = static_cast<int>(bigits_.size());
    int num_result_bigits = 2 * num_bigits;
    basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
    bigits_.resize(to_unsigned(num_result_bigits));
    auto sum = uint128_t();
    for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
      // Compute bigit at position bigit_index of the result by adding
      // cross-product terms n[i] * n[j] such that i + j == bigit_index.
      for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
        // Most terms are multiplied twice which can be optimized in the future.
        sum += static_cast<double_bigit>(n[i]) * n[j];
      }
      (*this)[bigit_index] = static_cast<bigit>(sum);
      sum >>= num_bits<bigit>();  // Compute the carry.
    }
    // Do the same for the top half.
    for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
         ++bigit_index) {
      for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
        sum += static_cast<double_bigit>(n[i++]) * n[j--];
      (*this)[bigit_index] = static_cast<bigit>(sum);
      sum >>= num_bits<bigit>();
    }
    remove_leading_zeros();
    exp_ *= 2;
  }

  // If this bigint has a bigger exponent than other, adds trailing zero to make
  // exponents equal. This simplifies some operations such as subtraction.
  FMT_CONSTEXPR20 void align(const bigint& other) {
    int exp_difference = exp_ - other.exp_;
    if (exp_difference <= 0) return;
    int num_bigits = static_cast<int>(bigits_.size());
    bigits_.resize(to_unsigned(num_bigits + exp_difference));
    for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
      bigits_[j] = bigits_[i];
    std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
    exp_ -= exp_difference;
  }

  // Divides this bignum by divisor, assigning the remainder to this and
  // returning the quotient.
  FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) {
    FMT_ASSERT(this != &divisor, "");
    if (compare(*this, divisor) < 0) return 0;
    FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
    align(divisor);
    int quotient = 0;
    do {
      subtract_aligned(divisor);
      ++quotient;
    } while (compare(*this, divisor) >= 0);
    return quotient;
  }
};

// format_dragon flags.
enum dragon {
  predecessor_closer = 1,
  fixup = 2,  // Run fixup to correct exp10 which can be off by one.
  fixed = 4,
};

// Formats a floating-point number using a variation of the Fixed-Precision
// Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
// https://fmt.dev/papers/p372-steele.pdf.
FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
                                          unsigned flags, int num_digits,
                                          buffer<char>& buf, int& exp10) {
  bigint numerator;    // 2 * R in (FPP)^2.
  bigint denominator;  // 2 * S in (FPP)^2.
  // lower and upper are differences between value and corresponding boundaries.
  bigint lower;             // (M^- in (FPP)^2).
  bigint upper_store;       // upper's value if different from lower.
  bigint* upper = nullptr;  // (M^+ in (FPP)^2).
  // Shift numerator and denominator by an extra bit or two (if lower boundary
  // is closer) to make lower and upper integers. This eliminates multiplication
  // by 2 during later computations.
  bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
  int shift = is_predecessor_closer ? 2 : 1;
  if (value.e >= 0) {
    numerator = value.f;
    numerator <<= value.e + shift;
    lower = 1;
    lower <<= value.e;
    if (is_predecessor_closer) {
      upper_store = 1;
      upper_store <<= value.e + 1;
      upper = &upper_store;
    }
    denominator.assign_pow10(exp10);
    denominator <<= shift;
  } else if (exp10 < 0) {
    numerator.assign_pow10(-exp10);
    lower.assign(numerator);
    if (is_predecessor_closer) {
      upper_store.assign(numerator);
      upper_store <<= 1;
      upper = &upper_store;
    }
    numerator *= value.f;
    numerator <<= shift;
    denominator = 1;
    denominator <<= shift - value.e;
  } else {
    numerator = value.f;
    numerator <<= shift;
    denominator.assign_pow10(exp10);
    denominator <<= shift - value.e;
    lower = 1;
    if (is_predecessor_closer) {
      upper_store = 1ULL << 1;
      upper = &upper_store;
    }
  }
  int even = static_cast<int>((value.f & 1) == 0);
  if (!upper) upper = &lower;
  if ((flags & dragon::fixup) != 0) {
    if (add_compare(numerator, *upper, denominator) + even <= 0) {
      --exp10;
      numerator *= 10;
      if (num_digits < 0) {
        lower *= 10;
        if (upper != &lower) *upper *= 10;
      }
    }
    if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
  }
  // Invariant: value == (numerator / denominator) * pow(10, exp10).
  if (num_digits < 0) {
    // Generate the shortest representation.
    num_digits = 0;
    char* data = buf.data();
    for (;;) {
      int digit = numerator.divmod_assign(denominator);
      bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower.
      // numerator + upper >[=] pow10:
      bool high = add_compare(numerator, *upper, denominator) + even > 0;
      data[num_digits++] = static_cast<char>('0' + digit);
      if (low || high) {
        if (!low) {
          ++data[num_digits - 1];
        } else if (high) {
          int result = add_compare(numerator, numerator, denominator);
          // Round half to even.
          if (result > 0 || (result == 0 && (digit % 2) != 0))
            ++data[num_digits - 1];
        }
        buf.try_resize(to_unsigned(num_digits));
        exp10 -= num_digits - 1;
        return;
      }
      numerator *= 10;
      lower *= 10;
      if (upper != &lower) *upper *= 10;
    }
  }
  // Generate the given number of digits.
  exp10 -= num_digits - 1;
  if (num_digits == 0) {
    denominator *= 10;
    auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
    buf.push_back(digit);
    return;
  }
  buf.try_resize(to_unsigned(num_digits));
  for (int i = 0; i < num_digits - 1; ++i) {
    int digit = numerator.divmod_assign(denominator);
    buf[i] = static_cast<char>('0' + digit);
    numerator *= 10;
  }
  int digit = numerator.divmod_assign(denominator);
  auto result = add_compare(numerator, numerator, denominator);
  if (result > 0 || (result == 0 && (digit % 2) != 0)) {
    if (digit == 9) {
      const auto overflow = '0' + 10;
      buf[num_digits - 1] = overflow;
      // Propagate the carry.
      for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
        buf[i] = '0';
        ++buf[i - 1];
      }
      if (buf[0] == overflow) {
        buf[0] = '1';
        ++exp10;
      }
      return;
    }
    ++digit;
  }
  buf[num_digits - 1] = static_cast<char>('0' + digit);
}

// Formats a floating-point number using the hexfloat format.
template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
                                     float_specs specs, buffer<char>& buf) {
  // float is passed as double to reduce the number of instantiations and to
  // simplify implementation.
  static_assert(!std::is_same<Float, float>::value, "");

  using info = dragonbox::float_info<Float>;

  // Assume Float is in the format [sign][exponent][significand].
  using carrier_uint = typename info::carrier_uint;

  constexpr auto num_float_significand_bits =
      detail::num_significand_bits<Float>();

  basic_fp<carrier_uint> f(value);
  f.e += num_float_significand_bits;
  if (!has_implicit_bit<Float>()) --f.e;

  constexpr auto num_fraction_bits =
      num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0);
  constexpr auto num_xdigits = (num_fraction_bits + 3) / 4;

  constexpr auto leading_shift = ((num_xdigits - 1) * 4);
  const auto leading_mask = carrier_uint(0xF) << leading_shift;
  const auto leading_xdigit =
      static_cast<uint32_t>((f.f & leading_mask) >> leading_shift);
  if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1);

  int print_xdigits = num_xdigits - 1;
  if (precision >= 0 && print_xdigits > precision) {
    const int shift = ((print_xdigits - precision - 1) * 4);
    const auto mask = carrier_uint(0xF) << shift;
    const auto v = static_cast<uint32_t>((f.f & mask) >> shift);

    if (v >= 8) {
      const auto inc = carrier_uint(1) << (shift + 4);
      f.f += inc;
      f.f &= ~(inc - 1);
    }

    // Check long double overflow
    if (!has_implicit_bit<Float>()) {
      const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
      if ((f.f & implicit_bit) == implicit_bit) {
        f.f >>= 4;
        f.e += 4;
      }
    }

    print_xdigits = precision;
  }

  char xdigits[num_bits<carrier_uint>() / 4];
  detail::fill_n(xdigits, sizeof(xdigits), '0');
  format_uint<4>(xdigits, f.f, num_xdigits, specs.upper);

  // Remove zero tail
  while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits;

  buf.push_back('0');
  buf.push_back(specs.upper ? 'X' : 'x');
  buf.push_back(xdigits[0]);
  if (specs.showpoint || print_xdigits > 0 || print_xdigits < precision)
    buf.push_back('.');
  buf.append(xdigits + 1, xdigits + 1 + print_xdigits);
  for (; print_xdigits < precision; ++print_xdigits) buf.push_back('0');

  buf.push_back(specs.upper ? 'P' : 'p');

  uint32_t abs_e;
  if (f.e < 0) {
    buf.push_back('-');
    abs_e = static_cast<uint32_t>(-f.e);
  } else {
    buf.push_back('+');
    abs_e = static_cast<uint32_t>(f.e);
  }
  format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e));
}

template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
                                     float_specs specs, buffer<char>& buf) {
  format_hexfloat(static_cast<double>(value), precision, specs, buf);
}

template <typename Float>
FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
                                  buffer<char>& buf) -> int {
  // float is passed as double to reduce the number of instantiations.
  static_assert(!std::is_same<Float, float>::value, "");
  FMT_ASSERT(value >= 0, "value is negative");
  auto converted_value = convert_float(value);

  const bool fixed = specs.format == float_format::fixed;
  if (value <= 0) {  // <= instead of == to silence a warning.
    if (precision <= 0 || !fixed) {
      buf.push_back('0');
      return 0;
    }
    buf.try_resize(to_unsigned(precision));
    fill_n(buf.data(), precision, '0');
    return -precision;
  }

  int exp = 0;
  bool use_dragon = true;
  unsigned dragon_flags = 0;
  if (!is_fast_float<Float>()) {
    const auto inv_log2_10 = 0.3010299956639812;  // 1 / log2(10)
    using info = dragonbox::float_info<decltype(converted_value)>;
    const auto f = basic_fp<typename info::carrier_uint>(converted_value);
    // Compute exp, an approximate power of 10, such that
    //   10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
    // This is based on log10(value) == log2(value) / log2(10) and approximation
    // of log2(value) by e + num_fraction_bits idea from double-conversion.
    exp = static_cast<int>(
        std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10));
    dragon_flags = dragon::fixup;
  } else if (!is_constant_evaluated() && precision < 0) {
    // Use Dragonbox for the shortest format.
    if (specs.binary32) {
      auto dec = dragonbox::to_decimal(static_cast<float>(value));
      write<char>(buffer_appender<char>(buf), dec.significand);
      return dec.exponent;
    }
    auto dec = dragonbox::to_decimal(static_cast<double>(value));
    write<char>(buffer_appender<char>(buf), dec.significand);
    return dec.exponent;
  } else if (is_constant_evaluated()) {
    // Use Grisu + Dragon4 for the given precision:
    // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
    const int min_exp = -60;  // alpha in Grisu.
    int cached_exp10 = 0;     // K in Grisu.
    fp normalized = normalize(fp(converted_value));
    const auto cached_pow = get_cached_power(
        min_exp - (normalized.e + fp::num_significand_bits), cached_exp10);
    normalized = normalized * cached_pow;
    gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
    if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error &&
        !is_constant_evaluated()) {
      exp += handler.exp10;
      buf.try_resize(to_unsigned(handler.size));
      use_dragon = false;
    } else {
      exp += handler.size - cached_exp10 - 1;
      precision = handler.precision;
    }
  } else {
    // Extract significand bits and exponent bits.
    using info = dragonbox::float_info<double>;
    auto br = bit_cast<uint64_t>(static_cast<double>(value));

    const uint64_t significand_mask =
        (static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1;
    uint64_t significand = (br & significand_mask);
    int exponent = static_cast<int>((br & exponent_mask<double>()) >>
                                    num_significand_bits<double>());

    if (exponent != 0) {  // Check if normal.
      exponent -= exponent_bias<double>() + num_significand_bits<double>();
      significand |=
          (static_cast<uint64_t>(1) << num_significand_bits<double>());
      significand <<= 1;
    } else {
      // Normalize subnormal inputs.
      FMT_ASSERT(significand != 0, "zeros should not appear hear");
      int shift = countl_zero(significand);
      FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
                 "");
      shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2);
      exponent = (std::numeric_limits<double>::min_exponent -
                  num_significand_bits<double>()) -
                 shift;
      significand <<= shift;
    }

    // Compute the first several nonzero decimal significand digits.
    // We call the number we get the first segment.
    const int k = info::kappa - dragonbox::floor_log10_pow2(exponent);
    exp = -k;
    const int beta = exponent + dragonbox::floor_log2_pow10(k);
    uint64_t first_segment;
    bool has_more_segments;
    int digits_in_the_first_segment;
    {
      const auto r = dragonbox::umul192_upper128(
          significand << beta, dragonbox::get_cached_power(k));
      first_segment = r.high();
      has_more_segments = r.low() != 0;

      // The first segment can have 18 ~ 19 digits.
      if (first_segment >= 1000000000000000000ULL) {
        digits_in_the_first_segment = 19;
      } else {
        // When it is of 18-digits, we align it to 19-digits by adding a bogus
        // zero at the end.
        digits_in_the_first_segment = 18;
        first_segment *= 10;
      }
    }

    // Compute the actual number of decimal digits to print.
    if (fixed) {
      adjust_precision(precision, exp + digits_in_the_first_segment);
    }

    // Use Dragon4 only when there might be not enough digits in the first
    // segment.
    if (digits_in_the_first_segment > precision) {
      use_dragon = false;

      if (precision <= 0) {
        exp += digits_in_the_first_segment;

        if (precision < 0) {
          // Nothing to do, since all we have are just leading zeros.
          buf.try_resize(0);
        } else {
          // We may need to round-up.
          buf.try_resize(1);
          if ((first_segment | static_cast<uint64_t>(has_more_segments)) >
              5000000000000000000ULL) {
            buf[0] = '1';
          } else {
            buf[0] = '0';
          }
        }
      }  // precision <= 0
      else {
        exp += digits_in_the_first_segment - precision;

        // When precision > 0, we divide the first segment into three
        // subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits
        // in 32-bits which usually allows faster calculation than in
        // 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize
        // division-by-constant for large 64-bit divisors, we do it here
        // manually. The magic number 7922816251426433760 below is equal to
        // ceil(2^(64+32) / 10^10).
        const uint32_t first_subsegment = static_cast<uint32_t>(
            dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >>
            32);
        const uint64_t second_third_subsegments =
            first_segment - first_subsegment * 10000000000ULL;

        uint64_t prod;
        uint32_t digits;
        bool should_round_up;
        int number_of_digits_to_print = precision > 9 ? 9 : precision;

        // Print a 9-digits subsegment, either the first or the second.
        auto print_subsegment = [&](uint32_t subsegment, char* buffer) {
          int number_of_digits_printed = 0;

          // If we want to print an odd number of digits from the subsegment,
          if ((number_of_digits_to_print & 1) != 0) {
            // Convert to 64-bit fixed-point fractional form with 1-digit
            // integer part. The magic number 720575941 is a good enough
            // approximation of 2^(32 + 24) / 10^8; see
            // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
            // for details.
            prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1;
            digits = static_cast<uint32_t>(prod >> 32);
            *buffer = static_cast<char>('0' + digits);
            number_of_digits_printed++;
          }
          // If we want to print an even number of digits from the
          // first_subsegment,
          else {
            // Convert to 64-bit fixed-point fractional form with 2-digits
            // integer part. The magic number 450359963 is a good enough
            // approximation of 2^(32 + 20) / 10^7; see
            // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
            // for details.
            prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1;
            digits = static_cast<uint32_t>(prod >> 32);
            copy2(buffer, digits2(digits));
            number_of_digits_printed += 2;
          }

          // Print all digit pairs.
          while (number_of_digits_printed < number_of_digits_to_print) {
            prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100);
            digits = static_cast<uint32_t>(prod >> 32);
            copy2(buffer + number_of_digits_printed, digits2(digits));
            number_of_digits_printed += 2;
          }
        };

        // Print first subsegment.
        print_subsegment(first_subsegment, buf.data());

        // Perform rounding if the first subsegment is the last subsegment to
        // print.
        if (precision <= 9) {
          // Rounding inside the subsegment.
          // We round-up if:
          //  - either the fractional part is strictly larger than 1/2, or
          //  - the fractional part is exactly 1/2 and the last digit is odd.
          // We rely on the following observations:
          //  - If fractional_part >= threshold, then the fractional part is
          //    strictly larger than 1/2.
          //  - If the MSB of fractional_part is set, then the fractional part
          //    must be at least 1/2.
          //  - When the MSB of fractional_part is set, either
          //    second_third_subsegments being nonzero or has_more_segments
          //    being true means there are further digits not printed, so the
          //    fractional part is strictly larger than 1/2.
          if (precision < 9) {
            uint32_t fractional_part = static_cast<uint32_t>(prod);
            should_round_up = fractional_part >=
                                  data::fractional_part_rounding_thresholds
                                      [8 - number_of_digits_to_print] ||
                              ((fractional_part >> 31) &
                               ((digits & 1) | (second_third_subsegments != 0) |
                                has_more_segments)) != 0;
          }
          // Rounding at the subsegment boundary.
          // In this case, the fractional part is at least 1/2 if and only if
          // second_third_subsegments >= 5000000000ULL, and is strictly larger
          // than 1/2 if we further have either second_third_subsegments >
          // 5000000000ULL or has_more_segments == true.
          else {
            should_round_up = second_third_subsegments > 5000000000ULL ||
                              (second_third_subsegments == 5000000000ULL &&
                               ((digits & 1) != 0 || has_more_segments));
          }
        }
        // Otherwise, print the second subsegment.
        else {
          // Compilers are not aware of how to leverage the maximum value of
          // second_third_subsegments to find out a better magic number which
          // allows us to eliminate an additional shift. 1844674407370955162 =
          // ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))).
          const uint32_t second_subsegment =
              static_cast<uint32_t>(dragonbox::umul128_upper64(
                  second_third_subsegments, 1844674407370955162ULL));
          const uint32_t third_subsegment =
              static_cast<uint32_t>(second_third_subsegments) -
              second_subsegment * 10;

          number_of_digits_to_print = precision - 9;
          print_subsegment(second_subsegment, buf.data() + 9);

          // Rounding inside the subsegment.
          if (precision < 18) {
            // The condition third_subsegment != 0 implies that the segment was
            // of 19 digits, so in this case the third segment should be
            // consisting of a genuine digit from the input.
            uint32_t fractional_part = static_cast<uint32_t>(prod);
            should_round_up = fractional_part >=
                                  data::fractional_part_rounding_thresholds
                                      [8 - number_of_digits_to_print] ||
                              ((fractional_part >> 31) &
                               ((digits & 1) | (third_subsegment != 0) |
                                has_more_segments)) != 0;
          }
          // Rounding at the subsegment boundary.
          else {
            // In this case, the segment must be of 19 digits, thus
            // the third subsegment should be consisting of a genuine digit from
            // the input.
            should_round_up = third_subsegment > 5 ||
                              (third_subsegment == 5 &&
                               ((digits & 1) != 0 || has_more_segments));
          }
        }

        // Round-up if necessary.
        if (should_round_up) {
          ++buf[precision - 1];
          for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) {
            buf[i] = '0';
            ++buf[i - 1];
          }
          if (buf[0] > '9') {
            buf[0] = '1';
            if (fixed)
              buf[precision++] = '0';
            else
              ++exp;
          }
        }
        buf.try_resize(to_unsigned(precision));
      }
    }  // if (digits_in_the_first_segment > precision)
    else {
      // Adjust the exponent for its use in Dragon4.
      exp += digits_in_the_first_segment - 1;
    }
  }
  if (use_dragon) {
    auto f = basic_fp<uint128_t>();
    bool is_predecessor_closer = specs.binary32
                                     ? f.assign(static_cast<float>(value))
                                     : f.assign(converted_value);
    if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
    if (fixed) dragon_flags |= dragon::fixed;
    // Limit precision to the maximum possible number of significant digits in
    // an IEEE754 double because we don't need to generate zeros.
    const int max_double_digits = 767;
    if (precision > max_double_digits) precision = max_double_digits;
    format_dragon(f, dragon_flags, precision, buf, exp);
  }
  if (!fixed && !specs.showpoint) {
    // Remove trailing zeros.
    auto num_digits = buf.size();
    while (num_digits > 0 && buf[num_digits - 1] == '0') {
      --num_digits;
      ++exp;
    }
    buf.try_resize(num_digits);
  }
  return exp;
}
template <typename Char, typename OutputIt, typename T>
FMT_CONSTEXPR20 auto write_float(OutputIt out, T value,
                                 format_specs<Char> specs, locale_ref loc)
    -> OutputIt {
  float_specs fspecs = parse_float_type_spec(specs);
  fspecs.sign = specs.sign;
  if (detail::signbit(value)) {  // value < 0 is false for NaN so use signbit.
    fspecs.sign = sign::minus;
    value = -value;
  } else if (fspecs.sign == sign::minus) {
    fspecs.sign = sign::none;
  }

  if (!detail::isfinite(value))
    return write_nonfinite(out, detail::isnan(value), specs, fspecs);

  if (specs.align == align::numeric && fspecs.sign) {
    auto it = reserve(out, 1);
    *it++ = detail::sign<Char>(fspecs.sign);
    out = base_iterator(out, it);
    fspecs.sign = sign::none;
    if (specs.width != 0) --specs.width;
  }

  memory_buffer buffer;
  if (fspecs.format == float_format::hex) {
    if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign));
    format_hexfloat(convert_float(value), specs.precision, fspecs, buffer);
    return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
                                     specs);
  }
  int precision = specs.precision >= 0 || specs.type == presentation_type::none
                      ? specs.precision
                      : 6;
  if (fspecs.format == float_format::exp) {
    if (precision == max_value<int>())
      throw_format_error("number is too big");
    else
      ++precision;
  } else if (fspecs.format != float_format::fixed && precision == 0) {
    precision = 1;
  }
  if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
  int exp = format_float(convert_float(value), precision, fspecs, buffer);
  fspecs.precision = precision;
  auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
  return write_float(out, f, specs, fspecs, loc);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_floating_point<T>::value)>
FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs<Char> specs,
                           locale_ref loc = {}) -> OutputIt {
  if (const_check(!is_supported_floating_point(value))) return out;
  return specs.localized && write_loc(out, value, specs, loc)
             ? out
             : write_float(out, value, specs, loc);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_fast_float<T>::value)>
FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
  if (is_constant_evaluated()) return write(out, value, format_specs<Char>());
  if (const_check(!is_supported_floating_point(value))) return out;

  auto fspecs = float_specs();
  if (detail::signbit(value)) {
    fspecs.sign = sign::minus;
    value = -value;
  }

  constexpr auto specs = format_specs<Char>();
  using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
  using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint;
  floaty_uint mask = exponent_mask<floaty>();
  if ((bit_cast<floaty_uint>(value) & mask) == mask)
    return write_nonfinite(out, std::isnan(value), specs, fspecs);

  auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
  return write_float(out, dec, specs, fspecs, {});
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_floating_point<T>::value &&
                        !is_fast_float<T>::value)>
inline auto write(OutputIt out, T value) -> OutputIt {
  return write(out, value, format_specs<Char>());
}

template <typename Char, typename OutputIt>
auto write(OutputIt out, monostate, format_specs<Char> = {}, locale_ref = {})
    -> OutputIt {
  FMT_ASSERT(false, "");
  return out;
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
    -> OutputIt {
  auto it = reserve(out, value.size());
  it = copy_str_noinline<Char>(value.begin(), value.end(), it);
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_string<T>::value)>
constexpr auto write(OutputIt out, const T& value) -> OutputIt {
  return write<Char>(out, to_string_view(value));
}

// FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
template <
    typename Char, typename OutputIt, typename T,
    bool check =
        std::is_enum<T>::value && !std::is_same<T, Char>::value &&
        mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
            type::custom_type,
    FMT_ENABLE_IF(check)>
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
  return write<Char>(out, static_cast<underlying_t<T>>(value));
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_same<T, bool>::value)>
FMT_CONSTEXPR auto write(OutputIt out, T value,
                         const format_specs<Char>& specs = {}, locale_ref = {})
    -> OutputIt {
  return specs.type != presentation_type::none &&
                 specs.type != presentation_type::string
             ? write(out, value ? 1 : 0, specs, {})
             : write_bytes(out, value ? "true" : "false", specs);
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
  auto it = reserve(out, 1);
  *it++ = value;
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
    -> OutputIt {
  if (value) return write(out, basic_string_view<Char>(value));
  throw_format_error("string pointer is null");
  return out;
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_same<T, void>::value)>
auto write(OutputIt out, const T* value, const format_specs<Char>& specs = {},
           locale_ref = {}) -> OutputIt {
  return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs);
}

// A write overload that handles implicit conversions.
template <typename Char, typename OutputIt, typename T,
          typename Context = basic_format_context<OutputIt, Char>>
FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t<
    std::is_class<T>::value && !is_string<T>::value &&
        !is_floating_point<T>::value && !std::is_same<T, Char>::value &&
        !std::is_same<T, remove_cvref_t<decltype(arg_mapper<Context>().map(
                             value))>>::value,
    OutputIt> {
  return write<Char>(out, arg_mapper<Context>().map(value));
}

template <typename Char, typename OutputIt, typename T,
          typename Context = basic_format_context<OutputIt, Char>>
FMT_CONSTEXPR auto write(OutputIt out, const T& value)
    -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type,
                   OutputIt> {
  auto ctx = Context(out, {}, {});
  return typename Context::template formatter_type<T>().format(value, ctx);
}

// An argument visitor that formats the argument and writes it via the output
// iterator. It's a class and not a generic lambda for compatibility with C++11.
template <typename Char> struct default_arg_formatter {
  using iterator = buffer_appender<Char>;
  using context = buffer_context<Char>;

  iterator out;
  basic_format_args<context> args;
  locale_ref loc;

  template <typename T> auto operator()(T value) -> iterator {
    return write<Char>(out, value);
  }
  auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
    basic_format_parse_context<Char> parse_ctx({});
    context format_ctx(out, args, loc);
    h.format(parse_ctx, format_ctx);
    return format_ctx.out();
  }
};

template <typename Char> struct arg_formatter {
  using iterator = buffer_appender<Char>;
  using context = buffer_context<Char>;

  iterator out;
  const format_specs<Char>& specs;
  locale_ref locale;

  template <typename T>
  FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
    return detail::write(out, value, specs, locale);
  }
  auto operator()(typename basic_format_arg<context>::handle) -> iterator {
    // User-defined types are handled separately because they require access
    // to the parse context.
    return out;
  }
};

template <typename Char> struct custom_formatter {
  basic_format_parse_context<Char>& parse_ctx;
  buffer_context<Char>& ctx;

  void operator()(
      typename basic_format_arg<buffer_context<Char>>::handle h) const {
    h.format(parse_ctx, ctx);
  }
  template <typename T> void operator()(T) const {}
};

template <typename ErrorHandler> class width_checker {
 public:
  explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
    if (is_negative(value)) handler_.on_error("negative width");
    return static_cast<unsigned long long>(value);
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
    handler_.on_error("width is not integer");
    return 0;
  }

 private:
  ErrorHandler& handler_;
};

template <typename ErrorHandler> class precision_checker {
 public:
  explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
    if (is_negative(value)) handler_.on_error("negative precision");
    return static_cast<unsigned long long>(value);
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
    handler_.on_error("precision is not integer");
    return 0;
  }

 private:
  ErrorHandler& handler_;
};

template <template <typename> class Handler, typename FormatArg,
          typename ErrorHandler>
FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int {
  unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
  if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
  return static_cast<int>(value);
}

template <typename Context, typename ID>
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) ->
    typename Context::format_arg {
  auto arg = ctx.arg(id);
  if (!arg) ctx.on_error("argument not found");
  return arg;
}

template <template <typename> class Handler, typename Context>
FMT_CONSTEXPR void handle_dynamic_spec(int& value,
                                       arg_ref<typename Context::char_type> ref,
                                       Context& ctx) {
  switch (ref.kind) {
  case arg_id_kind::none:
    break;
  case arg_id_kind::index:
    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index),
                                              ctx.error_handler());
    break;
  case arg_id_kind::name:
    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name),
                                              ctx.error_handler());
    break;
  }
}

#if FMT_USE_USER_DEFINED_LITERALS
template <typename Char> struct udl_formatter {
  basic_string_view<Char> str;

  template <typename... T>
  auto operator()(T&&... args) const -> std::basic_string<Char> {
    return vformat(str, fmt::make_format_args<buffer_context<Char>>(args...));
  }
};

#  if FMT_USE_NONTYPE_TEMPLATE_ARGS
template <typename T, typename Char, size_t N,
          fmt::detail_exported::fixed_string<Char, N> Str>
struct statically_named_arg : view {
  static constexpr auto name = Str.data;

  const T& value;
  statically_named_arg(const T& v) : value(v) {}
};

template <typename T, typename Char, size_t N,
          fmt::detail_exported::fixed_string<Char, N> Str>
struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};

template <typename T, typename Char, size_t N,
          fmt::detail_exported::fixed_string<Char, N> Str>
struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
    : std::true_type {};

template <typename Char, size_t N,
          fmt::detail_exported::fixed_string<Char, N> Str>
struct udl_arg {
  template <typename T> auto operator=(T&& value) const {
    return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
  }
};
#  else
template <typename Char> struct udl_arg {
  const Char* str;

  template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
    return {str, std::forward<T>(value)};
  }
};
#  endif
#endif  // FMT_USE_USER_DEFINED_LITERALS

template <typename Locale, typename Char>
auto vformat(const Locale& loc, basic_string_view<Char> fmt,
             basic_format_args<buffer_context<type_identity_t<Char>>> args)
    -> std::basic_string<Char> {
  auto buf = basic_memory_buffer<Char>();
  detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
  return {buf.data(), buf.size()};
}

using format_func = void (*)(detail::buffer<char>&, int, const char*);

FMT_API void format_error_code(buffer<char>& out, int error_code,
                               string_view message) noexcept;

FMT_API void report_error(format_func func, int error_code,
                          const char* message) noexcept;
FMT_END_DETAIL_NAMESPACE

FMT_API auto vsystem_error(int error_code, string_view format_str,
                           format_args args) -> std::system_error;

/**
 \rst
 Constructs :class:`std::system_error` with a message formatted with
 ``fmt::format(fmt, args...)``.
  *error_code* is a system error code as given by ``errno``.

 **Example**::

   // This throws std::system_error with the description
   //   cannot open file 'madeup': No such file or directory
   // or similar (system message may vary).
   const char* filename = "madeup";
   std::FILE* file = std::fopen(filename, "r");
   if (!file)
     throw fmt::system_error(errno, "cannot open file '{}'", filename);
 \endrst
*/
template <typename... T>
auto system_error(int error_code, format_string<T...> fmt, T&&... args)
    -> std::system_error {
  return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
}

/**
  \rst
  Formats an error message for an error returned by an operating system or a
  language runtime, for example a file opening error, and writes it to *out*.
  The format is the same as the one used by ``std::system_error(ec, message)``
  where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
  It is implementation-defined but normally looks like:

  .. parsed-literal::
     *<message>*: *<system-message>*

  where *<message>* is the passed message and *<system-message>* is the system
  message corresponding to the error code.
  *error_code* is a system error code as given by ``errno``.
  \endrst
 */
FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
                                 const char* message) noexcept;

// Reports a system error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_system_error(int error_code, const char* message) noexcept;

/** Fast integer formatter. */
class format_int {
 private:
  // Buffer should be large enough to hold all digits (digits10 + 1),
  // a sign and a null character.
  enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
  mutable char buffer_[buffer_size];
  char* str_;

  template <typename UInt> auto format_unsigned(UInt value) -> char* {
    auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
    return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
  }

  template <typename Int> auto format_signed(Int value) -> char* {
    auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
    bool negative = value < 0;
    if (negative) abs_value = 0 - abs_value;
    auto begin = format_unsigned(abs_value);
    if (negative) *--begin = '-';
    return begin;
  }

 public:
  explicit format_int(int value) : str_(format_signed(value)) {}
  explicit format_int(long value) : str_(format_signed(value)) {}
  explicit format_int(long long value) : str_(format_signed(value)) {}
  explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
  explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
  explicit format_int(unsigned long long value)
      : str_(format_unsigned(value)) {}

  /** Returns the number of characters written to the output buffer. */
  auto size() const -> size_t {
    return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
  }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  auto data() const -> const char* { return str_; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  auto c_str() const -> const char* {
    buffer_[buffer_size - 1] = '\0';
    return str_;
  }

  /**
    \rst
    Returns the content of the output buffer as an ``std::string``.
    \endrst
   */
  auto str() const -> std::string { return std::string(str_, size()); }
};

template <typename T, typename Char>
struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>>
    : private formatter<detail::format_as_t<T>> {
  using base = formatter<detail::format_as_t<T>>;
  using base::parse;

  template <typename FormatContext>
  auto format(const T& value, FormatContext& ctx) const -> decltype(ctx.out()) {
    return base::format(format_as(value), ctx);
  }
};

template <typename Char>
struct formatter<void*, Char> : formatter<const void*, Char> {
  template <typename FormatContext>
  auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) {
    return formatter<const void*, Char>::format(val, ctx);
  }
};

template <typename Char, size_t N>
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
  template <typename FormatContext>
  FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const
      -> decltype(ctx.out()) {
    return formatter<basic_string_view<Char>, Char>::format(val, ctx);
  }
};

/**
  \rst
  Converts ``p`` to ``const void*`` for pointer formatting.

  **Example**::

    auto s = fmt::format("{}", fmt::ptr(p));
  \endrst
 */
template <typename T> auto ptr(T p) -> const void* {
  static_assert(std::is_pointer<T>::value, "");
  return detail::bit_cast<const void*>(p);
}
template <typename T, typename Deleter>
auto ptr(const std::unique_ptr<T, Deleter>& p) -> const void* {
  return p.get();
}
template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
  return p.get();
}

/**
  \rst
  Converts ``e`` to the underlying type.

  **Example**::

    enum class color { red, green, blue };
    auto s = fmt::format("{}", fmt::underlying(color::red));
  \endrst
 */
template <typename Enum>
constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> {
  return static_cast<underlying_t<Enum>>(e);
}

namespace enums {
template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)>
constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> {
  return static_cast<underlying_t<Enum>>(e);
}
}  // namespace enums

class bytes {
 private:
  string_view data_;
  friend struct formatter<bytes>;

 public:
  explicit bytes(string_view data) : data_(data) {}
};

template <> struct formatter<bytes> {
 private:
  detail::dynamic_format_specs<> specs_;

 public:
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
    return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
                              detail::type::string_type);
  }

  template <typename FormatContext>
  auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
    return detail::write_bytes(ctx.out(), b.data_, specs_);
  }
};

// group_digits_view is not derived from view because it copies the argument.
template <typename T> struct group_digits_view { T value; };

/**
  \rst
  Returns a view that formats an integer value using ',' as a locale-independent
  thousands separator.

  **Example**::

    fmt::print("{}", fmt::group_digits(12345));
    // Output: "12,345"
  \endrst
 */
template <typename T> auto group_digits(T value) -> group_digits_view<T> {
  return {value};
}

template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
 private:
  detail::dynamic_format_specs<> specs_;

 public:
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
    return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
                              detail::type::int_type);
  }

  template <typename FormatContext>
  auto format(group_digits_view<T> t, FormatContext& ctx)
      -> decltype(ctx.out()) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
    return detail::write_int(
        ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_,
        detail::digit_grouping<char>("\3", ","));
  }
};

// DEPRECATED! join_view will be moved to ranges.h.
template <typename It, typename Sentinel, typename Char = char>
struct join_view : detail::view {
  It begin;
  Sentinel end;
  basic_string_view<Char> sep;

  join_view(It b, Sentinel e, basic_string_view<Char> s)
      : begin(b), end(e), sep(s) {}
};

template <typename It, typename Sentinel, typename Char>
struct formatter<join_view<It, Sentinel, Char>, Char> {
 private:
  using value_type =
#ifdef __cpp_lib_ranges
      std::iter_value_t<It>;
#else
      typename std::iterator_traits<It>::value_type;
#endif
  formatter<remove_cvref_t<value_type>, Char> value_formatter_;

 public:
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* {
    return value_formatter_.parse(ctx);
  }

  template <typename FormatContext>
  auto format(const join_view<It, Sentinel, Char>& value,
              FormatContext& ctx) const -> decltype(ctx.out()) {
    auto it = value.begin;
    auto out = ctx.out();
    if (it != value.end) {
      out = value_formatter_.format(*it, ctx);
      ++it;
      while (it != value.end) {
        out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
        ctx.advance_to(out);
        out = value_formatter_.format(*it, ctx);
        ++it;
      }
    }
    return out;
  }
};

/**
  Returns a view that formats the iterator range `[begin, end)` with elements
  separated by `sep`.
 */
template <typename It, typename Sentinel>
auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
  return {begin, end, sep};
}

/**
  \rst
  Returns a view that formats `range` with elements separated by `sep`.

  **Example**::

    std::vector<int> v = {1, 2, 3};
    fmt::print("{}", fmt::join(v, ", "));
    // Output: "1, 2, 3"

  ``fmt::join`` applies passed format specifiers to the range elements::

    fmt::print("{:02}", fmt::join(v, ", "));
    // Output: "01, 02, 03"
  \endrst
 */
template <typename Range>
auto join(Range&& range, string_view sep)
    -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
  return join(std::begin(range), std::end(range), sep);
}

/**
  \rst
  Converts *value* to ``std::string`` using the default format for type *T*.

  **Example**::

    #include <fmt/format.h>

    std::string answer = fmt::to_string(42);
  \endrst
 */
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
inline auto to_string(const T& value) -> std::string {
  auto buffer = memory_buffer();
  detail::write<char>(appender(buffer), value);
  return {buffer.data(), buffer.size()};
}

template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
FMT_NODISCARD inline auto to_string(T value) -> std::string {
  // The buffer should be large enough to store the number including the sign
  // or "false" for bool.
  constexpr int max_size = detail::digits10<T>() + 2;
  char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
  char* begin = buffer;
  return std::string(begin, detail::write<char>(begin, value));
}

template <typename Char, size_t SIZE>
FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
    -> std::basic_string<Char> {
  auto size = buf.size();
  detail::assume(size < std::basic_string<Char>().max_size());
  return std::basic_string<Char>(buf.data(), size);
}

FMT_BEGIN_DETAIL_NAMESPACE

template <typename Char>
void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
                typename vformat_args<Char>::type args, locale_ref loc) {
  auto out = buffer_appender<Char>(buf);
  if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
    auto arg = args.get(0);
    if (!arg) error_handler().on_error("argument not found");
    visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
    return;
  }

  struct format_handler : error_handler {
    basic_format_parse_context<Char> parse_context;
    buffer_context<Char> context;

    format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str,
                   basic_format_args<buffer_context<Char>> p_args,
                   locale_ref p_loc)
        : parse_context(str), context(p_out, p_args, p_loc) {}

    void on_text(const Char* begin, const Char* end) {
      auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
      context.advance_to(write<Char>(context.out(), text));
    }

    FMT_CONSTEXPR auto on_arg_id() -> int {
      return parse_context.next_arg_id();
    }
    FMT_CONSTEXPR auto on_arg_id(int id) -> int {
      return parse_context.check_arg_id(id), id;
    }
    FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
      int arg_id = context.arg_id(id);
      if (arg_id < 0) on_error("argument not found");
      return arg_id;
    }

    FMT_INLINE void on_replacement_field(int id, const Char*) {
      auto arg = get_arg(context, id);
      context.advance_to(visit_format_arg(
          default_arg_formatter<Char>{context.out(), context.args(),
                                      context.locale()},
          arg));
    }

    auto on_format_specs(int id, const Char* begin, const Char* end)
        -> const Char* {
      auto arg = get_arg(context, id);
      if (arg.type() == type::custom_type) {
        parse_context.advance_to(begin);
        visit_format_arg(custom_formatter<Char>{parse_context, context}, arg);
        return parse_context.begin();
      }
      auto specs = detail::dynamic_format_specs<Char>();
      begin = parse_format_specs(begin, end, specs, parse_context, arg.type());
      detail::handle_dynamic_spec<detail::width_checker>(
          specs.width, specs.width_ref, context);
      detail::handle_dynamic_spec<detail::precision_checker>(
          specs.precision, specs.precision_ref, context);
      if (begin == end || *begin != '}')
        on_error("missing '}' in format string");
      auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
      context.advance_to(visit_format_arg(f, arg));
      return begin;
    }
  };
  detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
}

#ifndef FMT_HEADER_ONLY
extern template FMT_API void vformat_to(buffer<char>&, string_view,
                                        typename vformat_args<>::type,
                                        locale_ref);
extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
    -> thousands_sep_result<char>;
extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
    -> thousands_sep_result<wchar_t>;
extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
#endif  // FMT_HEADER_ONLY

FMT_END_DETAIL_NAMESPACE

#if FMT_USE_USER_DEFINED_LITERALS
inline namespace literals {
/**
  \rst
  User-defined literal equivalent of :func:`fmt::arg`.

  **Example**::

    using namespace fmt::literals;
    fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
  \endrst
 */
#  if FMT_USE_NONTYPE_TEMPLATE_ARGS
template <detail_exported::fixed_string Str> constexpr auto operator""_a() {
  using char_t = remove_cvref_t<decltype(Str.data[0])>;
  return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>();
}
#  else
constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> {
  return {s};
}
#  endif
}  // namespace literals
#endif  // FMT_USE_USER_DEFINED_LITERALS

template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
inline auto vformat(const Locale& loc, string_view fmt, format_args args)
    -> std::string {
  return detail::vformat(loc, fmt, args);
}

template <typename Locale, typename... T,
          FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
    -> std::string {
  return fmt::vformat(loc, string_view(fmt), fmt::make_format_args(args...));
}

template <typename OutputIt, typename Locale,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
                            detail::is_locale<Locale>::value)>
auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
                format_args args) -> OutputIt {
  using detail::get_buffer;
  auto&& buf = get_buffer<char>(out);
  detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
  return detail::get_iterator(buf, out);
}

template <typename OutputIt, typename Locale, typename... T,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
                            detail::is_locale<Locale>::value)>
FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
                          format_string<T...> fmt, T&&... args) -> OutputIt {
  return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
}

template <typename Locale, typename... T,
          FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
FMT_NODISCARD FMT_INLINE auto formatted_size(const Locale& loc,
                                             format_string<T...> fmt,
                                             T&&... args) -> size_t {
  auto buf = detail::counting_buffer<>();
  detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...),
                           detail::locale_ref(loc));
  return buf.count();
}

FMT_END_EXPORT

template <typename T, typename Char>
template <typename FormatContext>
FMT_CONSTEXPR FMT_INLINE auto
formatter<T, Char,
          enable_if_t<detail::type_constant<T, Char>::value !=
                      detail::type::custom_type>>::format(const T& val,
                                                          FormatContext& ctx)
    const -> decltype(ctx.out()) {
  if (specs_.width_ref.kind != detail::arg_id_kind::none ||
      specs_.precision_ref.kind != detail::arg_id_kind::none) {
    auto specs = specs_;
    detail::handle_dynamic_spec<detail::width_checker>(specs.width,
                                                       specs.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs.precision, specs.precision_ref, ctx);
    return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
  }
  return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
}

FMT_END_NAMESPACE

#ifdef FMT_HEADER_ONLY
#  define FMT_FUNC inline
#  include "format-inl.h"
#else
#  define FMT_FUNC
#endif

#endif  // FMT_FORMAT_H_