Files
@ r28520:f9aebe299cae
Branch filter:
Location: cpp/openttd-patchpack/source/src/3rdparty/monocypher/monocypher.cpp
r28520:f9aebe299cae
97.9 KiB
text/x-c
Codechange: MacOS already has MIN/MAX macros defined
This is caused because we use PreCompile Headers, and one of them
includes a system headers which defines MIN/MAX.
This is caused because we use PreCompile Headers, and one of them
includes a system headers which defines MIN/MAX.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 | // Monocypher version 4.0.2
//
// This file is dual-licensed. Choose whichever licence you want from
// the two licences listed below.
//
// The first licence is a regular 2-clause BSD licence. The second licence
// is the CC-0 from Creative Commons. It is intended to release Monocypher
// to the public domain. The BSD licence serves as a fallback option.
//
// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
//
// ------------------------------------------------------------------------
//
// Copyright (c) 2017-2020, Loup Vaillant
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ------------------------------------------------------------------------
//
// Written in 2017-2020 by Loup Vaillant
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software. If not, see
// <https://creativecommons.org/publicdomain/zero/1.0/>
#include "monocypher.h"
#ifdef MONOCYPHER_CPP_NAMESPACE
namespace MONOCYPHER_CPP_NAMESPACE {
#endif
/////////////////
/// Utilities ///
/////////////////
#define FOR_T(type, i, start, end) for (type i = (start); i < (end); i++)
#define FOR(i, start, end) FOR_T(size_t, i, start, end)
#define COPY(dst, src, size) FOR(_i_, 0, size) (dst)[_i_] = (src)[_i_]
#define ZERO(buf, size) FOR(_i_, 0, size) (buf)[_i_] = 0
#define WIPE_CTX(ctx) crypto_wipe(ctx , sizeof(*(ctx)))
#define WIPE_BUFFER(buffer) crypto_wipe(buffer, sizeof(buffer))
#define MC_MIN(a, b) ((a) <= (b) ? (a) : (b))
#define MC_MAX(a, b) ((a) >= (b) ? (a) : (b))
typedef int8_t i8;
typedef uint8_t u8;
typedef int16_t i16;
typedef uint32_t u32;
typedef int32_t i32;
typedef int64_t i64;
typedef uint64_t u64;
static const u8 zero[128] = {0};
// returns the smallest positive integer y such that
// (x + y) % pow_2 == 0
// Basically, y is the "gap" missing to align x.
// Only works when pow_2 is a power of 2.
// Note: we use ~x+1 instead of -x to avoid compiler warnings
static size_t gap(size_t x, size_t pow_2)
{
return (~x + 1) & (pow_2 - 1);
}
static u32 load24_le(const u8 s[3])
{
return
((u32)s[0] << 0) |
((u32)s[1] << 8) |
((u32)s[2] << 16);
}
static u32 load32_le(const u8 s[4])
{
return
((u32)s[0] << 0) |
((u32)s[1] << 8) |
((u32)s[2] << 16) |
((u32)s[3] << 24);
}
static u64 load64_le(const u8 s[8])
{
return load32_le(s) | ((u64)load32_le(s+4) << 32);
}
static void store32_le(u8 out[4], u32 in)
{
out[0] = in & 0xff;
out[1] = (in >> 8) & 0xff;
out[2] = (in >> 16) & 0xff;
out[3] = (in >> 24) & 0xff;
}
static void store64_le(u8 out[8], u64 in)
{
store32_le(out , (u32)in );
store32_le(out + 4, in >> 32);
}
static void load32_le_buf (u32 *dst, const u8 *src, size_t size) {
FOR(i, 0, size) { dst[i] = load32_le(src + i*4); }
}
static void load64_le_buf (u64 *dst, const u8 *src, size_t size) {
FOR(i, 0, size) { dst[i] = load64_le(src + i*8); }
}
static void store32_le_buf(u8 *dst, const u32 *src, size_t size) {
FOR(i, 0, size) { store32_le(dst + i*4, src[i]); }
}
static void store64_le_buf(u8 *dst, const u64 *src, size_t size) {
FOR(i, 0, size) { store64_le(dst + i*8, src[i]); }
}
static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); }
static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); }
static int neq0(u64 diff)
{
// constant time comparison to zero
// return diff != 0 ? -1 : 0
u64 half = (diff >> 32) | ((u32)diff);
return (1 & ((half - 1) >> 32)) - 1;
}
static u64 x16(const u8 a[16], const u8 b[16])
{
return (load64_le(a + 0) ^ load64_le(b + 0))
| (load64_le(a + 8) ^ load64_le(b + 8));
}
static u64 x32(const u8 a[32],const u8 b[32]){return x16(a,b)| x16(a+16, b+16);}
static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);}
int crypto_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); }
int crypto_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); }
int crypto_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); }
void crypto_wipe(void *secret, size_t size)
{
volatile u8 *v_secret = (u8*)secret;
ZERO(v_secret, size);
}
/////////////////
/// Chacha 20 ///
/////////////////
#define QUARTERROUND(a, b, c, d) \
a += b; d = rotl32(d ^ a, 16); \
c += d; b = rotl32(b ^ c, 12); \
a += b; d = rotl32(d ^ a, 8); \
c += d; b = rotl32(b ^ c, 7)
static void chacha20_rounds(u32 out[16], const u32 in[16])
{
// The temporary variables make Chacha20 10% faster.
u32 t0 = in[ 0]; u32 t1 = in[ 1]; u32 t2 = in[ 2]; u32 t3 = in[ 3];
u32 t4 = in[ 4]; u32 t5 = in[ 5]; u32 t6 = in[ 6]; u32 t7 = in[ 7];
u32 t8 = in[ 8]; u32 t9 = in[ 9]; u32 t10 = in[10]; u32 t11 = in[11];
u32 t12 = in[12]; u32 t13 = in[13]; u32 t14 = in[14]; u32 t15 = in[15];
FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop.
QUARTERROUND(t0, t4, t8 , t12); // column 0
QUARTERROUND(t1, t5, t9 , t13); // column 1
QUARTERROUND(t2, t6, t10, t14); // column 2
QUARTERROUND(t3, t7, t11, t15); // column 3
QUARTERROUND(t0, t5, t10, t15); // diagonal 0
QUARTERROUND(t1, t6, t11, t12); // diagonal 1
QUARTERROUND(t2, t7, t8 , t13); // diagonal 2
QUARTERROUND(t3, t4, t9 , t14); // diagonal 3
}
out[ 0] = t0; out[ 1] = t1; out[ 2] = t2; out[ 3] = t3;
out[ 4] = t4; out[ 5] = t5; out[ 6] = t6; out[ 7] = t7;
out[ 8] = t8; out[ 9] = t9; out[10] = t10; out[11] = t11;
out[12] = t12; out[13] = t13; out[14] = t14; out[15] = t15;
}
static const u8 *chacha20_constant = (const u8*)"expand 32-byte k"; // 16 bytes
void crypto_chacha20_h(u8 out[32], const u8 key[32], const u8 in [16])
{
u32 block[16];
load32_le_buf(block , chacha20_constant, 4);
load32_le_buf(block + 4, key , 8);
load32_le_buf(block + 12, in , 4);
chacha20_rounds(block, block);
// prevent reversal of the rounds by revealing only half of the buffer.
store32_le_buf(out , block , 4); // constant
store32_le_buf(out+16, block+12, 4); // counter and nonce
WIPE_BUFFER(block);
}
u64 crypto_chacha20_djb(u8 *cipher_text, const u8 *plain_text,
size_t text_size, const u8 key[32], const u8 nonce[8],
u64 ctr)
{
u32 input[16];
load32_le_buf(input , chacha20_constant, 4);
load32_le_buf(input + 4, key , 8);
load32_le_buf(input + 14, nonce , 2);
input[12] = (u32) ctr;
input[13] = (u32)(ctr >> 32);
// Whole blocks
u32 pool[16];
size_t nb_blocks = text_size >> 6;
FOR (i, 0, nb_blocks) {
chacha20_rounds(pool, input);
if (plain_text != 0) {
FOR (j, 0, 16) {
u32 p = pool[j] + input[j];
store32_le(cipher_text, p ^ load32_le(plain_text));
cipher_text += 4;
plain_text += 4;
}
} else {
FOR (j, 0, 16) {
u32 p = pool[j] + input[j];
store32_le(cipher_text, p);
cipher_text += 4;
}
}
input[12]++;
if (input[12] == 0) {
input[13]++;
}
}
text_size &= 63;
// Last (incomplete) block
if (text_size > 0) {
if (plain_text == 0) {
plain_text = zero;
}
chacha20_rounds(pool, input);
u8 tmp[64];
FOR (i, 0, 16) {
store32_le(tmp + i*4, pool[i] + input[i]);
}
FOR (i, 0, text_size) {
cipher_text[i] = tmp[i] ^ plain_text[i];
}
WIPE_BUFFER(tmp);
}
ctr = input[12] + ((u64)input[13] << 32) + (text_size > 0);
WIPE_BUFFER(pool);
WIPE_BUFFER(input);
return ctr;
}
u32 crypto_chacha20_ietf(u8 *cipher_text, const u8 *plain_text,
size_t text_size,
const u8 key[32], const u8 nonce[12], u32 ctr)
{
u64 big_ctr = ctr + ((u64)load32_le(nonce) << 32);
return (u32)crypto_chacha20_djb(cipher_text, plain_text, text_size,
key, nonce + 4, big_ctr);
}
u64 crypto_chacha20_x(u8 *cipher_text, const u8 *plain_text,
size_t text_size,
const u8 key[32], const u8 nonce[24], u64 ctr)
{
u8 sub_key[32];
crypto_chacha20_h(sub_key, key, nonce);
ctr = crypto_chacha20_djb(cipher_text, plain_text, text_size,
sub_key, nonce + 16, ctr);
WIPE_BUFFER(sub_key);
return ctr;
}
/////////////////
/// Poly 1305 ///
/////////////////
// h = (h + c) * r
// preconditions:
// ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff
// ctx->r <= 0ffffffc_0ffffffc_0ffffffc_0fffffff
// end <= 1
// Postcondition:
// ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff
static void poly_blocks(crypto_poly1305_ctx *ctx, const u8 *in,
size_t nb_blocks, unsigned end)
{
// Local all the things!
const u32 r0 = ctx->r[0];
const u32 r1 = ctx->r[1];
const u32 r2 = ctx->r[2];
const u32 r3 = ctx->r[3];
const u32 rr0 = (r0 >> 2) * 5; // lose 2 bits...
const u32 rr1 = (r1 >> 2) + r1; // rr1 == (r1 >> 2) * 5
const u32 rr2 = (r2 >> 2) + r2; // rr1 == (r2 >> 2) * 5
const u32 rr3 = (r3 >> 2) + r3; // rr1 == (r3 >> 2) * 5
const u32 rr4 = r0 & 3; // ...recover 2 bits
u32 h0 = ctx->h[0];
u32 h1 = ctx->h[1];
u32 h2 = ctx->h[2];
u32 h3 = ctx->h[3];
u32 h4 = ctx->h[4];
FOR (i, 0, nb_blocks) {
// h + c, without carry propagation
const u64 s0 = (u64)h0 + load32_le(in); in += 4;
const u64 s1 = (u64)h1 + load32_le(in); in += 4;
const u64 s2 = (u64)h2 + load32_le(in); in += 4;
const u64 s3 = (u64)h3 + load32_le(in); in += 4;
const u32 s4 = h4 + end;
// (h + c) * r, without carry propagation
const u64 x0 = s0*r0+ s1*rr3+ s2*rr2+ s3*rr1+ s4*rr0;
const u64 x1 = s0*r1+ s1*r0 + s2*rr3+ s3*rr2+ s4*rr1;
const u64 x2 = s0*r2+ s1*r1 + s2*r0 + s3*rr3+ s4*rr2;
const u64 x3 = s0*r3+ s1*r2 + s2*r1 + s3*r0 + s4*rr3;
const u32 x4 = s4*rr4;
// partial reduction modulo 2^130 - 5
const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5
const u64 u0 = (u5 >> 2) * 5 + (x0 & 0xffffffff);
const u64 u1 = (u0 >> 32) + (x1 & 0xffffffff) + (x0 >> 32);
const u64 u2 = (u1 >> 32) + (x2 & 0xffffffff) + (x1 >> 32);
const u64 u3 = (u2 >> 32) + (x3 & 0xffffffff) + (x2 >> 32);
const u32 u4 = (u3 >> 32) + (u5 & 3); // u4 <= 4
// Update the hash
h0 = u0 & 0xffffffff;
h1 = u1 & 0xffffffff;
h2 = u2 & 0xffffffff;
h3 = u3 & 0xffffffff;
h4 = u4;
}
ctx->h[0] = h0;
ctx->h[1] = h1;
ctx->h[2] = h2;
ctx->h[3] = h3;
ctx->h[4] = h4;
}
void crypto_poly1305_init(crypto_poly1305_ctx *ctx, const u8 key[32])
{
ZERO(ctx->h, 5); // Initial hash is zero
ctx->c_idx = 0;
// load r and pad (r has some of its bits cleared)
load32_le_buf(ctx->r , key , 4);
load32_le_buf(ctx->pad, key+16, 4);
FOR (i, 0, 1) { ctx->r[i] &= 0x0fffffff; }
FOR (i, 1, 4) { ctx->r[i] &= 0x0ffffffc; }
}
void crypto_poly1305_update(crypto_poly1305_ctx *ctx,
const u8 *message, size_t message_size)
{
// Avoid undefined NULL pointer increments with empty messages
if (message_size == 0) {
return;
}
// Align ourselves with block boundaries
size_t aligned = MC_MIN(gap(ctx->c_idx, 16), message_size);
FOR (i, 0, aligned) {
ctx->c[ctx->c_idx] = *message;
ctx->c_idx++;
message++;
message_size--;
}
// If block is complete, process it
if (ctx->c_idx == 16) {
poly_blocks(ctx, ctx->c, 1, 1);
ctx->c_idx = 0;
}
// Process the message block by block
size_t nb_blocks = message_size >> 4;
poly_blocks(ctx, message, nb_blocks, 1);
message += nb_blocks << 4;
message_size &= 15;
// remaining bytes (we never complete a block here)
FOR (i, 0, message_size) {
ctx->c[ctx->c_idx] = message[i];
ctx->c_idx++;
}
}
void crypto_poly1305_final(crypto_poly1305_ctx *ctx, u8 mac[16])
{
// Process the last block (if any)
// We move the final 1 according to remaining input length
// (this will add less than 2^130 to the last input block)
if (ctx->c_idx != 0) {
ZERO(ctx->c + ctx->c_idx, 16 - ctx->c_idx);
ctx->c[ctx->c_idx] = 1;
poly_blocks(ctx, ctx->c, 1, 0);
}
// check if we should subtract 2^130-5 by performing the
// corresponding carry propagation.
u64 c = 5;
FOR (i, 0, 4) {
c += ctx->h[i];
c >>= 32;
}
c += ctx->h[4];
c = (c >> 2) * 5; // shift the carry back to the beginning
// c now indicates how many times we should subtract 2^130-5 (0 or 1)
FOR (i, 0, 4) {
c += (u64)ctx->h[i] + ctx->pad[i];
store32_le(mac + i*4, (u32)c);
c = c >> 32;
}
WIPE_CTX(ctx);
}
void crypto_poly1305(u8 mac[16], const u8 *message,
size_t message_size, const u8 key[32])
{
crypto_poly1305_ctx ctx;
crypto_poly1305_init (&ctx, key);
crypto_poly1305_update(&ctx, message, message_size);
crypto_poly1305_final (&ctx, mac);
}
////////////////
/// BLAKE2 b ///
////////////////
static const u64 iv[8] = {
0x6a09e667f3bcc908, 0xbb67ae8584caa73b,
0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
};
static void blake2b_compress(crypto_blake2b_ctx *ctx, int is_last_block)
{
static const u8 sigma[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
};
// increment input offset
u64 *x = ctx->input_offset;
size_t y = ctx->input_idx;
x[0] += y;
if (x[0] < y) {
x[1]++;
}
// init work vector
u64 v0 = ctx->hash[0]; u64 v8 = iv[0];
u64 v1 = ctx->hash[1]; u64 v9 = iv[1];
u64 v2 = ctx->hash[2]; u64 v10 = iv[2];
u64 v3 = ctx->hash[3]; u64 v11 = iv[3];
u64 v4 = ctx->hash[4]; u64 v12 = iv[4] ^ ctx->input_offset[0];
u64 v5 = ctx->hash[5]; u64 v13 = iv[5] ^ ctx->input_offset[1];
u64 v6 = ctx->hash[6]; u64 v14 = iv[6] ^ (u64)~(is_last_block - 1);
u64 v7 = ctx->hash[7]; u64 v15 = iv[7];
// mangle work vector
u64 *input = ctx->input;
#define BLAKE2_G(a, b, c, d, x, y) \
a += b + x; d = rotr64(d ^ a, 32); \
c += d; b = rotr64(b ^ c, 24); \
a += b + y; d = rotr64(d ^ a, 16); \
c += d; b = rotr64(b ^ c, 63)
#define BLAKE2_ROUND(i) \
BLAKE2_G(v0, v4, v8 , v12, input[sigma[i][ 0]], input[sigma[i][ 1]]); \
BLAKE2_G(v1, v5, v9 , v13, input[sigma[i][ 2]], input[sigma[i][ 3]]); \
BLAKE2_G(v2, v6, v10, v14, input[sigma[i][ 4]], input[sigma[i][ 5]]); \
BLAKE2_G(v3, v7, v11, v15, input[sigma[i][ 6]], input[sigma[i][ 7]]); \
BLAKE2_G(v0, v5, v10, v15, input[sigma[i][ 8]], input[sigma[i][ 9]]); \
BLAKE2_G(v1, v6, v11, v12, input[sigma[i][10]], input[sigma[i][11]]); \
BLAKE2_G(v2, v7, v8 , v13, input[sigma[i][12]], input[sigma[i][13]]); \
BLAKE2_G(v3, v4, v9 , v14, input[sigma[i][14]], input[sigma[i][15]])
#ifdef BLAKE2_NO_UNROLLING
FOR (i, 0, 12) {
BLAKE2_ROUND(i);
}
#else
BLAKE2_ROUND(0); BLAKE2_ROUND(1); BLAKE2_ROUND(2); BLAKE2_ROUND(3);
BLAKE2_ROUND(4); BLAKE2_ROUND(5); BLAKE2_ROUND(6); BLAKE2_ROUND(7);
BLAKE2_ROUND(8); BLAKE2_ROUND(9); BLAKE2_ROUND(10); BLAKE2_ROUND(11);
#endif
// update hash
ctx->hash[0] ^= v0 ^ v8; ctx->hash[1] ^= v1 ^ v9;
ctx->hash[2] ^= v2 ^ v10; ctx->hash[3] ^= v3 ^ v11;
ctx->hash[4] ^= v4 ^ v12; ctx->hash[5] ^= v5 ^ v13;
ctx->hash[6] ^= v6 ^ v14; ctx->hash[7] ^= v7 ^ v15;
}
void crypto_blake2b_keyed_init(crypto_blake2b_ctx *ctx, size_t hash_size,
const u8 *key, size_t key_size)
{
// initial hash
COPY(ctx->hash, iv, 8);
ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size;
ctx->input_offset[0] = 0; // beginning of the input, no offset
ctx->input_offset[1] = 0; // beginning of the input, no offset
ctx->hash_size = hash_size;
ctx->input_idx = 0;
ZERO(ctx->input, 16);
// if there is a key, the first block is that key (padded with zeroes)
if (key_size > 0) {
u8 key_block[128] = {0};
COPY(key_block, key, key_size);
// same as calling crypto_blake2b_update(ctx, key_block , 128)
load64_le_buf(ctx->input, key_block, 16);
ctx->input_idx = 128;
}
}
void crypto_blake2b_init(crypto_blake2b_ctx *ctx, size_t hash_size)
{
crypto_blake2b_keyed_init(ctx, hash_size, 0, 0);
}
void crypto_blake2b_update(crypto_blake2b_ctx *ctx,
const u8 *message, size_t message_size)
{
// Avoid undefined NULL pointer increments with empty messages
if (message_size == 0) {
return;
}
// Align with word boundaries
if ((ctx->input_idx & 7) != 0) {
size_t nb_bytes = MC_MIN(gap(ctx->input_idx, 8), message_size);
size_t word = ctx->input_idx >> 3;
size_t byte = ctx->input_idx & 7;
FOR (i, 0, nb_bytes) {
ctx->input[word] |= (u64)message[i] << ((byte + i) << 3);
}
ctx->input_idx += nb_bytes;
message += nb_bytes;
message_size -= nb_bytes;
}
// Align with block boundaries (faster than byte by byte)
if ((ctx->input_idx & 127) != 0) {
size_t nb_words = MC_MIN(gap(ctx->input_idx, 128), message_size) >> 3;
load64_le_buf(ctx->input + (ctx->input_idx >> 3), message, nb_words);
ctx->input_idx += nb_words << 3;
message += nb_words << 3;
message_size -= nb_words << 3;
}
// Process block by block
size_t nb_blocks = message_size >> 7;
FOR (i, 0, nb_blocks) {
if (ctx->input_idx == 128) {
blake2b_compress(ctx, 0);
}
load64_le_buf(ctx->input, message, 16);
message += 128;
ctx->input_idx = 128;
}
message_size &= 127;
if (message_size != 0) {
// Compress block & flush input buffer as needed
if (ctx->input_idx == 128) {
blake2b_compress(ctx, 0);
ctx->input_idx = 0;
}
if (ctx->input_idx == 0) {
ZERO(ctx->input, 16);
}
// Fill remaining words (faster than byte by byte)
size_t nb_words = message_size >> 3;
load64_le_buf(ctx->input, message, nb_words);
ctx->input_idx += nb_words << 3;
message += nb_words << 3;
message_size -= nb_words << 3;
// Fill remaining bytes
FOR (i, 0, message_size) {
size_t word = ctx->input_idx >> 3;
size_t byte = ctx->input_idx & 7;
ctx->input[word] |= (u64)message[i] << (byte << 3);
ctx->input_idx++;
}
}
}
void crypto_blake2b_final(crypto_blake2b_ctx *ctx, u8 *hash)
{
blake2b_compress(ctx, 1); // compress the last block
size_t hash_size = MC_MIN(ctx->hash_size, 64);
size_t nb_words = hash_size >> 3;
store64_le_buf(hash, ctx->hash, nb_words);
FOR (i, nb_words << 3, hash_size) {
hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff;
}
WIPE_CTX(ctx);
}
void crypto_blake2b_keyed(u8 *hash, size_t hash_size,
const u8 *key, size_t key_size,
const u8 *message, size_t message_size)
{
crypto_blake2b_ctx ctx;
crypto_blake2b_keyed_init(&ctx, hash_size, key, key_size);
crypto_blake2b_update (&ctx, message, message_size);
crypto_blake2b_final (&ctx, hash);
}
void crypto_blake2b(u8 *hash, size_t hash_size, const u8 *msg, size_t msg_size)
{
crypto_blake2b_keyed(hash, hash_size, 0, 0, msg, msg_size);
}
//////////////
/// Argon2 ///
//////////////
// references to R, Z, Q etc. come from the spec
// Argon2 operates on 1024 byte blocks.
typedef struct { u64 a[128]; } blk;
// updates a BLAKE2 hash with a 32 bit word, little endian.
static void blake_update_32(crypto_blake2b_ctx *ctx, u32 input)
{
u8 buf[4];
store32_le(buf, input);
crypto_blake2b_update(ctx, buf, 4);
WIPE_BUFFER(buf);
}
static void blake_update_32_buf(crypto_blake2b_ctx *ctx,
const u8 *buf, u32 size)
{
blake_update_32(ctx, size);
crypto_blake2b_update(ctx, buf, size);
}
static void copy_block(blk *o,const blk*in){FOR(i, 0, 128) o->a[i] = in->a[i];}
static void xor_block(blk *o,const blk*in){FOR(i, 0, 128) o->a[i] ^= in->a[i];}
// Hash with a virtually unlimited digest size.
// Doesn't extract more entropy than the base hash function.
// Mainly used for filling a whole kilobyte block with pseudo-random bytes.
// (One could use a stream cipher with a seed hash as the key, but
// this would introduce another dependency —and point of failure.)
static void extended_hash(u8 *digest, u32 digest_size,
const u8 *input , u32 input_size)
{
crypto_blake2b_ctx ctx;
crypto_blake2b_init (&ctx, MC_MIN(digest_size, 64));
blake_update_32 (&ctx, digest_size);
crypto_blake2b_update(&ctx, input, input_size);
crypto_blake2b_final (&ctx, digest);
if (digest_size > 64) {
// the conversion to u64 avoids integer overflow on
// ludicrously big hash sizes.
u32 r = (u32)(((u64)digest_size + 31) >> 5) - 2;
u32 i = 1;
u32 in = 0;
u32 out = 32;
while (i < r) {
// Input and output overlap. This is intentional
crypto_blake2b(digest + out, 64, digest + in, 64);
i += 1;
in += 32;
out += 32;
}
crypto_blake2b(digest + out, digest_size - (32 * r), digest + in , 64);
}
}
#define LSB(x) ((u64)(u32)x)
#define G(a, b, c, d) \
a += b + ((LSB(a) * LSB(b)) << 1); d ^= a; d = rotr64(d, 32); \
c += d + ((LSB(c) * LSB(d)) << 1); b ^= c; b = rotr64(b, 24); \
a += b + ((LSB(a) * LSB(b)) << 1); d ^= a; d = rotr64(d, 16); \
c += d + ((LSB(c) * LSB(d)) << 1); b ^= c; b = rotr64(b, 63)
#define ROUND(v0, v1, v2, v3, v4, v5, v6, v7, \
v8, v9, v10, v11, v12, v13, v14, v15) \
G(v0, v4, v8, v12); G(v1, v5, v9, v13); \
G(v2, v6, v10, v14); G(v3, v7, v11, v15); \
G(v0, v5, v10, v15); G(v1, v6, v11, v12); \
G(v2, v7, v8, v13); G(v3, v4, v9, v14)
// Core of the compression function G. Computes Z from R in place.
static void g_rounds(blk *b)
{
// column rounds (work_block = Q)
for (int i = 0; i < 128; i += 16) {
ROUND(b->a[i ], b->a[i+ 1], b->a[i+ 2], b->a[i+ 3],
b->a[i+ 4], b->a[i+ 5], b->a[i+ 6], b->a[i+ 7],
b->a[i+ 8], b->a[i+ 9], b->a[i+10], b->a[i+11],
b->a[i+12], b->a[i+13], b->a[i+14], b->a[i+15]);
}
// row rounds (b = Z)
for (int i = 0; i < 16; i += 2) {
ROUND(b->a[i ], b->a[i+ 1], b->a[i+ 16], b->a[i+ 17],
b->a[i+32], b->a[i+33], b->a[i+ 48], b->a[i+ 49],
b->a[i+64], b->a[i+65], b->a[i+ 80], b->a[i+ 81],
b->a[i+96], b->a[i+97], b->a[i+112], b->a[i+113]);
}
}
const crypto_argon2_extras crypto_argon2_no_extras = { 0, 0, 0, 0 };
void crypto_argon2(u8 *hash, u32 hash_size, void *work_area,
crypto_argon2_config config,
crypto_argon2_inputs inputs,
crypto_argon2_extras extras)
{
const u32 segment_size = config.nb_blocks / config.nb_lanes / 4;
const u32 lane_size = segment_size * 4;
const u32 nb_blocks = lane_size * config.nb_lanes; // rounding down
// work area seen as blocks (must be suitably aligned)
blk *blocks = (blk*)work_area;
{
u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes
crypto_blake2b_ctx ctx;
crypto_blake2b_init (&ctx, 64);
blake_update_32 (&ctx, config.nb_lanes ); // p: number of "threads"
blake_update_32 (&ctx, hash_size);
blake_update_32 (&ctx, config.nb_blocks);
blake_update_32 (&ctx, config.nb_passes);
blake_update_32 (&ctx, 0x13); // v: version number
blake_update_32 (&ctx, config.algorithm); // y: Argon2i, Argon2d...
blake_update_32_buf (&ctx, inputs.pass, inputs.pass_size);
blake_update_32_buf (&ctx, inputs.salt, inputs.salt_size);
blake_update_32_buf (&ctx, extras.key, extras.key_size);
blake_update_32_buf (&ctx, extras.ad, extras.ad_size);
crypto_blake2b_final(&ctx, initial_hash); // fill 64 first bytes only
// fill first 2 blocks of each lane
u8 hash_area[1024];
FOR_T(u32, l, 0, config.nb_lanes) {
FOR_T(u32, i, 0, 2) {
store32_le(initial_hash + 64, i); // first additional word
store32_le(initial_hash + 68, l); // second additional word
extended_hash(hash_area, 1024, initial_hash, 72);
load64_le_buf(blocks[l * lane_size + i].a, hash_area, 128);
}
}
WIPE_BUFFER(initial_hash);
WIPE_BUFFER(hash_area);
}
// Argon2i and Argon2id start with constant time indexing
int constant_time = config.algorithm != CRYPTO_ARGON2_D;
// Fill (and re-fill) the rest of the blocks
//
// Note: even though each segment within the same slice can be
// computed in parallel, (one thread per lane), we are computing
// them sequentially, because Monocypher doesn't support threads.
//
// Yet optimal performance (and therefore security) requires one
// thread per lane. The only reason Monocypher supports multiple
// lanes is compatibility.
blk tmp;
FOR_T(u32, pass, 0, config.nb_passes) {
FOR_T(u32, slice, 0, 4) {
// On the first slice of the first pass,
// blocks 0 and 1 are already filled, hence pass_offset.
u32 pass_offset = pass == 0 && slice == 0 ? 2 : 0;
u32 slice_offset = slice * segment_size;
// Argon2id switches back to non-constant time indexing
// after the first two slices of the first pass
if (slice == 2 && config.algorithm == CRYPTO_ARGON2_ID) {
constant_time = 0;
}
// Each iteration of the following loop may be performed in
// a separate thread. All segments must be fully completed
// before we start filling the next slice.
FOR_T(u32, segment, 0, config.nb_lanes) {
blk index_block;
u32 index_ctr = 1;
FOR_T (u32, block, pass_offset, segment_size) {
// Current and previous blocks
u32 lane_offset = segment * lane_size;
blk *segment_start = blocks + lane_offset + slice_offset;
blk *current = segment_start + block;
blk *previous =
block == 0 && slice_offset == 0
? segment_start + lane_size - 1
: segment_start + block - 1;
u64 index_seed;
if (constant_time) {
if (block == pass_offset || (block % 128) == 0) {
// Fill or refresh deterministic indices block
// seed the beginning of the block...
ZERO(index_block.a, 128);
index_block.a[0] = pass;
index_block.a[1] = segment;
index_block.a[2] = slice;
index_block.a[3] = nb_blocks;
index_block.a[4] = config.nb_passes;
index_block.a[5] = config.algorithm;
index_block.a[6] = index_ctr;
index_ctr++;
// ... then shuffle it
copy_block(&tmp, &index_block);
g_rounds (&index_block);
xor_block (&index_block, &tmp);
copy_block(&tmp, &index_block);
g_rounds (&index_block);
xor_block (&index_block, &tmp);
}
index_seed = index_block.a[block % 128];
} else {
index_seed = previous->a[0];
}
// Establish the reference set. *Approximately* comprises:
// - The last 3 slices (if they exist yet)
// - The already constructed blocks in the current segment
u32 next_slice = ((slice + 1) % 4) * segment_size;
u32 window_start = pass == 0 ? 0 : next_slice;
u32 nb_segments = pass == 0 ? slice : 3;
u64 lane =
pass == 0 && slice == 0
? segment
: (index_seed >> 32) % config.nb_lanes;
u32 window_size =
nb_segments * segment_size +
(lane == segment ? block-1 :
block == 0 ? (u32)-1 : 0);
// Find reference block
u64 j1 = index_seed & 0xffffffff; // block selector
u64 x = (j1 * j1) >> 32;
u64 y = (window_size * x) >> 32;
u64 z = (window_size - 1) - y;
u64 ref = (window_start + z) % lane_size;
u32 index = lane * lane_size + (u32)ref;
blk *reference = blocks + index;
// Shuffle the previous & reference block
// into the current block
copy_block(&tmp, previous);
xor_block (&tmp, reference);
if (pass == 0) { copy_block(current, &tmp); }
else { xor_block (current, &tmp); }
g_rounds (&tmp);
xor_block (current, &tmp);
}
}
}
}
// Wipe temporary block
volatile u64* p = tmp.a;
ZERO(p, 128);
// XOR last blocks of each lane
blk *last_block = blocks + lane_size - 1;
FOR_T (u32, lane, 1, config.nb_lanes) {
blk *next_block = last_block + lane_size;
xor_block(next_block, last_block);
last_block = next_block;
}
// Serialize last block
u8 final_block[1024];
store64_le_buf(final_block, last_block->a, 128);
// Wipe work area
p = (u64*)work_area;
ZERO(p, 128 * nb_blocks);
// Hash the very last block with H' into the output hash
extended_hash(hash, hash_size, final_block, 1024);
WIPE_BUFFER(final_block);
}
////////////////////////////////////
/// Arithmetic modulo 2^255 - 19 ///
////////////////////////////////////
// Originally taken from SUPERCOP's ref10 implementation.
// A bit bigger than TweetNaCl, over 4 times faster.
// field element
typedef i32 fe[10];
// field constants
//
// fe_one : 1
// sqrtm1 : sqrt(-1)
// d : -121665 / 121666
// D2 : 2 * -121665 / 121666
// lop_x, lop_y: low order point in Edwards coordinates
// ufactor : -sqrt(-1) * 2
// A2 : 486662^2 (A squared)
static const fe fe_one = {1};
static const fe sqrtm1 = {
-32595792, -7943725, 9377950, 3500415, 12389472,
-272473, -25146209, -2005654, 326686, 11406482,
};
static const fe d = {
-10913610, 13857413, -15372611, 6949391, 114729,
-8787816, -6275908, -3247719, -18696448, -12055116,
};
static const fe D2 = {
-21827239, -5839606, -30745221, 13898782, 229458,
15978800, -12551817, -6495438, 29715968, 9444199,
};
static const fe lop_x = {
21352778, 5345713, 4660180, -8347857, 24143090,
14568123, 30185756, -12247770, -33528939, 8345319,
};
static const fe lop_y = {
-6952922, -1265500, 6862341, -7057498, -4037696,
-5447722, 31680899, -15325402, -19365852, 1569102,
};
static const fe ufactor = {
-1917299, 15887451, -18755900, -7000830, -24778944,
544946, -16816446, 4011309, -653372, 10741468,
};
static const fe A2 = {
12721188, 3529, 0, 0, 0, 0, 0, 0, 0, 0,
};
static void fe_0(fe h) { ZERO(h , 10); }
static void fe_1(fe h) { h[0] = 1; ZERO(h+1, 9); }
static void fe_copy(fe h,const fe f ){FOR(i,0,10) h[i] = f[i]; }
static void fe_neg (fe h,const fe f ){FOR(i,0,10) h[i] = -f[i]; }
static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];}
static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];}
static void fe_cswap(fe f, fe g, int b)
{
i32 mask = -b; // -1 = 0xffffffff
FOR (i, 0, 10) {
i32 x = (f[i] ^ g[i]) & mask;
f[i] = f[i] ^ x;
g[i] = g[i] ^ x;
}
}
static void fe_ccopy(fe f, const fe g, int b)
{
i32 mask = -b; // -1 = 0xffffffff
FOR (i, 0, 10) {
i32 x = (f[i] ^ g[i]) & mask;
f[i] = f[i] ^ x;
}
}
// Signed carry propagation
// ------------------------
//
// Let t be a number. It can be uniquely decomposed thus:
//
// t = h*2^26 + l
// such that -2^25 <= l < 2^25
//
// Let c = (t + 2^25) / 2^26 (rounded down)
// c = (h*2^26 + l + 2^25) / 2^26 (rounded down)
// c = h + (l + 2^25) / 2^26 (rounded down)
// c = h (exactly)
// Because 0 <= l + 2^25 < 2^26
//
// Let u = t - c*2^26
// u = h*2^26 + l - h*2^26
// u = l
// Therefore, -2^25 <= u < 2^25
//
// Additionally, if |t| < x, then |h| < x/2^26 (rounded down)
//
// Notations:
// - In C, 1<<25 means 2^25.
// - In C, x>>25 means floor(x / (2^25)).
// - All of the above applies with 25 & 24 as well as 26 & 25.
//
//
// Note on negative right shifts
// -----------------------------
//
// In C, x >> n, where x is a negative integer, is implementation
// defined. In practice, all platforms do arithmetic shift, which is
// equivalent to division by 2^26, rounded down. Some compilers, like
// GCC, even guarantee it.
//
// If we ever stumble upon a platform that does not propagate the sign
// bit (we won't), visible failures will show at the slightest test, and
// the signed shifts can be replaced by the following:
//
// typedef struct { i64 x:39; } s25;
// typedef struct { i64 x:38; } s26;
// i64 shift25(i64 x) { s25 s; s.x = ((u64)x)>>25; return s.x; }
// i64 shift26(i64 x) { s26 s; s.x = ((u64)x)>>26; return s.x; }
//
// Current compilers cannot optimise this, causing a 30% drop in
// performance. Fairly expensive for something that never happens.
//
//
// Precondition
// ------------
//
// |t0| < 2^63
// |t1|..|t9| < 2^62
//
// Algorithm
// ---------
// c = t0 + 2^25 / 2^26 -- |c| <= 2^36
// t0 -= c * 2^26 -- |t0| <= 2^25
// t1 += c -- |t1| <= 2^63
//
// c = t4 + 2^25 / 2^26 -- |c| <= 2^36
// t4 -= c * 2^26 -- |t4| <= 2^25
// t5 += c -- |t5| <= 2^63
//
// c = t1 + 2^24 / 2^25 -- |c| <= 2^38
// t1 -= c * 2^25 -- |t1| <= 2^24
// t2 += c -- |t2| <= 2^63
//
// c = t5 + 2^24 / 2^25 -- |c| <= 2^38
// t5 -= c * 2^25 -- |t5| <= 2^24
// t6 += c -- |t6| <= 2^63
//
// c = t2 + 2^25 / 2^26 -- |c| <= 2^37
// t2 -= c * 2^26 -- |t2| <= 2^25 < 1.1 * 2^25 (final t2)
// t3 += c -- |t3| <= 2^63
//
// c = t6 + 2^25 / 2^26 -- |c| <= 2^37
// t6 -= c * 2^26 -- |t6| <= 2^25 < 1.1 * 2^25 (final t6)
// t7 += c -- |t7| <= 2^63
//
// c = t3 + 2^24 / 2^25 -- |c| <= 2^38
// t3 -= c * 2^25 -- |t3| <= 2^24 < 1.1 * 2^24 (final t3)
// t4 += c -- |t4| <= 2^25 + 2^38 < 2^39
//
// c = t7 + 2^24 / 2^25 -- |c| <= 2^38
// t7 -= c * 2^25 -- |t7| <= 2^24 < 1.1 * 2^24 (final t7)
// t8 += c -- |t8| <= 2^63
//
// c = t4 + 2^25 / 2^26 -- |c| <= 2^13
// t4 -= c * 2^26 -- |t4| <= 2^25 < 1.1 * 2^25 (final t4)
// t5 += c -- |t5| <= 2^24 + 2^13 < 1.1 * 2^24 (final t5)
//
// c = t8 + 2^25 / 2^26 -- |c| <= 2^37
// t8 -= c * 2^26 -- |t8| <= 2^25 < 1.1 * 2^25 (final t8)
// t9 += c -- |t9| <= 2^63
//
// c = t9 + 2^24 / 2^25 -- |c| <= 2^38
// t9 -= c * 2^25 -- |t9| <= 2^24 < 1.1 * 2^24 (final t9)
// t0 += c * 19 -- |t0| <= 2^25 + 2^38*19 < 2^44
//
// c = t0 + 2^25 / 2^26 -- |c| <= 2^18
// t0 -= c * 2^26 -- |t0| <= 2^25 < 1.1 * 2^25 (final t0)
// t1 += c -- |t1| <= 2^24 + 2^18 < 1.1 * 2^24 (final t1)
//
// Postcondition
// -------------
// |t0|, |t2|, |t4|, |t6|, |t8| < 1.1 * 2^25
// |t1|, |t3|, |t5|, |t7|, |t9| < 1.1 * 2^24
#define FE_CARRY \
i64 c; \
c = (t0 + ((i64)1<<25)) >> 26; t0 -= c * ((i64)1 << 26); t1 += c; \
c = (t4 + ((i64)1<<25)) >> 26; t4 -= c * ((i64)1 << 26); t5 += c; \
c = (t1 + ((i64)1<<24)) >> 25; t1 -= c * ((i64)1 << 25); t2 += c; \
c = (t5 + ((i64)1<<24)) >> 25; t5 -= c * ((i64)1 << 25); t6 += c; \
c = (t2 + ((i64)1<<25)) >> 26; t2 -= c * ((i64)1 << 26); t3 += c; \
c = (t6 + ((i64)1<<25)) >> 26; t6 -= c * ((i64)1 << 26); t7 += c; \
c = (t3 + ((i64)1<<24)) >> 25; t3 -= c * ((i64)1 << 25); t4 += c; \
c = (t7 + ((i64)1<<24)) >> 25; t7 -= c * ((i64)1 << 25); t8 += c; \
c = (t4 + ((i64)1<<25)) >> 26; t4 -= c * ((i64)1 << 26); t5 += c; \
c = (t8 + ((i64)1<<25)) >> 26; t8 -= c * ((i64)1 << 26); t9 += c; \
c = (t9 + ((i64)1<<24)) >> 25; t9 -= c * ((i64)1 << 25); t0 += c * 19; \
c = (t0 + ((i64)1<<25)) >> 26; t0 -= c * ((i64)1 << 26); t1 += c; \
h[0]=(i32)t0; h[1]=(i32)t1; h[2]=(i32)t2; h[3]=(i32)t3; h[4]=(i32)t4; \
h[5]=(i32)t5; h[6]=(i32)t6; h[7]=(i32)t7; h[8]=(i32)t8; h[9]=(i32)t9
// Decodes a field element from a byte buffer.
// mask specifies how many bits we ignore.
// Traditionally we ignore 1. It's useful for EdDSA,
// which uses that bit to denote the sign of x.
// Elligator however uses positive representatives,
// which means ignoring 2 bits instead.
static void fe_frombytes_mask(fe h, const u8 s[32], unsigned nb_mask)
{
u32 mask = 0xffffff >> nb_mask;
i64 t0 = load32_le(s); // t0 < 2^32
i64 t1 = load24_le(s + 4) << 6; // t1 < 2^30
i64 t2 = load24_le(s + 7) << 5; // t2 < 2^29
i64 t3 = load24_le(s + 10) << 3; // t3 < 2^27
i64 t4 = load24_le(s + 13) << 2; // t4 < 2^26
i64 t5 = load32_le(s + 16); // t5 < 2^32
i64 t6 = load24_le(s + 20) << 7; // t6 < 2^31
i64 t7 = load24_le(s + 23) << 5; // t7 < 2^29
i64 t8 = load24_le(s + 26) << 4; // t8 < 2^28
i64 t9 = (load24_le(s + 29) & mask) << 2; // t9 < 2^25
FE_CARRY; // Carry precondition OK
}
static void fe_frombytes(fe h, const u8 s[32])
{
fe_frombytes_mask(h, s, 1);
}
// Precondition
// |h[0]|, |h[2]|, |h[4]|, |h[6]|, |h[8]| < 1.1 * 2^25
// |h[1]|, |h[3]|, |h[5]|, |h[7]|, |h[9]| < 1.1 * 2^24
//
// Therefore, |h| < 2^255-19
// There are two possibilities:
//
// - If h is positive, all we need to do is reduce its individual
// limbs down to their tight positive range.
// - If h is negative, we also need to add 2^255-19 to it.
// Or just remove 19 and chop off any excess bit.
static void fe_tobytes(u8 s[32], const fe h)
{
i32 t[10];
COPY(t, h, 10);
i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25;
// |t9| < 1.1 * 2^24
// -1.1 * 2^24 < t9 < 1.1 * 2^24
// -21 * 2^24 < 19 * t9 < 21 * 2^24
// -2^29 < 19 * t9 + 2^24 < 2^29
// -2^29 / 2^25 < (19 * t9 + 2^24) / 2^25 < 2^29 / 2^25
// -16 < (19 * t9 + 2^24) / 2^25 < 16
FOR (i, 0, 5) {
q += t[2*i ]; q >>= 26; // q = 0 or -1
q += t[2*i+1]; q >>= 25; // q = 0 or -1
}
// q = 0 iff h >= 0
// q = -1 iff h < 0
// Adding q * 19 to h reduces h to its proper range.
q *= 19; // Shift carry back to the beginning
FOR (i, 0, 5) {
t[i*2 ] += q; q = t[i*2 ] >> 26; t[i*2 ] -= q * ((i32)1 << 26);
t[i*2+1] += q; q = t[i*2+1] >> 25; t[i*2+1] -= q * ((i32)1 << 25);
}
// h is now fully reduced, and q represents the excess bit.
store32_le(s + 0, ((u32)t[0] >> 0) | ((u32)t[1] << 26));
store32_le(s + 4, ((u32)t[1] >> 6) | ((u32)t[2] << 19));
store32_le(s + 8, ((u32)t[2] >> 13) | ((u32)t[3] << 13));
store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] << 6));
store32_le(s + 16, ((u32)t[5] >> 0) | ((u32)t[6] << 25));
store32_le(s + 20, ((u32)t[6] >> 7) | ((u32)t[7] << 19));
store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12));
store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] << 6));
WIPE_BUFFER(t);
}
// Precondition
// -------------
// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26
// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25
//
// |g0|, |g2|, |g4|, |g6|, |g8| < 1.65 * 2^26
// |g1|, |g3|, |g5|, |g7|, |g9| < 1.65 * 2^25
static void fe_mul_small(fe h, const fe f, i32 g)
{
i64 t0 = f[0] * (i64) g; i64 t1 = f[1] * (i64) g;
i64 t2 = f[2] * (i64) g; i64 t3 = f[3] * (i64) g;
i64 t4 = f[4] * (i64) g; i64 t5 = f[5] * (i64) g;
i64 t6 = f[6] * (i64) g; i64 t7 = f[7] * (i64) g;
i64 t8 = f[8] * (i64) g; i64 t9 = f[9] * (i64) g;
// |t0|, |t2|, |t4|, |t6|, |t8| < 1.65 * 2^26 * 2^31 < 2^58
// |t1|, |t3|, |t5|, |t7|, |t9| < 1.65 * 2^25 * 2^31 < 2^57
FE_CARRY; // Carry precondition OK
}
// Precondition
// -------------
// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26
// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25
//
// |g0|, |g2|, |g4|, |g6|, |g8| < 1.65 * 2^26
// |g1|, |g3|, |g5|, |g7|, |g9| < 1.65 * 2^25
static void fe_mul(fe h, const fe f, const fe g)
{
// Everything is unrolled and put in temporary variables.
// We could roll the loop, but that would make curve25519 twice as slow.
i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4];
i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9];
i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2;
i32 G1 = g1*19; i32 G2 = g2*19; i32 G3 = g3*19;
i32 G4 = g4*19; i32 G5 = g5*19; i32 G6 = g6*19;
i32 G7 = g7*19; i32 G8 = g8*19; i32 G9 = g9*19;
// |F1|, |F3|, |F5|, |F7|, |F9| < 1.65 * 2^26
// |G0|, |G2|, |G4|, |G6|, |G8| < 2^31
// |G1|, |G3|, |G5|, |G7|, |G9| < 2^30
i64 t0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6
+ F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1;
i64 t1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7
+ f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2;
i64 t2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8
+ F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3;
i64 t3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9
+ f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4;
i64 t4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0
+ F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5;
i64 t5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1
+ f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6;
i64 t6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2
+ F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7;
i64 t7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3
+ f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8;
i64 t8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4
+ F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9;
i64 t9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5
+ f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0;
// t0 < 0.67 * 2^61
// t1 < 0.41 * 2^61
// t2 < 0.52 * 2^61
// t3 < 0.32 * 2^61
// t4 < 0.38 * 2^61
// t5 < 0.22 * 2^61
// t6 < 0.23 * 2^61
// t7 < 0.13 * 2^61
// t8 < 0.09 * 2^61
// t9 < 0.03 * 2^61
FE_CARRY; // Everything below 2^62, Carry precondition OK
}
// Precondition
// -------------
// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26
// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25
//
// Note: we could use fe_mul() for this, but this is significantly faster
static void fe_sq(fe h, const fe f)
{
i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
i32 f0_2 = f0*2; i32 f1_2 = f1*2; i32 f2_2 = f2*2; i32 f3_2 = f3*2;
i32 f4_2 = f4*2; i32 f5_2 = f5*2; i32 f6_2 = f6*2; i32 f7_2 = f7*2;
i32 f5_38 = f5*38; i32 f6_19 = f6*19; i32 f7_38 = f7*38;
i32 f8_19 = f8*19; i32 f9_38 = f9*38;
// |f0_2| , |f2_2| , |f4_2| , |f6_2| , |f8_2| < 1.65 * 2^27
// |f1_2| , |f3_2| , |f5_2| , |f7_2| , |f9_2| < 1.65 * 2^26
// |f5_38|, |f6_19|, |f7_38|, |f8_19|, |f9_38| < 2^31
i64 t0 = f0 *(i64)f0 + f1_2*(i64)f9_38 + f2_2*(i64)f8_19
+ f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5 *(i64)f5_38;
i64 t1 = f0_2*(i64)f1 + f2 *(i64)f9_38 + f3_2*(i64)f8_19
+ f4 *(i64)f7_38 + f5_2*(i64)f6_19;
i64 t2 = f0_2*(i64)f2 + f1_2*(i64)f1 + f3_2*(i64)f9_38
+ f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6 *(i64)f6_19;
i64 t3 = f0_2*(i64)f3 + f1_2*(i64)f2 + f4 *(i64)f9_38
+ f5_2*(i64)f8_19 + f6 *(i64)f7_38;
i64 t4 = f0_2*(i64)f4 + f1_2*(i64)f3_2 + f2 *(i64)f2
+ f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7 *(i64)f7_38;
i64 t5 = f0_2*(i64)f5 + f1_2*(i64)f4 + f2_2*(i64)f3
+ f6 *(i64)f9_38 + f7_2*(i64)f8_19;
i64 t6 = f0_2*(i64)f6 + f1_2*(i64)f5_2 + f2_2*(i64)f4
+ f3_2*(i64)f3 + f7_2*(i64)f9_38 + f8 *(i64)f8_19;
i64 t7 = f0_2*(i64)f7 + f1_2*(i64)f6 + f2_2*(i64)f5
+ f3_2*(i64)f4 + f8 *(i64)f9_38;
i64 t8 = f0_2*(i64)f8 + f1_2*(i64)f7_2 + f2_2*(i64)f6
+ f3_2*(i64)f5_2 + f4 *(i64)f4 + f9 *(i64)f9_38;
i64 t9 = f0_2*(i64)f9 + f1_2*(i64)f8 + f2_2*(i64)f7
+ f3_2*(i64)f6 + f4 *(i64)f5_2;
// t0 < 0.67 * 2^61
// t1 < 0.41 * 2^61
// t2 < 0.52 * 2^61
// t3 < 0.32 * 2^61
// t4 < 0.38 * 2^61
// t5 < 0.22 * 2^61
// t6 < 0.23 * 2^61
// t7 < 0.13 * 2^61
// t8 < 0.09 * 2^61
// t9 < 0.03 * 2^61
FE_CARRY;
}
// Parity check. Returns 0 if even, 1 if odd
static int fe_isodd(const fe f)
{
u8 s[32];
fe_tobytes(s, f);
u8 isodd = s[0] & 1;
WIPE_BUFFER(s);
return isodd;
}
// Returns 1 if equal, 0 if not equal
static int fe_isequal(const fe f, const fe g)
{
u8 fs[32];
u8 gs[32];
fe_tobytes(fs, f);
fe_tobytes(gs, g);
int isdifferent = crypto_verify32(fs, gs);
WIPE_BUFFER(fs);
WIPE_BUFFER(gs);
return 1 + isdifferent;
}
// Inverse square root.
// Returns true if x is a square, false otherwise.
// After the call:
// isr = sqrt(1/x) if x is a non-zero square.
// isr = sqrt(sqrt(-1)/x) if x is not a square.
// isr = 0 if x is zero.
// We do not guarantee the sign of the square root.
//
// Notes:
// Let quartic = x^((p-1)/4)
//
// x^((p-1)/2) = chi(x)
// quartic^2 = chi(x)
// quartic = sqrt(chi(x))
// quartic = 1 or -1 or sqrt(-1) or -sqrt(-1)
//
// Note that x is a square if quartic is 1 or -1
// There are 4 cases to consider:
//
// if quartic = 1 (x is a square)
// then x^((p-1)/4) = 1
// x^((p-5)/4) * x = 1
// x^((p-5)/4) = 1/x
// x^((p-5)/8) = sqrt(1/x) or -sqrt(1/x)
//
// if quartic = -1 (x is a square)
// then x^((p-1)/4) = -1
// x^((p-5)/4) * x = -1
// x^((p-5)/4) = -1/x
// x^((p-5)/8) = sqrt(-1) / sqrt(x)
// x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x)
// x^((p-5)/8) * sqrt(-1) = -1/sqrt(x)
// x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x)
//
// if quartic = sqrt(-1) (x is not a square)
// then x^((p-1)/4) = sqrt(-1)
// x^((p-5)/4) * x = sqrt(-1)
// x^((p-5)/4) = sqrt(-1)/x
// x^((p-5)/8) = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x)
//
// Note that the product of two non-squares is always a square:
// For any non-squares a and b, chi(a) = -1 and chi(b) = -1.
// Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1.
// Therefore a*b is a square.
//
// Since sqrt(-1) and x are both non-squares, their product is a
// square, and we can compute their square root.
//
// if quartic = -sqrt(-1) (x is not a square)
// then x^((p-1)/4) = -sqrt(-1)
// x^((p-5)/4) * x = -sqrt(-1)
// x^((p-5)/4) = -sqrt(-1)/x
// x^((p-5)/8) = sqrt(-sqrt(-1)/x)
// x^((p-5)/8) = sqrt( sqrt(-1)/x) * sqrt(-1)
// x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2
// x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1
// x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x)
static int invsqrt(fe isr, const fe x)
{
fe t0, t1, t2;
// t0 = x^((p-5)/8)
// Can be achieved with a simple double & add ladder,
// but it would be slower.
fe_sq(t0, x);
fe_sq(t1,t0); fe_sq(t1, t1); fe_mul(t1, x, t1);
fe_mul(t0, t0, t1);
fe_sq(t0, t0); fe_mul(t0, t1, t0);
fe_sq(t1, t0); FOR (i, 1, 5) { fe_sq(t1, t1); } fe_mul(t0, t1, t0);
fe_sq(t1, t0); FOR (i, 1, 10) { fe_sq(t1, t1); } fe_mul(t1, t1, t0);
fe_sq(t2, t1); FOR (i, 1, 20) { fe_sq(t2, t2); } fe_mul(t1, t2, t1);
fe_sq(t1, t1); FOR (i, 1, 10) { fe_sq(t1, t1); } fe_mul(t0, t1, t0);
fe_sq(t1, t0); FOR (i, 1, 50) { fe_sq(t1, t1); } fe_mul(t1, t1, t0);
fe_sq(t2, t1); FOR (i, 1, 100) { fe_sq(t2, t2); } fe_mul(t1, t2, t1);
fe_sq(t1, t1); FOR (i, 1, 50) { fe_sq(t1, t1); } fe_mul(t0, t1, t0);
fe_sq(t0, t0); FOR (i, 1, 2) { fe_sq(t0, t0); } fe_mul(t0, t0, x);
// quartic = x^((p-1)/4)
i32 *quartic = t1;
fe_sq (quartic, t0);
fe_mul(quartic, quartic, x);
i32 *check = t2;
fe_0 (check); int z0 = fe_isequal(x , check);
fe_1 (check); int p1 = fe_isequal(quartic, check);
fe_neg(check, check ); int m1 = fe_isequal(quartic, check);
fe_neg(check, sqrtm1); int ms = fe_isequal(quartic, check);
// if quartic == -1 or sqrt(-1)
// then isr = x^((p-1)/4) * sqrt(-1)
// else isr = x^((p-1)/4)
fe_mul(isr, t0, sqrtm1);
fe_ccopy(isr, t0, 1 - (m1 | ms));
WIPE_BUFFER(t0);
WIPE_BUFFER(t1);
WIPE_BUFFER(t2);
return p1 | m1 | z0;
}
// Inverse in terms of inverse square root.
// Requires two additional squarings to get rid of the sign.
//
// 1/x = x * (+invsqrt(x^2))^2
// = x * (-invsqrt(x^2))^2
//
// A fully optimised exponentiation by p-1 would save 6 field
// multiplications, but it would require more code.
static void fe_invert(fe out, const fe x)
{
fe tmp;
fe_sq(tmp, x);
invsqrt(tmp, tmp);
fe_sq(tmp, tmp);
fe_mul(out, tmp, x);
WIPE_BUFFER(tmp);
}
// trim a scalar for scalar multiplication
void crypto_eddsa_trim_scalar(u8 out[32], const u8 in[32])
{
COPY(out, in, 32);
out[ 0] &= 248;
out[31] &= 127;
out[31] |= 64;
}
// get bit from scalar at position i
static int scalar_bit(const u8 s[32], int i)
{
if (i < 0) { return 0; } // handle -1 for sliding windows
return (s[i>>3] >> (i&7)) & 1;
}
///////////////
/// X-25519 /// Taken from SUPERCOP's ref10 implementation.
///////////////
static void scalarmult(u8 q[32], const u8 scalar[32], const u8 p[32],
int nb_bits)
{
// computes the scalar product
fe x1;
fe_frombytes(x1, p);
// computes the actual scalar product (the result is in x2 and z2)
fe x2, z2, x3, z3, t0, t1;
// Montgomery ladder
// In projective coordinates, to avoid divisions: x = X / Z
// We don't care about the y coordinate, it's only 1 bit of information
fe_1(x2); fe_0(z2); // "zero" point
fe_copy(x3, x1); fe_1(z3); // "one" point
int swap = 0;
for (int pos = nb_bits-1; pos >= 0; --pos) {
// constant time conditional swap before ladder step
int b = scalar_bit(scalar, pos);
swap ^= b; // xor trick avoids swapping at the end of the loop
fe_cswap(x2, x3, swap);
fe_cswap(z2, z3, swap);
swap = b; // anticipates one last swap after the loop
// Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3)
// with differential addition
fe_sub(t0, x3, z3);
fe_sub(t1, x2, z2);
fe_add(x2, x2, z2);
fe_add(z2, x3, z3);
fe_mul(z3, t0, x2);
fe_mul(z2, z2, t1);
fe_sq (t0, t1 );
fe_sq (t1, x2 );
fe_add(x3, z3, z2);
fe_sub(z2, z3, z2);
fe_mul(x2, t1, t0);
fe_sub(t1, t1, t0);
fe_sq (z2, z2 );
fe_mul_small(z3, t1, 121666);
fe_sq (x3, x3 );
fe_add(t0, t0, z3);
fe_mul(z3, x1, z2);
fe_mul(z2, t1, t0);
}
// last swap is necessary to compensate for the xor trick
// Note: after this swap, P3 == P2 + P1.
fe_cswap(x2, x3, swap);
fe_cswap(z2, z3, swap);
// normalises the coordinates: x == X / Z
fe_invert(z2, z2);
fe_mul(x2, x2, z2);
fe_tobytes(q, x2);
WIPE_BUFFER(x1);
WIPE_BUFFER(x2); WIPE_BUFFER(z2); WIPE_BUFFER(t0);
WIPE_BUFFER(x3); WIPE_BUFFER(z3); WIPE_BUFFER(t1);
}
void crypto_x25519(u8 raw_shared_secret[32],
const u8 your_secret_key [32],
const u8 their_public_key [32])
{
// restrict the possible scalar values
u8 e[32];
crypto_eddsa_trim_scalar(e, your_secret_key);
scalarmult(raw_shared_secret, e, their_public_key, 255);
WIPE_BUFFER(e);
}
void crypto_x25519_public_key(u8 public_key[32],
const u8 secret_key[32])
{
static const u8 base_point[32] = {9};
crypto_x25519(public_key, secret_key, base_point);
}
///////////////////////////
/// Arithmetic modulo L ///
///////////////////////////
static const u32 L[8] = {
0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de,
0x00000000, 0x00000000, 0x00000000, 0x10000000,
};
// p = a*b + p
static void multiply(u32 p[16], const u32 a[8], const u32 b[8])
{
FOR (i, 0, 8) {
u64 carry = 0;
FOR (j, 0, 8) {
carry += p[i+j] + (u64)a[i] * b[j];
p[i+j] = (u32)carry;
carry >>= 32;
}
p[i+8] = (u32)carry;
}
}
static int is_above_l(const u32 x[8])
{
// We work with L directly, in a 2's complement encoding
// (-L == ~L + 1)
u64 carry = 1;
FOR (i, 0, 8) {
carry += (u64)x[i] + (~L[i] & 0xffffffff);
carry >>= 32;
}
return (int)carry; // carry is either 0 or 1
}
// Final reduction modulo L, by conditionally removing L.
// if x < l , then r = x
// if l <= x 2*l, then r = x-l
// otherwise the result will be wrong
static void remove_l(u32 r[8], const u32 x[8])
{
u64 carry = (u64)is_above_l(x);
u32 mask = ~(u32)carry + 1; // carry == 0 or 1
FOR (i, 0, 8) {
carry += (u64)x[i] + (~L[i] & mask);
r[i] = (u32)carry;
carry >>= 32;
}
}
// Full reduction modulo L (Barrett reduction)
static void mod_l(u8 reduced[32], const u32 x[16])
{
static const u32 r[9] = {
0x0a2c131b,0xed9ce5a3,0x086329a7,0x2106215d,
0xffffffeb,0xffffffff,0xffffffff,0xffffffff,0xf,
};
// xr = x * r
u32 xr[25] = {0};
FOR (i, 0, 9) {
u64 carry = 0;
FOR (j, 0, 16) {
carry += xr[i+j] + (u64)r[i] * x[j];
xr[i+j] = (u32)carry;
carry >>= 32;
}
xr[i+16] = (u32)carry;
}
// xr = floor(xr / 2^512) * L
// Since the result is guaranteed to be below 2*L,
// it is enough to only compute the first 256 bits.
// The division is performed by saying xr[i+16]. (16 * 32 = 512)
ZERO(xr, 8);
FOR (i, 0, 8) {
u64 carry = 0;
FOR (j, 0, 8-i) {
carry += xr[i+j] + (u64)xr[i+16] * L[j];
xr[i+j] = (u32)carry;
carry >>= 32;
}
}
// xr = x - xr
u64 carry = 1;
FOR (i, 0, 8) {
carry += (u64)x[i] + (~xr[i] & 0xffffffff);
xr[i] = (u32)carry;
carry >>= 32;
}
// Final reduction modulo L (conditional subtraction)
remove_l(xr, xr);
store32_le_buf(reduced, xr, 8);
WIPE_BUFFER(xr);
}
void crypto_eddsa_reduce(u8 reduced[32], const u8 expanded[64])
{
u32 x[16];
load32_le_buf(x, expanded, 16);
mod_l(reduced, x);
WIPE_BUFFER(x);
}
// r = (a * b) + c
void crypto_eddsa_mul_add(u8 r[32],
const u8 a[32], const u8 b[32], const u8 c[32])
{
u32 A[8]; load32_le_buf(A, a, 8);
u32 B[8]; load32_le_buf(B, b, 8);
u32 p[16]; load32_le_buf(p, c, 8); ZERO(p + 8, 8);
multiply(p, A, B);
mod_l(r, p);
WIPE_BUFFER(p);
WIPE_BUFFER(A);
WIPE_BUFFER(B);
}
///////////////
/// Ed25519 ///
///////////////
// Point (group element, ge) in a twisted Edwards curve,
// in extended projective coordinates.
// ge : x = X/Z, y = Y/Z, T = XY/Z
// ge_cached : Yp = X+Y, Ym = X-Y, T2 = T*D2
// ge_precomp: Z = 1
typedef struct { fe X; fe Y; fe Z; fe T; } ge;
typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached;
typedef struct { fe Yp; fe Ym; fe T2; } ge_precomp;
static void ge_zero(ge *p)
{
fe_0(p->X);
fe_1(p->Y);
fe_1(p->Z);
fe_0(p->T);
}
static void ge_tobytes(u8 s[32], const ge *h)
{
fe recip, x, y;
fe_invert(recip, h->Z);
fe_mul(x, h->X, recip);
fe_mul(y, h->Y, recip);
fe_tobytes(s, y);
s[31] ^= fe_isodd(x) << 7;
WIPE_BUFFER(recip);
WIPE_BUFFER(x);
WIPE_BUFFER(y);
}
// h = -s, where s is a point encoded in 32 bytes
//
// Variable time! Inputs must not be secret!
// => Use only to *check* signatures.
//
// From the specifications:
// The encoding of s contains y and the sign of x
// x = sqrt((y^2 - 1) / (d*y^2 + 1))
// In extended coordinates:
// X = x, Y = y, Z = 1, T = x*y
//
// Note that num * den is a square iff num / den is a square
// If num * den is not a square, the point was not on the curve.
// From the above:
// Let num = y^2 - 1
// Let den = d*y^2 + 1
// x = sqrt((y^2 - 1) / (d*y^2 + 1))
// x = sqrt(num / den)
// x = sqrt(num^2 / (num * den))
// x = num * sqrt(1 / (num * den))
//
// Therefore, we can just compute:
// num = y^2 - 1
// den = d*y^2 + 1
// isr = invsqrt(num * den) // abort if not square
// x = num * isr
// Finally, negate x if its sign is not as specified.
static int ge_frombytes_neg_vartime(ge *h, const u8 s[32])
{
fe_frombytes(h->Y, s);
fe_1(h->Z);
fe_sq (h->T, h->Y); // t = y^2
fe_mul(h->X, h->T, d ); // x = d*y^2
fe_sub(h->T, h->T, h->Z); // t = y^2 - 1
fe_add(h->X, h->X, h->Z); // x = d*y^2 + 1
fe_mul(h->X, h->T, h->X); // x = (y^2 - 1) * (d*y^2 + 1)
int is_square = invsqrt(h->X, h->X);
if (!is_square) {
return -1; // Not on the curve, abort
}
fe_mul(h->X, h->T, h->X); // x = sqrt((y^2 - 1) / (d*y^2 + 1))
if (fe_isodd(h->X) == (s[31] >> 7)) {
fe_neg(h->X, h->X);
}
fe_mul(h->T, h->X, h->Y);
return 0;
}
static void ge_cache(ge_cached *c, const ge *p)
{
fe_add (c->Yp, p->Y, p->X);
fe_sub (c->Ym, p->Y, p->X);
fe_copy(c->Z , p->Z );
fe_mul (c->T2, p->T, D2 );
}
// Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_add(ge *s, const ge *p, const ge_cached *q)
{
fe a, b;
fe_add(a , p->Y, p->X );
fe_sub(b , p->Y, p->X );
fe_mul(a , a , q->Yp);
fe_mul(b , b , q->Ym);
fe_add(s->Y, a , b );
fe_sub(s->X, a , b );
fe_add(s->Z, p->Z, p->Z );
fe_mul(s->Z, s->Z, q->Z );
fe_mul(s->T, p->T, q->T2);
fe_add(a , s->Z, s->T );
fe_sub(b , s->Z, s->T );
fe_mul(s->T, s->X, s->Y);
fe_mul(s->X, s->X, b );
fe_mul(s->Y, s->Y, a );
fe_mul(s->Z, a , b );
}
// Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_sub(ge *s, const ge *p, const ge_cached *q)
{
ge_cached neg;
fe_copy(neg.Ym, q->Yp);
fe_copy(neg.Yp, q->Ym);
fe_copy(neg.Z , q->Z );
fe_neg (neg.T2, q->T2);
ge_add(s, p, &neg);
}
static void ge_madd(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
{
fe_add(a , p->Y, p->X );
fe_sub(b , p->Y, p->X );
fe_mul(a , a , q->Yp);
fe_mul(b , b , q->Ym);
fe_add(s->Y, a , b );
fe_sub(s->X, a , b );
fe_add(s->Z, p->Z, p->Z );
fe_mul(s->T, p->T, q->T2);
fe_add(a , s->Z, s->T );
fe_sub(b , s->Z, s->T );
fe_mul(s->T, s->X, s->Y);
fe_mul(s->X, s->X, b );
fe_mul(s->Y, s->Y, a );
fe_mul(s->Z, a , b );
}
// Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_msub(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
{
ge_precomp neg;
fe_copy(neg.Ym, q->Yp);
fe_copy(neg.Yp, q->Ym);
fe_neg (neg.T2, q->T2);
ge_madd(s, p, &neg, a, b);
}
static void ge_double(ge *s, const ge *p, ge *q)
{
fe_sq (q->X, p->X);
fe_sq (q->Y, p->Y);
fe_sq (q->Z, p->Z); // qZ = pZ^2
fe_mul_small(q->Z, q->Z, 2); // qZ = pZ^2 * 2
fe_add(q->T, p->X, p->Y);
fe_sq (s->T, q->T);
fe_add(q->T, q->Y, q->X);
fe_sub(q->Y, q->Y, q->X);
fe_sub(q->X, s->T, q->T);
fe_sub(q->Z, q->Z, q->Y);
fe_mul(s->X, q->X , q->Z);
fe_mul(s->Y, q->T , q->Y);
fe_mul(s->Z, q->Y , q->Z);
fe_mul(s->T, q->X , q->T);
}
// 5-bit signed window in cached format (Niels coordinates, Z=1)
static const ge_precomp b_window[8] = {
{{25967493,-14356035,29566456,3660896,-12694345,
4014787,27544626,-11754271,-6079156,2047605,},
{-12545711,934262,-2722910,3049990,-727428,
9406986,12720692,5043384,19500929,-15469378,},
{-8738181,4489570,9688441,-14785194,10184609,
-12363380,29287919,11864899,-24514362,-4438546,},},
{{15636291,-9688557,24204773,-7912398,616977,
-16685262,27787600,-14772189,28944400,-1550024,},
{16568933,4717097,-11556148,-1102322,15682896,
-11807043,16354577,-11775962,7689662,11199574,},
{30464156,-5976125,-11779434,-15670865,23220365,
15915852,7512774,10017326,-17749093,-9920357,},},
{{10861363,11473154,27284546,1981175,-30064349,
12577861,32867885,14515107,-15438304,10819380,},
{4708026,6336745,20377586,9066809,-11272109,
6594696,-25653668,12483688,-12668491,5581306,},
{19563160,16186464,-29386857,4097519,10237984,
-4348115,28542350,13850243,-23678021,-15815942,},},
{{5153746,9909285,1723747,-2777874,30523605,
5516873,19480852,5230134,-23952439,-15175766,},
{-30269007,-3463509,7665486,10083793,28475525,
1649722,20654025,16520125,30598449,7715701,},
{28881845,14381568,9657904,3680757,-20181635,
7843316,-31400660,1370708,29794553,-1409300,},},
{{-22518993,-6692182,14201702,-8745502,-23510406,
8844726,18474211,-1361450,-13062696,13821877,},
{-6455177,-7839871,3374702,-4740862,-27098617,
-10571707,31655028,-7212327,18853322,-14220951,},
{4566830,-12963868,-28974889,-12240689,-7602672,
-2830569,-8514358,-10431137,2207753,-3209784,},},
{{-25154831,-4185821,29681144,7868801,-6854661,
-9423865,-12437364,-663000,-31111463,-16132436,},
{25576264,-2703214,7349804,-11814844,16472782,
9300885,3844789,15725684,171356,6466918,},
{23103977,13316479,9739013,-16149481,817875,
-15038942,8965339,-14088058,-30714912,16193877,},},
{{-33521811,3180713,-2394130,14003687,-16903474,
-16270840,17238398,4729455,-18074513,9256800,},
{-25182317,-4174131,32336398,5036987,-21236817,
11360617,22616405,9761698,-19827198,630305,},
{-13720693,2639453,-24237460,-7406481,9494427,
-5774029,-6554551,-15960994,-2449256,-14291300,},},
{{-3151181,-5046075,9282714,6866145,-31907062,
-863023,-18940575,15033784,25105118,-7894876,},
{-24326370,15950226,-31801215,-14592823,-11662737,
-5090925,1573892,-2625887,2198790,-15804619,},
{-3099351,10324967,-2241613,7453183,-5446979,
-2735503,-13812022,-16236442,-32461234,-12290683,},},
};
// Incremental sliding windows (left to right)
// Based on Roberto Maria Avanzi[2005]
typedef struct {
i16 next_index; // position of the next signed digit
i8 next_digit; // next signed digit (odd number below 2^window_width)
u8 next_check; // point at which we must check for a new window
} slide_ctx;
static void slide_init(slide_ctx *ctx, const u8 scalar[32])
{
// scalar is guaranteed to be below L, either because we checked (s),
// or because we reduced it modulo L (h_ram). L is under 2^253, so
// so bits 253 to 255 are guaranteed to be zero. No need to test them.
//
// Note however that L is very close to 2^252, so bit 252 is almost
// always zero. If we were to start at bit 251, the tests wouldn't
// catch the off-by-one error (constructing one that does would be
// prohibitively expensive).
//
// We should still check bit 252, though.
int i = 252;
while (i > 0 && scalar_bit(scalar, i) == 0) {
i--;
}
ctx->next_check = (u8)(i + 1);
ctx->next_index = -1;
ctx->next_digit = -1;
}
static int slide_step(slide_ctx *ctx, int width, int i, const u8 scalar[32])
{
if (i == ctx->next_check) {
if (scalar_bit(scalar, i) == scalar_bit(scalar, i - 1)) {
ctx->next_check--;
} else {
// compute digit of next window
int w = MC_MIN(width, i + 1);
int v = -(scalar_bit(scalar, i) << (w-1));
FOR_T (int, j, 0, w-1) {
v += scalar_bit(scalar, i-(w-1)+j) << j;
}
v += scalar_bit(scalar, i-w);
int lsb = v & (~v + 1); // smallest bit of v
int s = // log2(lsb)
(((lsb & 0xAA) != 0) << 0) |
(((lsb & 0xCC) != 0) << 1) |
(((lsb & 0xF0) != 0) << 2);
ctx->next_index = (i16)(i-(w-1)+s);
ctx->next_digit = (i8) (v >> s );
ctx->next_check -= (u8) w;
}
}
return i == ctx->next_index ? ctx->next_digit: 0;
}
#define P_W_WIDTH 3 // Affects the size of the stack
#define B_W_WIDTH 5 // Affects the size of the binary
#define P_W_SIZE (1<<(P_W_WIDTH-2))
int crypto_eddsa_check_equation(const u8 signature[64], const u8 public_key[32],
const u8 h[32])
{
ge minus_A; // -public_key
ge minus_R; // -first_half_of_signature
const u8 *s = signature + 32;
// Check that A and R are on the curve
// Check that 0 <= S < L (prevents malleability)
// *Allow* non-cannonical encoding for A and R
{
u32 s32[8];
load32_le_buf(s32, s, 8);
if (ge_frombytes_neg_vartime(&minus_A, public_key) ||
ge_frombytes_neg_vartime(&minus_R, signature) ||
is_above_l(s32)) {
return -1;
}
}
// look-up table for minus_A
ge_cached lutA[P_W_SIZE];
{
ge minus_A2, tmp;
ge_double(&minus_A2, &minus_A, &tmp);
ge_cache(&lutA[0], &minus_A);
FOR (i, 1, P_W_SIZE) {
ge_add(&tmp, &minus_A2, &lutA[i-1]);
ge_cache(&lutA[i], &tmp);
}
}
// sum = [s]B - [h]A
// Merged double and add ladder, fused with sliding
slide_ctx h_slide; slide_init(&h_slide, h);
slide_ctx s_slide; slide_init(&s_slide, s);
int i = MC_MAX(h_slide.next_check, s_slide.next_check);
ge *sum = &minus_A; // reuse minus_A for the sum
ge_zero(sum);
while (i >= 0) {
ge tmp;
ge_double(sum, sum, &tmp);
int h_digit = slide_step(&h_slide, P_W_WIDTH, i, h);
int s_digit = slide_step(&s_slide, B_W_WIDTH, i, s);
if (h_digit > 0) { ge_add(sum, sum, &lutA[ h_digit / 2]); }
if (h_digit < 0) { ge_sub(sum, sum, &lutA[-h_digit / 2]); }
fe t1, t2;
if (s_digit > 0) { ge_madd(sum, sum, b_window + s_digit/2, t1, t2); }
if (s_digit < 0) { ge_msub(sum, sum, b_window + -s_digit/2, t1, t2); }
i--;
}
// Compare [8](sum-R) and the zero point
// The multiplication by 8 eliminates any low-order component
// and ensures consistency with batched verification.
ge_cached cached;
u8 check[32];
static const u8 zero_point[32] = {1}; // Point of order 1
ge_cache(&cached, &minus_R);
ge_add(sum, sum, &cached);
ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
ge_tobytes(check, sum);
return crypto_verify32(check, zero_point);
}
// 5-bit signed comb in cached format (Niels coordinates, Z=1)
static const ge_precomp b_comb_low[8] = {
{{-6816601,-2324159,-22559413,124364,18015490,
8373481,19993724,1979872,-18549925,9085059,},
{10306321,403248,14839893,9633706,8463310,
-8354981,-14305673,14668847,26301366,2818560,},
{-22701500,-3210264,-13831292,-2927732,-16326337,
-14016360,12940910,177905,12165515,-2397893,},},
{{-12282262,-7022066,9920413,-3064358,-32147467,
2927790,22392436,-14852487,2719975,16402117,},
{-7236961,-4729776,2685954,-6525055,-24242706,
-15940211,-6238521,14082855,10047669,12228189,},
{-30495588,-12893761,-11161261,3539405,-11502464,
16491580,-27286798,-15030530,-7272871,-15934455,},},
{{17650926,582297,-860412,-187745,-12072900,
-10683391,-20352381,15557840,-31072141,-5019061,},
{-6283632,-2259834,-4674247,-4598977,-4089240,
12435688,-31278303,1060251,6256175,10480726,},
{-13871026,2026300,-21928428,-2741605,-2406664,
-8034988,7355518,15733500,-23379862,7489131,},},
{{6883359,695140,23196907,9644202,-33430614,
11354760,-20134606,6388313,-8263585,-8491918,},
{-7716174,-13605463,-13646110,14757414,-19430591,
-14967316,10359532,-11059670,-21935259,12082603,},
{-11253345,-15943946,10046784,5414629,24840771,
8086951,-6694742,9868723,15842692,-16224787,},},
{{9639399,11810955,-24007778,-9320054,3912937,
-9856959,996125,-8727907,-8919186,-14097242,},
{7248867,14468564,25228636,-8795035,14346339,
8224790,6388427,-7181107,6468218,-8720783,},
{15513115,15439095,7342322,-10157390,18005294,
-7265713,2186239,4884640,10826567,7135781,},},
{{-14204238,5297536,-5862318,-6004934,28095835,
4236101,-14203318,1958636,-16816875,3837147,},
{-5511166,-13176782,-29588215,12339465,15325758,
-15945770,-8813185,11075932,-19608050,-3776283,},
{11728032,9603156,-4637821,-5304487,-7827751,
2724948,31236191,-16760175,-7268616,14799772,},},
{{-28842672,4840636,-12047946,-9101456,-1445464,
381905,-30977094,-16523389,1290540,12798615,},
{27246947,-10320914,14792098,-14518944,5302070,
-8746152,-3403974,-4149637,-27061213,10749585,},
{25572375,-6270368,-15353037,16037944,1146292,
32198,23487090,9585613,24714571,-1418265,},},
{{19844825,282124,-17583147,11004019,-32004269,
-2716035,6105106,-1711007,-21010044,14338445,},
{8027505,8191102,-18504907,-12335737,25173494,
-5923905,15446145,7483684,-30440441,10009108,},
{-14134701,-4174411,10246585,-14677495,33553567,
-14012935,23366126,15080531,-7969992,7663473,},},
};
static const ge_precomp b_comb_high[8] = {
{{33055887,-4431773,-521787,6654165,951411,
-6266464,-5158124,6995613,-5397442,-6985227,},
{4014062,6967095,-11977872,3960002,8001989,
5130302,-2154812,-1899602,-31954493,-16173976,},
{16271757,-9212948,23792794,731486,-25808309,
-3546396,6964344,-4767590,10976593,10050757,},},
{{2533007,-4288439,-24467768,-12387405,-13450051,
14542280,12876301,13893535,15067764,8594792,},
{20073501,-11623621,3165391,-13119866,13188608,
-11540496,-10751437,-13482671,29588810,2197295,},
{-1084082,11831693,6031797,14062724,14748428,
-8159962,-20721760,11742548,31368706,13161200,},},
{{2050412,-6457589,15321215,5273360,25484180,
124590,-18187548,-7097255,-6691621,-14604792,},
{9938196,2162889,-6158074,-1711248,4278932,
-2598531,-22865792,-7168500,-24323168,11746309,},
{-22691768,-14268164,5965485,9383325,20443693,
5854192,28250679,-1381811,-10837134,13717818,},},
{{-8495530,16382250,9548884,-4971523,-4491811,
-3902147,6182256,-12832479,26628081,10395408,},
{27329048,-15853735,7715764,8717446,-9215518,
-14633480,28982250,-5668414,4227628,242148,},
{-13279943,-7986904,-7100016,8764468,-27276630,
3096719,29678419,-9141299,3906709,11265498,},},
{{11918285,15686328,-17757323,-11217300,-27548967,
4853165,-27168827,6807359,6871949,-1075745,},
{-29002610,13984323,-27111812,-2713442,28107359,
-13266203,6155126,15104658,3538727,-7513788,},
{14103158,11233913,-33165269,9279850,31014152,
4335090,-1827936,4590951,13960841,12787712,},},
{{1469134,-16738009,33411928,13942824,8092558,
-8778224,-11165065,1437842,22521552,-2792954,},
{31352705,-4807352,-25327300,3962447,12541566,
-9399651,-27425693,7964818,-23829869,5541287,},
{-25732021,-6864887,23848984,3039395,-9147354,
6022816,-27421653,10590137,25309915,-1584678,},},
{{-22951376,5048948,31139401,-190316,-19542447,
-626310,-17486305,-16511925,-18851313,-12985140,},
{-9684890,14681754,30487568,7717771,-10829709,
9630497,30290549,-10531496,-27798994,-13812825,},
{5827835,16097107,-24501327,12094619,7413972,
11447087,28057551,-1793987,-14056981,4359312,},},
{{26323183,2342588,-21887793,-1623758,-6062284,
2107090,-28724907,9036464,-19618351,-13055189,},
{-29697200,14829398,-4596333,14220089,-30022969,
2955645,12094100,-13693652,-5941445,7047569,},
{-3201977,14413268,-12058324,-16417589,-9035655,
-7224648,9258160,1399236,30397584,-5684634,},},
};
static void lookup_add(ge *p, ge_precomp *tmp_c, fe tmp_a, fe tmp_b,
const ge_precomp comb[8], const u8 scalar[32], int i)
{
u8 teeth = (u8)((scalar_bit(scalar, i) ) +
(scalar_bit(scalar, i + 32) << 1) +
(scalar_bit(scalar, i + 64) << 2) +
(scalar_bit(scalar, i + 96) << 3));
u8 high = teeth >> 3;
u8 index = (teeth ^ (high - 1)) & 7;
FOR (j, 0, 8) {
i32 select = 1 & (((j ^ index) - 1) >> 8);
fe_ccopy(tmp_c->Yp, comb[j].Yp, select);
fe_ccopy(tmp_c->Ym, comb[j].Ym, select);
fe_ccopy(tmp_c->T2, comb[j].T2, select);
}
fe_neg(tmp_a, tmp_c->T2);
fe_cswap(tmp_c->T2, tmp_a , high ^ 1);
fe_cswap(tmp_c->Yp, tmp_c->Ym, high ^ 1);
ge_madd(p, p, tmp_c, tmp_a, tmp_b);
}
// p = [scalar]B, where B is the base point
static void ge_scalarmult_base(ge *p, const u8 scalar[32])
{
// twin 4-bits signed combs, from Mike Hamburg's
// Fast and compact elliptic-curve cryptography (2012)
// 1 / 2 modulo L
static const u8 half_mod_L[32] = {
247,233,122,46,141,49,9,44,107,206,123,81,239,124,111,10,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,
};
// (2^256 - 1) / 2 modulo L
static const u8 half_ones[32] = {
142,74,204,70,186,24,118,107,184,231,190,57,250,173,119,99,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,7,
};
// All bits set form: 1 means 1, 0 means -1
u8 s_scalar[32];
crypto_eddsa_mul_add(s_scalar, scalar, half_mod_L, half_ones);
// Double and add ladder
fe tmp_a, tmp_b; // temporaries for addition
ge_precomp tmp_c; // temporary for comb lookup
ge tmp_d; // temporary for doubling
fe_1(tmp_c.Yp);
fe_1(tmp_c.Ym);
fe_0(tmp_c.T2);
// Save a double on the first iteration
ge_zero(p);
lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, 31);
lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, 31+128);
// Regular double & add for the rest
for (int i = 30; i >= 0; i--) {
ge_double(p, p, &tmp_d);
lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, i);
lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, i+128);
}
// Note: we could save one addition at the end if we assumed the
// scalar fit in 252 bits. Which it does in practice if it is
// selected at random. However, non-random, non-hashed scalars
// *can* overflow 252 bits in practice. Better account for that
// than leaving that kind of subtle corner case.
WIPE_BUFFER(tmp_a); WIPE_CTX(&tmp_d);
WIPE_BUFFER(tmp_b); WIPE_CTX(&tmp_c);
WIPE_BUFFER(s_scalar);
}
void crypto_eddsa_scalarbase(u8 point[32], const u8 scalar[32])
{
ge P;
ge_scalarmult_base(&P, scalar);
ge_tobytes(point, &P);
WIPE_CTX(&P);
}
void crypto_eddsa_key_pair(u8 secret_key[64], u8 public_key[32], u8 seed[32])
{
// To allow overlaps, observable writes happen in this order:
// 1. seed
// 2. secret_key
// 3. public_key
u8 a[64];
COPY(a, seed, 32);
crypto_wipe(seed, 32);
COPY(secret_key, a, 32);
crypto_blake2b(a, 64, a, 32);
crypto_eddsa_trim_scalar(a, a);
crypto_eddsa_scalarbase(secret_key + 32, a);
COPY(public_key, secret_key + 32, 32);
WIPE_BUFFER(a);
}
static void hash_reduce(u8 h[32],
const u8 *a, size_t a_size,
const u8 *b, size_t b_size,
const u8 *c, size_t c_size)
{
u8 hash[64];
crypto_blake2b_ctx ctx;
crypto_blake2b_init (&ctx, 64);
crypto_blake2b_update(&ctx, a, a_size);
crypto_blake2b_update(&ctx, b, b_size);
crypto_blake2b_update(&ctx, c, c_size);
crypto_blake2b_final (&ctx, hash);
crypto_eddsa_reduce(h, hash);
}
// Digital signature of a message with from a secret key.
//
// The secret key comprises two parts:
// - The seed that generates the key (secret_key[ 0..31])
// - The public key (secret_key[32..63])
//
// The seed and the public key are bundled together to make sure users
// don't use mismatched seeds and public keys, which would instantly
// leak the secret scalar and allow forgeries (allowing this to happen
// has resulted in critical vulnerabilities in the wild).
//
// The seed is hashed to derive the secret scalar and a secret prefix.
// The sole purpose of the prefix is to generate a secret random nonce.
// The properties of that nonce must be as follows:
// - Unique: we need a different one for each message.
// - Secret: third parties must not be able to predict it.
// - Random: any detectable bias would break all security.
//
// There are two ways to achieve these properties. The obvious one is
// to simply generate a random number. Here that would be a parameter
// (Monocypher doesn't have an RNG). It works, but then users may reuse
// the nonce by accident, which _also_ leaks the secret scalar and
// allows forgeries. This has happened in the wild too.
//
// This is no good, so instead we generate that nonce deterministically
// by reducing modulo L a hash of the secret prefix and the message.
// The secret prefix makes the nonce unpredictable, the message makes it
// unique, and the hash/reduce removes all bias.
//
// The cost of that safety is hashing the message twice. If that cost
// is unacceptable, there are two alternatives:
//
// - Signing a hash of the message instead of the message itself. This
// is fine as long as the hash is collision resistant. It is not
// compatible with existing "pure" signatures, but at least it's safe.
//
// - Using a random nonce. Please exercise **EXTREME CAUTION** if you
// ever do that. It is absolutely **critical** that the nonce is
// really an unbiased random number between 0 and L-1, never reused,
// and wiped immediately.
//
// To lower the likelihood of complete catastrophe if the RNG is
// either flawed or misused, you can hash the RNG output together with
// the secret prefix and the beginning of the message, and use the
// reduction of that hash instead of the RNG output itself. It's not
// foolproof (you'd need to hash the whole message) but it helps.
//
// Signing a message involves the following operations:
//
// scalar, prefix = HASH(secret_key)
// r = HASH(prefix || message) % L
// R = [r]B
// h = HASH(R || public_key || message) % L
// S = ((h * a) + r) % L
// signature = R || S
void crypto_eddsa_sign(u8 signature [64], const u8 secret_key[64],
const u8 *message, size_t message_size)
{
u8 a[64]; // secret scalar and prefix
u8 r[32]; // secret deterministic "random" nonce
u8 h[32]; // publically verifiable hash of the message (not wiped)
u8 R[32]; // first half of the signature (allows overlapping inputs)
crypto_blake2b(a, 64, secret_key, 32);
crypto_eddsa_trim_scalar(a, a);
hash_reduce(r, a + 32, 32, message, message_size, 0, 0);
crypto_eddsa_scalarbase(R, r);
hash_reduce(h, R, 32, secret_key + 32, 32, message, message_size);
COPY(signature, R, 32);
crypto_eddsa_mul_add(signature + 32, h, a, r);
WIPE_BUFFER(a);
WIPE_BUFFER(r);
}
// To check the signature R, S of the message M with the public key A,
// there are 3 steps:
//
// compute h = HASH(R || A || message) % L
// check that A is on the curve.
// check that R == [s]B - [h]A
//
// The last two steps are done in crypto_eddsa_check_equation()
int crypto_eddsa_check(const u8 signature[64], const u8 public_key[32],
const u8 *message, size_t message_size)
{
u8 h[32];
hash_reduce(h, signature, 32, public_key, 32, message, message_size);
return crypto_eddsa_check_equation(signature, public_key, h);
}
/////////////////////////
/// EdDSA <--> X25519 ///
/////////////////////////
void crypto_eddsa_to_x25519(u8 x25519[32], const u8 eddsa[32])
{
// (u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)
// Only converting y to u, the sign of x is ignored.
fe t1, t2;
fe_frombytes(t2, eddsa);
fe_add(t1, fe_one, t2);
fe_sub(t2, fe_one, t2);
fe_invert(t2, t2);
fe_mul(t1, t1, t2);
fe_tobytes(x25519, t1);
WIPE_BUFFER(t1);
WIPE_BUFFER(t2);
}
void crypto_x25519_to_eddsa(u8 eddsa[32], const u8 x25519[32])
{
// (x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))
// Only converting u to y, x is assumed positive.
fe t1, t2;
fe_frombytes(t2, x25519);
fe_sub(t1, t2, fe_one);
fe_add(t2, t2, fe_one);
fe_invert(t2, t2);
fe_mul(t1, t1, t2);
fe_tobytes(eddsa, t1);
WIPE_BUFFER(t1);
WIPE_BUFFER(t2);
}
/////////////////////////////////////////////
/// Dirty ephemeral public key generation ///
/////////////////////////////////////////////
// Those functions generates a public key, *without* clearing the
// cofactor. Sending that key over the network leaks 3 bits of the
// private key. Use only to generate ephemeral keys that will be hidden
// with crypto_curve_to_hidden().
//
// The public key is otherwise compatible with crypto_x25519(), which
// properly clears the cofactor.
//
// Note that the distribution of the resulting public keys is almost
// uniform. Flipping the sign of the v coordinate (not provided by this
// function), covers the entire key space almost perfectly, where
// "almost" means a 2^-128 bias (undetectable). This uniformity is
// needed to ensure the proper randomness of the resulting
// representatives (once we apply crypto_curve_to_hidden()).
//
// Recall that Curve25519 has order C = 2^255 + e, with e < 2^128 (not
// to be confused with the prime order of the main subgroup, L, which is
// 8 times less than that).
//
// Generating all points would require us to multiply a point of order C
// (the base point plus any point of order 8) by all scalars from 0 to
// C-1. Clamping limits us to scalars between 2^254 and 2^255 - 1. But
// by negating the resulting point at random, we also cover scalars from
// -2^255 + 1 to -2^254 (which modulo C is congruent to e+1 to 2^254 + e).
//
// In practice:
// - Scalars from 0 to e + 1 are never generated
// - Scalars from 2^255 to 2^255 + e are never generated
// - Scalars from 2^254 + 1 to 2^254 + e are generated twice
//
// Since e < 2^128, detecting this bias requires observing over 2^100
// representatives from a given source (this will never happen), *and*
// recovering enough of the private key to determine that they do, or do
// not, belong to the biased set (this practically requires solving
// discrete logarithm, which is conjecturally intractable).
//
// In practice, this means the bias is impossible to detect.
// s + (x*L) % 8*L
// Guaranteed to fit in 256 bits iff s fits in 255 bits.
// L < 2^253
// x%8 < 2^3
// L * (x%8) < 2^255
// s < 2^255
// s + L * (x%8) < 2^256
static void add_xl(u8 s[32], u8 x)
{
u64 mod8 = x & 7;
u64 carry = 0;
FOR (i , 0, 8) {
carry = carry + load32_le(s + 4*i) + L[i] * mod8;
store32_le(s + 4*i, (u32)carry);
carry >>= 32;
}
}
// "Small" dirty ephemeral key.
// Use if you need to shrink the size of the binary, and can afford to
// slow down by a factor of two (compared to the fast version)
//
// This version works by decoupling the cofactor from the main factor.
//
// - The trimmed scalar determines the main factor
// - The clamped bits of the scalar determine the cofactor.
//
// Cofactor and main factor are combined into a single scalar, which is
// then multiplied by a point of order 8*L (unlike the base point, which
// has prime order). That "dirty" base point is the addition of the
// regular base point (9), and a point of order 8.
void crypto_x25519_dirty_small(u8 public_key[32], const u8 secret_key[32])
{
// Base point of order 8*L
// Raw scalar multiplication with it does not clear the cofactor,
// and the resulting public key will reveal 3 bits of the scalar.
//
// The low order component of this base point has been chosen
// to yield the same results as crypto_x25519_dirty_fast().
static const u8 dirty_base_point[32] = {
0xd8, 0x86, 0x1a, 0xa2, 0x78, 0x7a, 0xd9, 0x26,
0x8b, 0x74, 0x74, 0xb6, 0x82, 0xe3, 0xbe, 0xc3,
0xce, 0x36, 0x9a, 0x1e, 0x5e, 0x31, 0x47, 0xa2,
0x6d, 0x37, 0x7c, 0xfd, 0x20, 0xb5, 0xdf, 0x75,
};
// separate the main factor & the cofactor of the scalar
u8 scalar[32];
crypto_eddsa_trim_scalar(scalar, secret_key);
// Separate the main factor and the cofactor
//
// The scalar is trimmed, so its cofactor is cleared. The three
// least significant bits however still have a main factor. We must
// remove it for X25519 compatibility.
//
// cofactor = lsb * L (modulo 8*L)
// combined = scalar + cofactor (modulo 8*L)
add_xl(scalar, secret_key[0]);
scalarmult(public_key, scalar, dirty_base_point, 256);
WIPE_BUFFER(scalar);
}
// Select low order point
// We're computing the [cofactor]lop scalar multiplication, where:
//
// cofactor = tweak & 7.
// lop = (lop_x, lop_y)
// lop_x = sqrt((sqrt(d + 1) + 1) / d)
// lop_y = -lop_x * sqrtm1
//
// The low order point has order 8. There are 4 such points. We've
// chosen the one whose both coordinates are positive (below p/2).
// The 8 low order points are as follows:
//
// [0]lop = ( 0 , 1 )
// [1]lop = ( lop_x , lop_y)
// [2]lop = ( sqrt(-1), -0 )
// [3]lop = ( lop_x , -lop_y)
// [4]lop = (-0 , -1 )
// [5]lop = (-lop_x , -lop_y)
// [6]lop = (-sqrt(-1), 0 )
// [7]lop = (-lop_x , lop_y)
//
// The x coordinate is either 0, sqrt(-1), lop_x, or their opposite.
// The y coordinate is either 0, -1 , lop_y, or their opposite.
// The pattern for both is the same, except for a rotation of 2 (modulo 8)
//
// This helper function captures the pattern, and we can use it thus:
//
// select_lop(x, lop_x, sqrtm1, cofactor);
// select_lop(y, lop_y, fe_one, cofactor + 2);
//
// This is faster than an actual scalar multiplication,
// and requires less code than naive constant time look up.
static void select_lop(fe out, const fe x, const fe k, u8 cofactor)
{
fe tmp;
fe_0(out);
fe_ccopy(out, k , (cofactor >> 1) & 1); // bit 1
fe_ccopy(out, x , (cofactor >> 0) & 1); // bit 0
fe_neg (tmp, out);
fe_ccopy(out, tmp, (cofactor >> 2) & 1); // bit 2
WIPE_BUFFER(tmp);
}
// "Fast" dirty ephemeral key
// We use this one by default.
//
// This version works by performing a regular scalar multiplication,
// then add a low order point. The scalar multiplication is done in
// Edwards space for more speed (*2 compared to the "small" version).
// The cost is a bigger binary for programs that don't also sign messages.
void crypto_x25519_dirty_fast(u8 public_key[32], const u8 secret_key[32])
{
// Compute clean scalar multiplication
u8 scalar[32];
ge pk;
crypto_eddsa_trim_scalar(scalar, secret_key);
ge_scalarmult_base(&pk, scalar);
// Compute low order point
fe t1, t2;
select_lop(t1, lop_x, sqrtm1, secret_key[0]);
select_lop(t2, lop_y, fe_one, secret_key[0] + 2);
ge_precomp low_order_point;
fe_add(low_order_point.Yp, t2, t1);
fe_sub(low_order_point.Ym, t2, t1);
fe_mul(low_order_point.T2, t2, t1);
fe_mul(low_order_point.T2, low_order_point.T2, D2);
// Add low order point to the public key
ge_madd(&pk, &pk, &low_order_point, t1, t2);
// Convert to Montgomery u coordinate (we ignore the sign)
fe_add(t1, pk.Z, pk.Y);
fe_sub(t2, pk.Z, pk.Y);
fe_invert(t2, t2);
fe_mul(t1, t1, t2);
fe_tobytes(public_key, t1);
WIPE_BUFFER(t1); WIPE_CTX(&pk);
WIPE_BUFFER(t2); WIPE_CTX(&low_order_point);
WIPE_BUFFER(scalar);
}
///////////////////
/// Elligator 2 ///
///////////////////
static const fe A = {486662};
// Elligator direct map
//
// Computes the point corresponding to a representative, encoded in 32
// bytes (little Endian). Since positive representatives fits in 254
// bits, The two most significant bits are ignored.
//
// From the paper:
// w = -A / (fe(1) + non_square * r^2)
// e = chi(w^3 + A*w^2 + w)
// u = e*w - (fe(1)-e)*(A//2)
// v = -e * sqrt(u^3 + A*u^2 + u)
//
// We ignore v because we don't need it for X25519 (the Montgomery
// ladder only uses u).
//
// Note that e is either 0, 1 or -1
// if e = 0 u = 0 and v = 0
// if e = 1 u = w
// if e = -1 u = -w - A = w * non_square * r^2
//
// Let r1 = non_square * r^2
// Let r2 = 1 + r1
// Note that r2 cannot be zero, -1/non_square is not a square.
// We can (tediously) verify that:
// w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3
// Therefore:
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3))
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6)
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3) * r2^6)
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * A * r2^3)
// Corollary:
// e = 1 if (A^2*r1 - r2^2) * A * r2^3) is a non-zero square
// e = -1 if (A^2*r1 - r2^2) * A * r2^3) is not a square
// Note that w^3 + A*w^2 + w (and therefore e) can never be zero:
// w^3 + A*w^2 + w = w * (w^2 + A*w + 1)
// w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1)
// w^3 + A*w^2 + w = w * (w + A/2)^2 - A^2/4 + 1)
// which is zero only if:
// w = 0 (impossible)
// (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square)
//
// Let isr = invsqrt((A^2*r1 - r2^2) * A * r2^3)
// isr = sqrt(1 / ((A^2*r1 - r2^2) * A * r2^3)) if e = 1
// isr = sqrt(sqrt(-1) / ((A^2*r1 - r2^2) * A * r2^3)) if e = -1
//
// if e = 1
// let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2
// u1 = w
// u1 = u
//
// if e = -1
// let ufactor = -non_square * sqrt(-1) * r^2
// let vfactor = sqrt(ufactor)
// let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor
// u2 = w * -1 * -non_square * r^2
// u2 = w * non_square * r^2
// u2 = u
void crypto_elligator_map(u8 curve[32], const u8 hidden[32])
{
fe r, u, t1, t2, t3;
fe_frombytes_mask(r, hidden, 2); // r is encoded in 254 bits.
fe_sq(r, r);
fe_add(t1, r, r);
fe_add(u, t1, fe_one);
fe_sq (t2, u);
fe_mul(t3, A2, t1);
fe_sub(t3, t3, t2);
fe_mul(t3, t3, A);
fe_mul(t1, t2, u);
fe_mul(t1, t3, t1);
int is_square = invsqrt(t1, t1);
fe_mul(u, r, ufactor);
fe_ccopy(u, fe_one, is_square);
fe_sq (t1, t1);
fe_mul(u, u, A);
fe_mul(u, u, t3);
fe_mul(u, u, t2);
fe_mul(u, u, t1);
fe_neg(u, u);
fe_tobytes(curve, u);
WIPE_BUFFER(t1); WIPE_BUFFER(r);
WIPE_BUFFER(t2); WIPE_BUFFER(u);
WIPE_BUFFER(t3);
}
// Elligator inverse map
//
// Computes the representative of a point, if possible. If not, it does
// nothing and returns -1. Note that the success of the operation
// depends only on the point (more precisely its u coordinate). The
// tweak parameter is used only upon success
//
// The tweak should be a random byte. Beyond that, its contents are an
// implementation detail. Currently, the tweak comprises:
// - Bit 1 : sign of the v coordinate (0 if positive, 1 if negative)
// - Bit 2-5: not used
// - Bits 6-7: random padding
//
// From the paper:
// Let sq = -non_square * u * (u+A)
// if sq is not a square, or u = -A, there is no mapping
// Assuming there is a mapping:
// if v is positive: r = sqrt(-u / (non_square * (u+A)))
// if v is negative: r = sqrt(-(u+A) / (non_square * u ))
//
// We compute isr = invsqrt(-non_square * u * (u+A))
// if it wasn't a square, abort.
// else, isr = sqrt(-1 / (non_square * u * (u+A))
//
// If v is positive, we return isr * u:
// isr * u = sqrt(-1 / (non_square * u * (u+A)) * u
// isr * u = sqrt(-u / (non_square * (u+A))
//
// If v is negative, we return isr * (u+A):
// isr * (u+A) = sqrt(-1 / (non_square * u * (u+A)) * (u+A)
// isr * (u+A) = sqrt(-(u+A) / (non_square * u)
int crypto_elligator_rev(u8 hidden[32], const u8 public_key[32], u8 tweak)
{
fe t1, t2, t3;
fe_frombytes(t1, public_key); // t1 = u
fe_add(t2, t1, A); // t2 = u + A
fe_mul(t3, t1, t2);
fe_mul_small(t3, t3, -2);
int is_square = invsqrt(t3, t3); // t3 = sqrt(-1 / non_square * u * (u+A))
if (is_square) {
// The only variable time bit. This ultimately reveals how many
// tries it took us to find a representable key.
// This does not affect security as long as we try keys at random.
fe_ccopy (t1, t2, tweak & 1); // multiply by u if v is positive,
fe_mul (t3, t1, t3); // multiply by u+A otherwise
fe_mul_small(t1, t3, 2);
fe_neg (t2, t3);
fe_ccopy (t3, t2, fe_isodd(t1));
fe_tobytes(hidden, t3);
// Pad with two random bits
hidden[31] |= tweak & 0xc0;
}
WIPE_BUFFER(t1);
WIPE_BUFFER(t2);
WIPE_BUFFER(t3);
return is_square - 1;
}
void crypto_elligator_key_pair(u8 hidden[32], u8 secret_key[32], u8 seed[32])
{
u8 pk [32]; // public key
u8 buf[64]; // seed + representative
COPY(buf + 32, seed, 32);
do {
crypto_chacha20_djb(buf, 0, 64, buf+32, zero, 0);
crypto_x25519_dirty_fast(pk, buf); // or the "small" version
} while(crypto_elligator_rev(buf+32, pk, buf[32]));
// Note that the return value of crypto_elligator_rev() is
// independent from its tweak parameter.
// Therefore, buf[32] is not actually reused. Either we loop one
// more time and buf[32] is used for the new seed, or we succeeded,
// and buf[32] becomes the tweak parameter.
crypto_wipe(seed, 32);
COPY(hidden , buf + 32, 32);
COPY(secret_key, buf , 32);
WIPE_BUFFER(buf);
WIPE_BUFFER(pk);
}
///////////////////////
/// Scalar division ///
///////////////////////
// Montgomery reduction.
// Divides x by (2^256), and reduces the result modulo L
//
// Precondition:
// x < L * 2^256
// Constants:
// r = 2^256 (makes division by r trivial)
// k = (r * (1/r) - 1) // L (1/r is computed modulo L )
// Algorithm:
// s = (x * k) % r
// t = x + s*L (t is always a multiple of r)
// u = (t/r) % L (u is always below 2*L, conditional subtraction is enough)
static void redc(u32 u[8], u32 x[16])
{
static const u32 k[8] = {
0x12547e1b, 0xd2b51da3, 0xfdba84ff, 0xb1a206f2,
0xffa36bea, 0x14e75438, 0x6fe91836, 0x9db6c6f2,
};
// s = x * k (modulo 2^256)
// This is cheaper than the full multiplication.
u32 s[8] = {0};
FOR (i, 0, 8) {
u64 carry = 0;
FOR (j, 0, 8-i) {
carry += s[i+j] + (u64)x[i] * k[j];
s[i+j] = (u32)carry;
carry >>= 32;
}
}
u32 t[16] = {0};
multiply(t, s, L);
// t = t + x
u64 carry = 0;
FOR (i, 0, 16) {
carry += (u64)t[i] + x[i];
t[i] = (u32)carry;
carry >>= 32;
}
// u = (t / 2^256) % L
// Note that t / 2^256 is always below 2*L,
// So a constant time conditional subtraction is enough
remove_l(u, t+8);
WIPE_BUFFER(s);
WIPE_BUFFER(t);
}
void crypto_x25519_inverse(u8 blind_salt [32], const u8 private_key[32],
const u8 curve_point[32])
{
static const u8 Lm2[32] = { // L - 2
0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
};
// 1 in Montgomery form
u32 m_inv [8] = {
0x8d98951d, 0xd6ec3174, 0x737dcf70, 0xc6ef5bf4,
0xfffffffe, 0xffffffff, 0xffffffff, 0x0fffffff,
};
u8 scalar[32];
crypto_eddsa_trim_scalar(scalar, private_key);
// Convert the scalar in Montgomery form
// m_scl = scalar * 2^256 (modulo L)
u32 m_scl[8];
{
u32 tmp[16];
ZERO(tmp, 8);
load32_le_buf(tmp+8, scalar, 8);
mod_l(scalar, tmp);
load32_le_buf(m_scl, scalar, 8);
WIPE_BUFFER(tmp); // Wipe ASAP to save stack space
}
// Compute the inverse
u32 product[16];
for (int i = 252; i >= 0; i--) {
ZERO(product, 16);
multiply(product, m_inv, m_inv);
redc(m_inv, product);
if (scalar_bit(Lm2, i)) {
ZERO(product, 16);
multiply(product, m_inv, m_scl);
redc(m_inv, product);
}
}
// Convert the inverse *out* of Montgomery form
// scalar = m_inv / 2^256 (modulo L)
COPY(product, m_inv, 8);
ZERO(product + 8, 8);
redc(m_inv, product);
store32_le_buf(scalar, m_inv, 8); // the *inverse* of the scalar
// Clear the cofactor of scalar:
// cleared = scalar * (3*L + 1) (modulo 8*L)
// cleared = scalar + scalar * 3 * L (modulo 8*L)
// Note that (scalar * 3) is reduced modulo 8, so we only need the
// first byte.
add_xl(scalar, scalar[0] * 3);
// Recall that 8*L < 2^256. However it is also very close to
// 2^255. If we spanned the ladder over 255 bits, random tests
// wouldn't catch the off-by-one error.
scalarmult(blind_salt, scalar, curve_point, 256);
WIPE_BUFFER(scalar); WIPE_BUFFER(m_scl);
WIPE_BUFFER(product); WIPE_BUFFER(m_inv);
}
////////////////////////////////
/// Authenticated encryption ///
////////////////////////////////
static void lock_auth(u8 mac[16], const u8 auth_key[32],
const u8 *ad , size_t ad_size,
const u8 *cipher_text, size_t text_size)
{
u8 sizes[16]; // Not secret, not wiped
store64_le(sizes + 0, ad_size);
store64_le(sizes + 8, text_size);
crypto_poly1305_ctx poly_ctx; // auto wiped...
crypto_poly1305_init (&poly_ctx, auth_key);
crypto_poly1305_update(&poly_ctx, ad , ad_size);
crypto_poly1305_update(&poly_ctx, zero , gap(ad_size, 16));
crypto_poly1305_update(&poly_ctx, cipher_text, text_size);
crypto_poly1305_update(&poly_ctx, zero , gap(text_size, 16));
crypto_poly1305_update(&poly_ctx, sizes , 16);
crypto_poly1305_final (&poly_ctx, mac); // ...here
}
void crypto_aead_init_x(crypto_aead_ctx *ctx,
u8 const key[32], const u8 nonce[24])
{
crypto_chacha20_h(ctx->key, key, nonce);
COPY(ctx->nonce, nonce + 16, 8);
ctx->counter = 0;
}
void crypto_aead_init_djb(crypto_aead_ctx *ctx,
const u8 key[32], const u8 nonce[8])
{
COPY(ctx->key , key , 32);
COPY(ctx->nonce, nonce, 8);
ctx->counter = 0;
}
void crypto_aead_init_ietf(crypto_aead_ctx *ctx,
const u8 key[32], const u8 nonce[12])
{
COPY(ctx->key , key , 32);
COPY(ctx->nonce, nonce + 4, 8);
ctx->counter = (u64)load32_le(nonce) << 32;
}
void crypto_aead_write(crypto_aead_ctx *ctx, u8 *cipher_text, u8 mac[16],
const u8 *ad, size_t ad_size,
const u8 *plain_text, size_t text_size)
{
u8 auth_key[64]; // the last 32 bytes are used for rekeying.
crypto_chacha20_djb(auth_key, 0, 64, ctx->key, ctx->nonce, ctx->counter);
crypto_chacha20_djb(cipher_text, plain_text, text_size,
ctx->key, ctx->nonce, ctx->counter + 1);
lock_auth(mac, auth_key, ad, ad_size, cipher_text, text_size);
COPY(ctx->key, auth_key + 32, 32);
WIPE_BUFFER(auth_key);
}
int crypto_aead_read(crypto_aead_ctx *ctx, u8 *plain_text, const u8 mac[16],
const u8 *ad, size_t ad_size,
const u8 *cipher_text, size_t text_size)
{
u8 auth_key[64]; // the last 32 bytes are used for rekeying.
u8 real_mac[16];
crypto_chacha20_djb(auth_key, 0, 64, ctx->key, ctx->nonce, ctx->counter);
lock_auth(real_mac, auth_key, ad, ad_size, cipher_text, text_size);
int mismatch = crypto_verify16(mac, real_mac);
if (!mismatch) {
crypto_chacha20_djb(plain_text, cipher_text, text_size,
ctx->key, ctx->nonce, ctx->counter + 1);
COPY(ctx->key, auth_key + 32, 32);
}
WIPE_BUFFER(auth_key);
WIPE_BUFFER(real_mac);
return mismatch;
}
void crypto_aead_lock(u8 *cipher_text, u8 mac[16], const u8 key[32],
const u8 nonce[24], const u8 *ad, size_t ad_size,
const u8 *plain_text, size_t text_size)
{
crypto_aead_ctx ctx;
crypto_aead_init_x(&ctx, key, nonce);
crypto_aead_write(&ctx, cipher_text, mac, ad, ad_size,
plain_text, text_size);
crypto_wipe(&ctx, sizeof(ctx));
}
int crypto_aead_unlock(u8 *plain_text, const u8 mac[16], const u8 key[32],
const u8 nonce[24], const u8 *ad, size_t ad_size,
const u8 *cipher_text, size_t text_size)
{
crypto_aead_ctx ctx;
crypto_aead_init_x(&ctx, key, nonce);
int mismatch = crypto_aead_read(&ctx, plain_text, mac, ad, ad_size,
cipher_text, text_size);
crypto_wipe(&ctx, sizeof(ctx));
return mismatch;
}
#ifdef MONOCYPHER_CPP_NAMESPACE
}
#endif
|