Files @ r28520:f9aebe299cae
Branch filter:

Location: cpp/openttd-patchpack/source/src/3rdparty/monocypher/monocypher.cpp

Patric Stout
Codechange: MacOS already has MIN/MAX macros defined

This is caused because we use PreCompile Headers, and one of them
includes a system headers which defines MIN/MAX.
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
// Monocypher version 4.0.2
//
// This file is dual-licensed.  Choose whichever licence you want from
// the two licences listed below.
//
// The first licence is a regular 2-clause BSD licence.  The second licence
// is the CC-0 from Creative Commons. It is intended to release Monocypher
// to the public domain.  The BSD licence serves as a fallback option.
//
// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
//
// ------------------------------------------------------------------------
//
// Copyright (c) 2017-2020, Loup Vaillant
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the
//    distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ------------------------------------------------------------------------
//
// Written in 2017-2020 by Loup Vaillant
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related neighboring rights to this software to the public domain
// worldwide.  This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software.  If not, see
// <https://creativecommons.org/publicdomain/zero/1.0/>

#include "monocypher.h"

#ifdef MONOCYPHER_CPP_NAMESPACE
namespace MONOCYPHER_CPP_NAMESPACE {
#endif

/////////////////
/// Utilities ///
/////////////////
#define FOR_T(type, i, start, end) for (type i = (start); i < (end); i++)
#define FOR(i, start, end)         FOR_T(size_t, i, start, end)
#define COPY(dst, src, size)       FOR(_i_, 0, size) (dst)[_i_] = (src)[_i_]
#define ZERO(buf, size)            FOR(_i_, 0, size) (buf)[_i_] = 0
#define WIPE_CTX(ctx)              crypto_wipe(ctx   , sizeof(*(ctx)))
#define WIPE_BUFFER(buffer)        crypto_wipe(buffer, sizeof(buffer))
#define MC_MIN(a, b)               ((a) <= (b) ? (a) : (b))
#define MC_MAX(a, b)               ((a) >= (b) ? (a) : (b))

typedef int8_t   i8;
typedef uint8_t  u8;
typedef int16_t  i16;
typedef uint32_t u32;
typedef int32_t  i32;
typedef int64_t  i64;
typedef uint64_t u64;

static const u8 zero[128] = {0};

// returns the smallest positive integer y such that
// (x + y) % pow_2  == 0
// Basically, y is the "gap" missing to align x.
// Only works when pow_2 is a power of 2.
// Note: we use ~x+1 instead of -x to avoid compiler warnings
static size_t gap(size_t x, size_t pow_2)
{
	return (~x + 1) & (pow_2 - 1);
}

static u32 load24_le(const u8 s[3])
{
	return
		((u32)s[0] <<  0) |
		((u32)s[1] <<  8) |
		((u32)s[2] << 16);
}

static u32 load32_le(const u8 s[4])
{
	return
		((u32)s[0] <<  0) |
		((u32)s[1] <<  8) |
		((u32)s[2] << 16) |
		((u32)s[3] << 24);
}

static u64 load64_le(const u8 s[8])
{
	return load32_le(s) | ((u64)load32_le(s+4) << 32);
}

static void store32_le(u8 out[4], u32 in)
{
	out[0] =  in        & 0xff;
	out[1] = (in >>  8) & 0xff;
	out[2] = (in >> 16) & 0xff;
	out[3] = (in >> 24) & 0xff;
}

static void store64_le(u8 out[8], u64 in)
{
	store32_le(out    , (u32)in );
	store32_le(out + 4, in >> 32);
}

static void load32_le_buf (u32 *dst, const u8 *src, size_t size) {
	FOR(i, 0, size) { dst[i] = load32_le(src + i*4); }
}
static void load64_le_buf (u64 *dst, const u8 *src, size_t size) {
	FOR(i, 0, size) { dst[i] = load64_le(src + i*8); }
}
static void store32_le_buf(u8 *dst, const u32 *src, size_t size) {
	FOR(i, 0, size) { store32_le(dst + i*4, src[i]); }
}
static void store64_le_buf(u8 *dst, const u64 *src, size_t size) {
	FOR(i, 0, size) { store64_le(dst + i*8, src[i]); }
}

static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); }
static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); }

static int neq0(u64 diff)
{
	// constant time comparison to zero
	// return diff != 0 ? -1 : 0
	u64 half = (diff >> 32) | ((u32)diff);
	return (1 & ((half - 1) >> 32)) - 1;
}

static u64 x16(const u8 a[16], const u8 b[16])
{
	return (load64_le(a + 0) ^ load64_le(b + 0))
		|  (load64_le(a + 8) ^ load64_le(b + 8));
}
static u64 x32(const u8 a[32],const u8 b[32]){return x16(a,b)| x16(a+16, b+16);}
static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);}
int crypto_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); }
int crypto_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); }
int crypto_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); }

void crypto_wipe(void *secret, size_t size)
{
	volatile u8 *v_secret = (u8*)secret;
	ZERO(v_secret, size);
}

/////////////////
/// Chacha 20 ///
/////////////////
#define QUARTERROUND(a, b, c, d)	\
	a += b;  d = rotl32(d ^ a, 16); \
	c += d;  b = rotl32(b ^ c, 12); \
	a += b;  d = rotl32(d ^ a,  8); \
	c += d;  b = rotl32(b ^ c,  7)

static void chacha20_rounds(u32 out[16], const u32 in[16])
{
	// The temporary variables make Chacha20 10% faster.
	u32 t0  = in[ 0];  u32 t1  = in[ 1];  u32 t2  = in[ 2];  u32 t3  = in[ 3];
	u32 t4  = in[ 4];  u32 t5  = in[ 5];  u32 t6  = in[ 6];  u32 t7  = in[ 7];
	u32 t8  = in[ 8];  u32 t9  = in[ 9];  u32 t10 = in[10];  u32 t11 = in[11];
	u32 t12 = in[12];  u32 t13 = in[13];  u32 t14 = in[14];  u32 t15 = in[15];

	FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop.
		QUARTERROUND(t0, t4, t8 , t12); // column 0
		QUARTERROUND(t1, t5, t9 , t13); // column 1
		QUARTERROUND(t2, t6, t10, t14); // column 2
		QUARTERROUND(t3, t7, t11, t15); // column 3
		QUARTERROUND(t0, t5, t10, t15); // diagonal 0
		QUARTERROUND(t1, t6, t11, t12); // diagonal 1
		QUARTERROUND(t2, t7, t8 , t13); // diagonal 2
		QUARTERROUND(t3, t4, t9 , t14); // diagonal 3
	}
	out[ 0] = t0;   out[ 1] = t1;   out[ 2] = t2;   out[ 3] = t3;
	out[ 4] = t4;   out[ 5] = t5;   out[ 6] = t6;   out[ 7] = t7;
	out[ 8] = t8;   out[ 9] = t9;   out[10] = t10;  out[11] = t11;
	out[12] = t12;  out[13] = t13;  out[14] = t14;  out[15] = t15;
}

static const u8 *chacha20_constant = (const u8*)"expand 32-byte k"; // 16 bytes

void crypto_chacha20_h(u8 out[32], const u8 key[32], const u8 in [16])
{
	u32 block[16];
	load32_le_buf(block     , chacha20_constant, 4);
	load32_le_buf(block +  4, key              , 8);
	load32_le_buf(block + 12, in               , 4);

	chacha20_rounds(block, block);

	// prevent reversal of the rounds by revealing only half of the buffer.
	store32_le_buf(out   , block   , 4); // constant
	store32_le_buf(out+16, block+12, 4); // counter and nonce
	WIPE_BUFFER(block);
}

u64 crypto_chacha20_djb(u8 *cipher_text, const u8 *plain_text,
                        size_t text_size, const u8 key[32], const u8 nonce[8],
                        u64 ctr)
{
	u32 input[16];
	load32_le_buf(input     , chacha20_constant, 4);
	load32_le_buf(input +  4, key              , 8);
	load32_le_buf(input + 14, nonce            , 2);
	input[12] = (u32) ctr;
	input[13] = (u32)(ctr >> 32);

	// Whole blocks
	u32    pool[16];
	size_t nb_blocks = text_size >> 6;
	FOR (i, 0, nb_blocks) {
		chacha20_rounds(pool, input);
		if (plain_text != 0) {
			FOR (j, 0, 16) {
				u32 p = pool[j] + input[j];
				store32_le(cipher_text, p ^ load32_le(plain_text));
				cipher_text += 4;
				plain_text  += 4;
			}
		} else {
			FOR (j, 0, 16) {
				u32 p = pool[j] + input[j];
				store32_le(cipher_text, p);
				cipher_text += 4;
			}
		}
		input[12]++;
		if (input[12] == 0) {
			input[13]++;
		}
	}
	text_size &= 63;

	// Last (incomplete) block
	if (text_size > 0) {
		if (plain_text == 0) {
			plain_text = zero;
		}
		chacha20_rounds(pool, input);
		u8 tmp[64];
		FOR (i, 0, 16) {
			store32_le(tmp + i*4, pool[i] + input[i]);
		}
		FOR (i, 0, text_size) {
			cipher_text[i] = tmp[i] ^ plain_text[i];
		}
		WIPE_BUFFER(tmp);
	}
	ctr = input[12] + ((u64)input[13] << 32) + (text_size > 0);

	WIPE_BUFFER(pool);
	WIPE_BUFFER(input);
	return ctr;
}

u32 crypto_chacha20_ietf(u8 *cipher_text, const u8 *plain_text,
                         size_t text_size,
                         const u8 key[32], const u8 nonce[12], u32 ctr)
{
	u64 big_ctr = ctr + ((u64)load32_le(nonce) << 32);
	return (u32)crypto_chacha20_djb(cipher_text, plain_text, text_size,
	                                key, nonce + 4, big_ctr);
}

u64 crypto_chacha20_x(u8 *cipher_text, const u8 *plain_text,
                      size_t text_size,
                      const u8 key[32], const u8 nonce[24], u64 ctr)
{
	u8 sub_key[32];
	crypto_chacha20_h(sub_key, key, nonce);
	ctr = crypto_chacha20_djb(cipher_text, plain_text, text_size,
	                          sub_key, nonce + 16, ctr);
	WIPE_BUFFER(sub_key);
	return ctr;
}

/////////////////
/// Poly 1305 ///
/////////////////

// h = (h + c) * r
// preconditions:
//   ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff
//   ctx->r <=   0ffffffc_0ffffffc_0ffffffc_0fffffff
//   end    <= 1
// Postcondition:
//   ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff
static void poly_blocks(crypto_poly1305_ctx *ctx, const u8 *in,
                        size_t nb_blocks, unsigned end)
{
	// Local all the things!
	const u32 r0 = ctx->r[0];
	const u32 r1 = ctx->r[1];
	const u32 r2 = ctx->r[2];
	const u32 r3 = ctx->r[3];
	const u32 rr0 = (r0 >> 2) * 5;  // lose 2 bits...
	const u32 rr1 = (r1 >> 2) + r1; // rr1 == (r1 >> 2) * 5
	const u32 rr2 = (r2 >> 2) + r2; // rr1 == (r2 >> 2) * 5
	const u32 rr3 = (r3 >> 2) + r3; // rr1 == (r3 >> 2) * 5
	const u32 rr4 = r0 & 3;         // ...recover 2 bits
	u32 h0 = ctx->h[0];
	u32 h1 = ctx->h[1];
	u32 h2 = ctx->h[2];
	u32 h3 = ctx->h[3];
	u32 h4 = ctx->h[4];

	FOR (i, 0, nb_blocks) {
		// h + c, without carry propagation
		const u64 s0 = (u64)h0 + load32_le(in);  in += 4;
		const u64 s1 = (u64)h1 + load32_le(in);  in += 4;
		const u64 s2 = (u64)h2 + load32_le(in);  in += 4;
		const u64 s3 = (u64)h3 + load32_le(in);  in += 4;
		const u32 s4 =      h4 + end;

		// (h + c) * r, without carry propagation
		const u64 x0 = s0*r0+ s1*rr3+ s2*rr2+ s3*rr1+ s4*rr0;
		const u64 x1 = s0*r1+ s1*r0 + s2*rr3+ s3*rr2+ s4*rr1;
		const u64 x2 = s0*r2+ s1*r1 + s2*r0 + s3*rr3+ s4*rr2;
		const u64 x3 = s0*r3+ s1*r2 + s2*r1 + s3*r0 + s4*rr3;
		const u32 x4 =                                s4*rr4;

		// partial reduction modulo 2^130 - 5
		const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5
		const u64 u0 = (u5 >>  2) * 5 + (x0 & 0xffffffff);
		const u64 u1 = (u0 >> 32)     + (x1 & 0xffffffff) + (x0 >> 32);
		const u64 u2 = (u1 >> 32)     + (x2 & 0xffffffff) + (x1 >> 32);
		const u64 u3 = (u2 >> 32)     + (x3 & 0xffffffff) + (x2 >> 32);
		const u32 u4 = (u3 >> 32)     + (u5 & 3); // u4 <= 4

		// Update the hash
		h0 = u0 & 0xffffffff;
		h1 = u1 & 0xffffffff;
		h2 = u2 & 0xffffffff;
		h3 = u3 & 0xffffffff;
		h4 = u4;
	}
	ctx->h[0] = h0;
	ctx->h[1] = h1;
	ctx->h[2] = h2;
	ctx->h[3] = h3;
	ctx->h[4] = h4;
}

void crypto_poly1305_init(crypto_poly1305_ctx *ctx, const u8 key[32])
{
	ZERO(ctx->h, 5); // Initial hash is zero
	ctx->c_idx = 0;
	// load r and pad (r has some of its bits cleared)
	load32_le_buf(ctx->r  , key   , 4);
	load32_le_buf(ctx->pad, key+16, 4);
	FOR (i, 0, 1) { ctx->r[i] &= 0x0fffffff; }
	FOR (i, 1, 4) { ctx->r[i] &= 0x0ffffffc; }
}

void crypto_poly1305_update(crypto_poly1305_ctx *ctx,
                            const u8 *message, size_t message_size)
{
	// Avoid undefined NULL pointer increments with empty messages
	if (message_size == 0) {
		return;
	}

	// Align ourselves with block boundaries
	size_t aligned = MC_MIN(gap(ctx->c_idx, 16), message_size);
	FOR (i, 0, aligned) {
		ctx->c[ctx->c_idx] = *message;
		ctx->c_idx++;
		message++;
		message_size--;
	}

	// If block is complete, process it
	if (ctx->c_idx == 16) {
		poly_blocks(ctx, ctx->c, 1, 1);
		ctx->c_idx = 0;
	}

	// Process the message block by block
	size_t nb_blocks = message_size >> 4;
	poly_blocks(ctx, message, nb_blocks, 1);
	message      += nb_blocks << 4;
	message_size &= 15;

	// remaining bytes (we never complete a block here)
	FOR (i, 0, message_size) {
		ctx->c[ctx->c_idx] = message[i];
		ctx->c_idx++;
	}
}

void crypto_poly1305_final(crypto_poly1305_ctx *ctx, u8 mac[16])
{
	// Process the last block (if any)
	// We move the final 1 according to remaining input length
	// (this will add less than 2^130 to the last input block)
	if (ctx->c_idx != 0) {
		ZERO(ctx->c + ctx->c_idx, 16 - ctx->c_idx);
		ctx->c[ctx->c_idx] = 1;
		poly_blocks(ctx, ctx->c, 1, 0);
	}

	// check if we should subtract 2^130-5 by performing the
	// corresponding carry propagation.
	u64 c = 5;
	FOR (i, 0, 4) {
		c  += ctx->h[i];
		c >>= 32;
	}
	c += ctx->h[4];
	c  = (c >> 2) * 5; // shift the carry back to the beginning
	// c now indicates how many times we should subtract 2^130-5 (0 or 1)
	FOR (i, 0, 4) {
		c += (u64)ctx->h[i] + ctx->pad[i];
		store32_le(mac + i*4, (u32)c);
		c = c >> 32;
	}
	WIPE_CTX(ctx);
}

void crypto_poly1305(u8     mac[16],  const u8 *message,
                     size_t message_size, const u8  key[32])
{
	crypto_poly1305_ctx ctx;
	crypto_poly1305_init  (&ctx, key);
	crypto_poly1305_update(&ctx, message, message_size);
	crypto_poly1305_final (&ctx, mac);
}

////////////////
/// BLAKE2 b ///
////////////////
static const u64 iv[8] = {
	0x6a09e667f3bcc908, 0xbb67ae8584caa73b,
	0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
	0x510e527fade682d1, 0x9b05688c2b3e6c1f,
	0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
};

static void blake2b_compress(crypto_blake2b_ctx *ctx, int is_last_block)
{
	static const u8 sigma[12][16] = {
		{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 },
		{ 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 },
		{ 11,  8, 12,  0,  5,  2, 15, 13, 10, 14,  3,  6,  7,  1,  9,  4 },
		{  7,  9,  3,  1, 13, 12, 11, 14,  2,  6,  5, 10,  4,  0, 15,  8 },
		{  9,  0,  5,  7,  2,  4, 10, 15, 14,  1, 11, 12,  6,  8,  3, 13 },
		{  2, 12,  6, 10,  0, 11,  8,  3,  4, 13,  7,  5, 15, 14,  1,  9 },
		{ 12,  5,  1, 15, 14, 13,  4, 10,  0,  7,  6,  3,  9,  2,  8, 11 },
		{ 13, 11,  7, 14, 12,  1,  3,  9,  5,  0, 15,  4,  8,  6,  2, 10 },
		{  6, 15, 14,  9, 11,  3,  0,  8, 12,  2, 13,  7,  1,  4, 10,  5 },
		{ 10,  2,  8,  4,  7,  6,  1,  5, 15, 11,  9, 14,  3, 12, 13,  0 },
		{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 },
		{ 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 },
	};

	// increment input offset
	u64   *x = ctx->input_offset;
	size_t y = ctx->input_idx;
	x[0] += y;
	if (x[0] < y) {
		x[1]++;
	}

	// init work vector
	u64 v0 = ctx->hash[0];  u64 v8  = iv[0];
	u64 v1 = ctx->hash[1];  u64 v9  = iv[1];
	u64 v2 = ctx->hash[2];  u64 v10 = iv[2];
	u64 v3 = ctx->hash[3];  u64 v11 = iv[3];
	u64 v4 = ctx->hash[4];  u64 v12 = iv[4] ^ ctx->input_offset[0];
	u64 v5 = ctx->hash[5];  u64 v13 = iv[5] ^ ctx->input_offset[1];
	u64 v6 = ctx->hash[6];  u64 v14 = iv[6] ^ (u64)~(is_last_block - 1);
	u64 v7 = ctx->hash[7];  u64 v15 = iv[7];

	// mangle work vector
	u64 *input = ctx->input;
#define BLAKE2_G(a, b, c, d, x, y)	\
	a += b + x;  d = rotr64(d ^ a, 32); \
	c += d;      b = rotr64(b ^ c, 24); \
	a += b + y;  d = rotr64(d ^ a, 16); \
	c += d;      b = rotr64(b ^ c, 63)
#define BLAKE2_ROUND(i)	\
	BLAKE2_G(v0, v4, v8 , v12, input[sigma[i][ 0]], input[sigma[i][ 1]]); \
	BLAKE2_G(v1, v5, v9 , v13, input[sigma[i][ 2]], input[sigma[i][ 3]]); \
	BLAKE2_G(v2, v6, v10, v14, input[sigma[i][ 4]], input[sigma[i][ 5]]); \
	BLAKE2_G(v3, v7, v11, v15, input[sigma[i][ 6]], input[sigma[i][ 7]]); \
	BLAKE2_G(v0, v5, v10, v15, input[sigma[i][ 8]], input[sigma[i][ 9]]); \
	BLAKE2_G(v1, v6, v11, v12, input[sigma[i][10]], input[sigma[i][11]]); \
	BLAKE2_G(v2, v7, v8 , v13, input[sigma[i][12]], input[sigma[i][13]]); \
	BLAKE2_G(v3, v4, v9 , v14, input[sigma[i][14]], input[sigma[i][15]])

#ifdef BLAKE2_NO_UNROLLING
	FOR (i, 0, 12) {
		BLAKE2_ROUND(i);
	}
#else
	BLAKE2_ROUND(0);  BLAKE2_ROUND(1);  BLAKE2_ROUND(2);  BLAKE2_ROUND(3);
	BLAKE2_ROUND(4);  BLAKE2_ROUND(5);  BLAKE2_ROUND(6);  BLAKE2_ROUND(7);
	BLAKE2_ROUND(8);  BLAKE2_ROUND(9);  BLAKE2_ROUND(10); BLAKE2_ROUND(11);
#endif

	// update hash
	ctx->hash[0] ^= v0 ^ v8;   ctx->hash[1] ^= v1 ^ v9;
	ctx->hash[2] ^= v2 ^ v10;  ctx->hash[3] ^= v3 ^ v11;
	ctx->hash[4] ^= v4 ^ v12;  ctx->hash[5] ^= v5 ^ v13;
	ctx->hash[6] ^= v6 ^ v14;  ctx->hash[7] ^= v7 ^ v15;
}

void crypto_blake2b_keyed_init(crypto_blake2b_ctx *ctx, size_t hash_size,
                               const u8 *key, size_t key_size)
{
	// initial hash
	COPY(ctx->hash, iv, 8);
	ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size;

	ctx->input_offset[0] = 0;  // beginning of the input, no offset
	ctx->input_offset[1] = 0;  // beginning of the input, no offset
	ctx->hash_size       = hash_size;
	ctx->input_idx       = 0;
	ZERO(ctx->input, 16);

	// if there is a key, the first block is that key (padded with zeroes)
	if (key_size > 0) {
		u8 key_block[128] = {0};
		COPY(key_block, key, key_size);
		// same as calling crypto_blake2b_update(ctx, key_block , 128)
		load64_le_buf(ctx->input, key_block, 16);
		ctx->input_idx = 128;
	}
}

void crypto_blake2b_init(crypto_blake2b_ctx *ctx, size_t hash_size)
{
	crypto_blake2b_keyed_init(ctx, hash_size, 0, 0);
}

void crypto_blake2b_update(crypto_blake2b_ctx *ctx,
                           const u8 *message, size_t message_size)
{
	// Avoid undefined NULL pointer increments with empty messages
	if (message_size == 0) {
		return;
	}

	// Align with word boundaries
	if ((ctx->input_idx & 7) != 0) {
		size_t nb_bytes = MC_MIN(gap(ctx->input_idx, 8), message_size);
		size_t word     = ctx->input_idx >> 3;
		size_t byte     = ctx->input_idx & 7;
		FOR (i, 0, nb_bytes) {
			ctx->input[word] |= (u64)message[i] << ((byte + i) << 3);
		}
		ctx->input_idx += nb_bytes;
		message        += nb_bytes;
		message_size   -= nb_bytes;
	}

	// Align with block boundaries (faster than byte by byte)
	if ((ctx->input_idx & 127) != 0) {
		size_t nb_words = MC_MIN(gap(ctx->input_idx, 128), message_size) >> 3;
		load64_le_buf(ctx->input + (ctx->input_idx >> 3), message, nb_words);
		ctx->input_idx += nb_words << 3;
		message        += nb_words << 3;
		message_size   -= nb_words << 3;
	}

	// Process block by block
	size_t nb_blocks = message_size >> 7;
	FOR (i, 0, nb_blocks) {
		if (ctx->input_idx == 128) {
			blake2b_compress(ctx, 0);
		}
		load64_le_buf(ctx->input, message, 16);
		message += 128;
		ctx->input_idx = 128;
	}
	message_size &= 127;

	if (message_size != 0) {
		// Compress block & flush input buffer as needed
		if (ctx->input_idx == 128) {
			blake2b_compress(ctx, 0);
			ctx->input_idx = 0;
		}
		if (ctx->input_idx == 0) {
			ZERO(ctx->input, 16);
		}
		// Fill remaining words (faster than byte by byte)
		size_t nb_words = message_size >> 3;
		load64_le_buf(ctx->input, message, nb_words);
		ctx->input_idx += nb_words << 3;
		message        += nb_words << 3;
		message_size   -= nb_words << 3;

		// Fill remaining bytes
		FOR (i, 0, message_size) {
			size_t word = ctx->input_idx >> 3;
			size_t byte = ctx->input_idx & 7;
			ctx->input[word] |= (u64)message[i] << (byte << 3);
			ctx->input_idx++;
		}
	}
}

void crypto_blake2b_final(crypto_blake2b_ctx *ctx, u8 *hash)
{
	blake2b_compress(ctx, 1); // compress the last block
	size_t hash_size = MC_MIN(ctx->hash_size, 64);
	size_t nb_words  = hash_size >> 3;
	store64_le_buf(hash, ctx->hash, nb_words);
	FOR (i, nb_words << 3, hash_size) {
		hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff;
	}
	WIPE_CTX(ctx);
}

void crypto_blake2b_keyed(u8 *hash,          size_t hash_size,
                          const u8 *key,     size_t key_size,
                          const u8 *message, size_t message_size)
{
	crypto_blake2b_ctx ctx;
	crypto_blake2b_keyed_init(&ctx, hash_size, key, key_size);
	crypto_blake2b_update    (&ctx, message, message_size);
	crypto_blake2b_final     (&ctx, hash);
}

void crypto_blake2b(u8 *hash, size_t hash_size, const u8 *msg, size_t msg_size)
{
	crypto_blake2b_keyed(hash, hash_size, 0, 0, msg, msg_size);
}

//////////////
/// Argon2 ///
//////////////
// references to R, Z, Q etc. come from the spec

// Argon2 operates on 1024 byte blocks.
typedef struct { u64 a[128]; } blk;

// updates a BLAKE2 hash with a 32 bit word, little endian.
static void blake_update_32(crypto_blake2b_ctx *ctx, u32 input)
{
	u8 buf[4];
	store32_le(buf, input);
	crypto_blake2b_update(ctx, buf, 4);
	WIPE_BUFFER(buf);
}

static void blake_update_32_buf(crypto_blake2b_ctx *ctx,
                                const u8 *buf, u32 size)
{
	blake_update_32(ctx, size);
	crypto_blake2b_update(ctx, buf, size);
}


static void copy_block(blk *o,const blk*in){FOR(i, 0, 128) o->a[i]  = in->a[i];}
static void  xor_block(blk *o,const blk*in){FOR(i, 0, 128) o->a[i] ^= in->a[i];}

// Hash with a virtually unlimited digest size.
// Doesn't extract more entropy than the base hash function.
// Mainly used for filling a whole kilobyte block with pseudo-random bytes.
// (One could use a stream cipher with a seed hash as the key, but
//  this would introduce another dependency —and point of failure.)
static void extended_hash(u8       *digest, u32 digest_size,
                          const u8 *input , u32 input_size)
{
	crypto_blake2b_ctx ctx;
	crypto_blake2b_init  (&ctx, MC_MIN(digest_size, 64));
	blake_update_32      (&ctx, digest_size);
	crypto_blake2b_update(&ctx, input, input_size);
	crypto_blake2b_final (&ctx, digest);

	if (digest_size > 64) {
		// the conversion to u64 avoids integer overflow on
		// ludicrously big hash sizes.
		u32 r   = (u32)(((u64)digest_size + 31) >> 5) - 2;
		u32 i   =  1;
		u32 in  =  0;
		u32 out = 32;
		while (i < r) {
			// Input and output overlap. This is intentional
			crypto_blake2b(digest + out, 64, digest + in, 64);
			i   +=  1;
			in  += 32;
			out += 32;
		}
		crypto_blake2b(digest + out, digest_size - (32 * r), digest + in , 64);
	}
}

#define LSB(x) ((u64)(u32)x)
#define G(a, b, c, d)	\
	a += b + ((LSB(a) * LSB(b)) << 1);  d ^= a;  d = rotr64(d, 32); \
	c += d + ((LSB(c) * LSB(d)) << 1);  b ^= c;  b = rotr64(b, 24); \
	a += b + ((LSB(a) * LSB(b)) << 1);  d ^= a;  d = rotr64(d, 16); \
	c += d + ((LSB(c) * LSB(d)) << 1);  b ^= c;  b = rotr64(b, 63)
#define ROUND(v0,  v1,  v2,  v3,  v4,  v5,  v6,  v7,	\
              v8,  v9, v10, v11, v12, v13, v14, v15)	\
	G(v0, v4,  v8, v12);  G(v1, v5,  v9, v13); \
	G(v2, v6, v10, v14);  G(v3, v7, v11, v15); \
	G(v0, v5, v10, v15);  G(v1, v6, v11, v12); \
	G(v2, v7,  v8, v13);  G(v3, v4,  v9, v14)

// Core of the compression function G.  Computes Z from R in place.
static void g_rounds(blk *b)
{
	// column rounds (work_block = Q)
	for (int i = 0; i < 128; i += 16) {
		ROUND(b->a[i   ], b->a[i+ 1], b->a[i+ 2], b->a[i+ 3],
		      b->a[i+ 4], b->a[i+ 5], b->a[i+ 6], b->a[i+ 7],
		      b->a[i+ 8], b->a[i+ 9], b->a[i+10], b->a[i+11],
		      b->a[i+12], b->a[i+13], b->a[i+14], b->a[i+15]);
	}
	// row rounds (b = Z)
	for (int i = 0; i < 16; i += 2) {
		ROUND(b->a[i   ], b->a[i+ 1], b->a[i+ 16], b->a[i+ 17],
		      b->a[i+32], b->a[i+33], b->a[i+ 48], b->a[i+ 49],
		      b->a[i+64], b->a[i+65], b->a[i+ 80], b->a[i+ 81],
		      b->a[i+96], b->a[i+97], b->a[i+112], b->a[i+113]);
	}
}

const crypto_argon2_extras crypto_argon2_no_extras = { 0, 0, 0, 0 };

void crypto_argon2(u8 *hash, u32 hash_size, void *work_area,
                   crypto_argon2_config config,
                   crypto_argon2_inputs inputs,
                   crypto_argon2_extras extras)
{
	const u32 segment_size = config.nb_blocks / config.nb_lanes / 4;
	const u32 lane_size    = segment_size * 4;
	const u32 nb_blocks    = lane_size * config.nb_lanes; // rounding down

	// work area seen as blocks (must be suitably aligned)
	blk *blocks = (blk*)work_area;
	{
		u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes
		crypto_blake2b_ctx ctx;
		crypto_blake2b_init (&ctx, 64);
		blake_update_32     (&ctx, config.nb_lanes ); // p: number of "threads"
		blake_update_32     (&ctx, hash_size);
		blake_update_32     (&ctx, config.nb_blocks);
		blake_update_32     (&ctx, config.nb_passes);
		blake_update_32     (&ctx, 0x13);             // v: version number
		blake_update_32     (&ctx, config.algorithm); // y: Argon2i, Argon2d...
		blake_update_32_buf (&ctx, inputs.pass, inputs.pass_size);
		blake_update_32_buf (&ctx, inputs.salt, inputs.salt_size);
		blake_update_32_buf (&ctx, extras.key,  extras.key_size);
		blake_update_32_buf (&ctx, extras.ad,   extras.ad_size);
		crypto_blake2b_final(&ctx, initial_hash); // fill 64 first bytes only

		// fill first 2 blocks of each lane
		u8 hash_area[1024];
		FOR_T(u32, l, 0, config.nb_lanes) {
			FOR_T(u32, i, 0, 2) {
				store32_le(initial_hash + 64, i); // first  additional word
				store32_le(initial_hash + 68, l); // second additional word
				extended_hash(hash_area, 1024, initial_hash, 72);
				load64_le_buf(blocks[l * lane_size + i].a, hash_area, 128);
			}
		}

		WIPE_BUFFER(initial_hash);
		WIPE_BUFFER(hash_area);
	}

	// Argon2i and Argon2id start with constant time indexing
	int constant_time = config.algorithm != CRYPTO_ARGON2_D;

	// Fill (and re-fill) the rest of the blocks
	//
	// Note: even though each segment within the same slice can be
	// computed in parallel, (one thread per lane), we are computing
	// them sequentially, because Monocypher doesn't support threads.
	//
	// Yet optimal performance (and therefore security) requires one
	// thread per lane. The only reason Monocypher supports multiple
	// lanes is compatibility.
	blk tmp;
	FOR_T(u32, pass, 0, config.nb_passes) {
		FOR_T(u32, slice, 0, 4) {
			// On the first slice of the first pass,
			// blocks 0 and 1 are already filled, hence pass_offset.
			u32 pass_offset  = pass == 0 && slice == 0 ? 2 : 0;
			u32 slice_offset = slice * segment_size;

			// Argon2id switches back to non-constant time indexing
			// after the first two slices of the first pass
			if (slice == 2 && config.algorithm == CRYPTO_ARGON2_ID) {
				constant_time = 0;
			}

			// Each iteration of the following loop may be performed in
			// a separate thread.  All segments must be fully completed
			// before we start filling the next slice.
			FOR_T(u32, segment, 0, config.nb_lanes) {
				blk index_block;
				u32 index_ctr = 1;
				FOR_T (u32, block, pass_offset, segment_size) {
					// Current and previous blocks
					u32  lane_offset   = segment * lane_size;
					blk *segment_start = blocks + lane_offset + slice_offset;
					blk *current       = segment_start + block;
					blk *previous      =
						block == 0 && slice_offset == 0
						? segment_start + lane_size - 1
						: segment_start + block - 1;

					u64 index_seed;
					if (constant_time) {
						if (block == pass_offset || (block % 128) == 0) {
							// Fill or refresh deterministic indices block

							// seed the beginning of the block...
							ZERO(index_block.a, 128);
							index_block.a[0] = pass;
							index_block.a[1] = segment;
							index_block.a[2] = slice;
							index_block.a[3] = nb_blocks;
							index_block.a[4] = config.nb_passes;
							index_block.a[5] = config.algorithm;
							index_block.a[6] = index_ctr;
							index_ctr++;

							// ... then shuffle it
							copy_block(&tmp, &index_block);
							g_rounds  (&index_block);
							xor_block (&index_block, &tmp);
							copy_block(&tmp, &index_block);
							g_rounds  (&index_block);
							xor_block (&index_block, &tmp);
						}
						index_seed = index_block.a[block % 128];
					} else {
						index_seed = previous->a[0];
					}

					// Establish the reference set.  *Approximately* comprises:
					// - The last 3 slices (if they exist yet)
					// - The already constructed blocks in the current segment
					u32 next_slice   = ((slice + 1) % 4) * segment_size;
					u32 window_start = pass == 0 ? 0     : next_slice;
					u32 nb_segments  = pass == 0 ? slice : 3;
					u64 lane         =
						pass == 0 && slice == 0
						? segment
						: (index_seed >> 32) % config.nb_lanes;
					u32 window_size  =
						nb_segments * segment_size +
						(lane  == segment ? block-1 :
						 block == 0       ? (u32)-1 : 0);

					// Find reference block
					u64  j1        = index_seed & 0xffffffff; // block selector
					u64  x         = (j1 * j1)         >> 32;
					u64  y         = (window_size * x) >> 32;
					u64  z         = (window_size - 1) - y;
					u64  ref       = (window_start + z) % lane_size;
					u32  index     = lane * lane_size + (u32)ref;
					blk *reference = blocks + index;

					// Shuffle the previous & reference block
					// into the current block
					copy_block(&tmp, previous);
					xor_block (&tmp, reference);
					if (pass == 0) { copy_block(current, &tmp); }
					else           { xor_block (current, &tmp); }
					g_rounds  (&tmp);
					xor_block (current, &tmp);
				}
			}
		}
	}

	// Wipe temporary block
	volatile u64* p = tmp.a;
	ZERO(p, 128);

	// XOR last blocks of each lane
	blk *last_block = blocks + lane_size - 1;
	FOR_T (u32, lane, 1, config.nb_lanes) {
		blk *next_block = last_block + lane_size;
		xor_block(next_block, last_block);
		last_block = next_block;
	}

	// Serialize last block
	u8 final_block[1024];
	store64_le_buf(final_block, last_block->a, 128);

	// Wipe work area
	p = (u64*)work_area;
	ZERO(p, 128 * nb_blocks);

	// Hash the very last block with H' into the output hash
	extended_hash(hash, hash_size, final_block, 1024);
	WIPE_BUFFER(final_block);
}

////////////////////////////////////
/// Arithmetic modulo 2^255 - 19 ///
////////////////////////////////////
//  Originally taken from SUPERCOP's ref10 implementation.
//  A bit bigger than TweetNaCl, over 4 times faster.

// field element
typedef i32 fe[10];

// field constants
//
// fe_one      : 1
// sqrtm1      : sqrt(-1)
// d           :     -121665 / 121666
// D2          : 2 * -121665 / 121666
// lop_x, lop_y: low order point in Edwards coordinates
// ufactor     : -sqrt(-1) * 2
// A2          : 486662^2  (A squared)
static const fe fe_one  = {1};
static const fe sqrtm1  = {
	-32595792, -7943725, 9377950, 3500415, 12389472,
	-272473, -25146209, -2005654, 326686, 11406482,
};
static const fe d       = {
	-10913610, 13857413, -15372611, 6949391, 114729,
	-8787816, -6275908, -3247719, -18696448, -12055116,
};
static const fe D2      = {
	-21827239, -5839606, -30745221, 13898782, 229458,
	15978800, -12551817, -6495438, 29715968, 9444199,
};
static const fe lop_x   = {
	21352778, 5345713, 4660180, -8347857, 24143090,
	14568123, 30185756, -12247770, -33528939, 8345319,
};
static const fe lop_y   = {
	-6952922, -1265500, 6862341, -7057498, -4037696,
	-5447722, 31680899, -15325402, -19365852, 1569102,
};
static const fe ufactor = {
	-1917299, 15887451, -18755900, -7000830, -24778944,
	544946, -16816446, 4011309, -653372, 10741468,
};
static const fe A2      = {
	12721188, 3529, 0, 0, 0, 0, 0, 0, 0, 0,
};

static void fe_0(fe h) {           ZERO(h  , 10); }
static void fe_1(fe h) { h[0] = 1; ZERO(h+1,  9); }

static void fe_copy(fe h,const fe f           ){FOR(i,0,10) h[i] =  f[i];      }
static void fe_neg (fe h,const fe f           ){FOR(i,0,10) h[i] = -f[i];      }
static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];}
static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];}

static void fe_cswap(fe f, fe g, int b)
{
	i32 mask = -b; // -1 = 0xffffffff
	FOR (i, 0, 10) {
		i32 x = (f[i] ^ g[i]) & mask;
		f[i] = f[i] ^ x;
		g[i] = g[i] ^ x;
	}
}

static void fe_ccopy(fe f, const fe g, int b)
{
	i32 mask = -b; // -1 = 0xffffffff
	FOR (i, 0, 10) {
		i32 x = (f[i] ^ g[i]) & mask;
		f[i] = f[i] ^ x;
	}
}


// Signed carry propagation
// ------------------------
//
// Let t be a number.  It can be uniquely decomposed thus:
//
//    t = h*2^26 + l
//    such that -2^25 <= l < 2^25
//
// Let c = (t + 2^25) / 2^26            (rounded down)
//     c = (h*2^26 + l + 2^25) / 2^26   (rounded down)
//     c =  h   +   (l + 2^25) / 2^26   (rounded down)
//     c =  h                           (exactly)
// Because 0 <= l + 2^25 < 2^26
//
// Let u = t          - c*2^26
//     u = h*2^26 + l - h*2^26
//     u = l
// Therefore, -2^25 <= u < 2^25
//
// Additionally, if |t| < x, then |h| < x/2^26 (rounded down)
//
// Notations:
// - In C, 1<<25 means 2^25.
// - In C, x>>25 means floor(x / (2^25)).
// - All of the above applies with 25 & 24 as well as 26 & 25.
//
//
// Note on negative right shifts
// -----------------------------
//
// In C, x >> n, where x is a negative integer, is implementation
// defined.  In practice, all platforms do arithmetic shift, which is
// equivalent to division by 2^26, rounded down.  Some compilers, like
// GCC, even guarantee it.
//
// If we ever stumble upon a platform that does not propagate the sign
// bit (we won't), visible failures will show at the slightest test, and
// the signed shifts can be replaced by the following:
//
//     typedef struct { i64 x:39; } s25;
//     typedef struct { i64 x:38; } s26;
//     i64 shift25(i64 x) { s25 s; s.x = ((u64)x)>>25; return s.x; }
//     i64 shift26(i64 x) { s26 s; s.x = ((u64)x)>>26; return s.x; }
//
// Current compilers cannot optimise this, causing a 30% drop in
// performance.  Fairly expensive for something that never happens.
//
//
// Precondition
// ------------
//
// |t0|       < 2^63
// |t1|..|t9| < 2^62
//
// Algorithm
// ---------
// c   = t0 + 2^25 / 2^26   -- |c|  <= 2^36
// t0 -= c * 2^26           -- |t0| <= 2^25
// t1 += c                  -- |t1| <= 2^63
//
// c   = t4 + 2^25 / 2^26   -- |c|  <= 2^36
// t4 -= c * 2^26           -- |t4| <= 2^25
// t5 += c                  -- |t5| <= 2^63
//
// c   = t1 + 2^24 / 2^25   -- |c|  <= 2^38
// t1 -= c * 2^25           -- |t1| <= 2^24
// t2 += c                  -- |t2| <= 2^63
//
// c   = t5 + 2^24 / 2^25   -- |c|  <= 2^38
// t5 -= c * 2^25           -- |t5| <= 2^24
// t6 += c                  -- |t6| <= 2^63
//
// c   = t2 + 2^25 / 2^26   -- |c|  <= 2^37
// t2 -= c * 2^26           -- |t2| <= 2^25        < 1.1 * 2^25  (final t2)
// t3 += c                  -- |t3| <= 2^63
//
// c   = t6 + 2^25 / 2^26   -- |c|  <= 2^37
// t6 -= c * 2^26           -- |t6| <= 2^25        < 1.1 * 2^25  (final t6)
// t7 += c                  -- |t7| <= 2^63
//
// c   = t3 + 2^24 / 2^25   -- |c|  <= 2^38
// t3 -= c * 2^25           -- |t3| <= 2^24        < 1.1 * 2^24  (final t3)
// t4 += c                  -- |t4| <= 2^25 + 2^38 < 2^39
//
// c   = t7 + 2^24 / 2^25   -- |c|  <= 2^38
// t7 -= c * 2^25           -- |t7| <= 2^24        < 1.1 * 2^24  (final t7)
// t8 += c                  -- |t8| <= 2^63
//
// c   = t4 + 2^25 / 2^26   -- |c|  <= 2^13
// t4 -= c * 2^26           -- |t4| <= 2^25        < 1.1 * 2^25  (final t4)
// t5 += c                  -- |t5| <= 2^24 + 2^13 < 1.1 * 2^24  (final t5)
//
// c   = t8 + 2^25 / 2^26   -- |c|  <= 2^37
// t8 -= c * 2^26           -- |t8| <= 2^25        < 1.1 * 2^25  (final t8)
// t9 += c                  -- |t9| <= 2^63
//
// c   = t9 + 2^24 / 2^25   -- |c|  <= 2^38
// t9 -= c * 2^25           -- |t9| <= 2^24        < 1.1 * 2^24  (final t9)
// t0 += c * 19             -- |t0| <= 2^25 + 2^38*19 < 2^44
//
// c   = t0 + 2^25 / 2^26   -- |c|  <= 2^18
// t0 -= c * 2^26           -- |t0| <= 2^25        < 1.1 * 2^25  (final t0)
// t1 += c                  -- |t1| <= 2^24 + 2^18 < 1.1 * 2^24  (final t1)
//
// Postcondition
// -------------
//   |t0|, |t2|, |t4|, |t6|, |t8|  <  1.1 * 2^25
//   |t1|, |t3|, |t5|, |t7|, |t9|  <  1.1 * 2^24
#define FE_CARRY	\
	i64 c; \
	c = (t0 + ((i64)1<<25)) >> 26;  t0 -= c * ((i64)1 << 26);  t1 += c; \
	c = (t4 + ((i64)1<<25)) >> 26;  t4 -= c * ((i64)1 << 26);  t5 += c; \
	c = (t1 + ((i64)1<<24)) >> 25;  t1 -= c * ((i64)1 << 25);  t2 += c; \
	c = (t5 + ((i64)1<<24)) >> 25;  t5 -= c * ((i64)1 << 25);  t6 += c; \
	c = (t2 + ((i64)1<<25)) >> 26;  t2 -= c * ((i64)1 << 26);  t3 += c; \
	c = (t6 + ((i64)1<<25)) >> 26;  t6 -= c * ((i64)1 << 26);  t7 += c; \
	c = (t3 + ((i64)1<<24)) >> 25;  t3 -= c * ((i64)1 << 25);  t4 += c; \
	c = (t7 + ((i64)1<<24)) >> 25;  t7 -= c * ((i64)1 << 25);  t8 += c; \
	c = (t4 + ((i64)1<<25)) >> 26;  t4 -= c * ((i64)1 << 26);  t5 += c; \
	c = (t8 + ((i64)1<<25)) >> 26;  t8 -= c * ((i64)1 << 26);  t9 += c; \
	c = (t9 + ((i64)1<<24)) >> 25;  t9 -= c * ((i64)1 << 25);  t0 += c * 19; \
	c = (t0 + ((i64)1<<25)) >> 26;  t0 -= c * ((i64)1 << 26);  t1 += c; \
	h[0]=(i32)t0;  h[1]=(i32)t1;  h[2]=(i32)t2;  h[3]=(i32)t3;  h[4]=(i32)t4; \
	h[5]=(i32)t5;  h[6]=(i32)t6;  h[7]=(i32)t7;  h[8]=(i32)t8;  h[9]=(i32)t9

// Decodes a field element from a byte buffer.
// mask specifies how many bits we ignore.
// Traditionally we ignore 1. It's useful for EdDSA,
// which uses that bit to denote the sign of x.
// Elligator however uses positive representatives,
// which means ignoring 2 bits instead.
static void fe_frombytes_mask(fe h, const u8 s[32], unsigned nb_mask)
{
	u32 mask = 0xffffff >> nb_mask;
	i64 t0 =  load32_le(s);                    // t0 < 2^32
	i64 t1 =  load24_le(s +  4) << 6;          // t1 < 2^30
	i64 t2 =  load24_le(s +  7) << 5;          // t2 < 2^29
	i64 t3 =  load24_le(s + 10) << 3;          // t3 < 2^27
	i64 t4 =  load24_le(s + 13) << 2;          // t4 < 2^26
	i64 t5 =  load32_le(s + 16);               // t5 < 2^32
	i64 t6 =  load24_le(s + 20) << 7;          // t6 < 2^31
	i64 t7 =  load24_le(s + 23) << 5;          // t7 < 2^29
	i64 t8 =  load24_le(s + 26) << 4;          // t8 < 2^28
	i64 t9 = (load24_le(s + 29) & mask) << 2;  // t9 < 2^25
	FE_CARRY;                                  // Carry precondition OK
}

static void fe_frombytes(fe h, const u8 s[32])
{
	fe_frombytes_mask(h, s, 1);
}


// Precondition
//   |h[0]|, |h[2]|, |h[4]|, |h[6]|, |h[8]|  <  1.1 * 2^25
//   |h[1]|, |h[3]|, |h[5]|, |h[7]|, |h[9]|  <  1.1 * 2^24
//
// Therefore, |h| < 2^255-19
// There are two possibilities:
//
// - If h is positive, all we need to do is reduce its individual
//   limbs down to their tight positive range.
// - If h is negative, we also need to add 2^255-19 to it.
//   Or just remove 19 and chop off any excess bit.
static void fe_tobytes(u8 s[32], const fe h)
{
	i32 t[10];
	COPY(t, h, 10);
	i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25;
	//                 |t9|                    < 1.1 * 2^24
	//  -1.1 * 2^24  <  t9                     < 1.1 * 2^24
	//  -21  * 2^24  <  19 * t9                < 21  * 2^24
	//  -2^29        <  19 * t9 + 2^24         < 2^29
	//  -2^29 / 2^25 < (19 * t9 + 2^24) / 2^25 < 2^29 / 2^25
	//  -16          < (19 * t9 + 2^24) / 2^25 < 16
	FOR (i, 0, 5) {
		q += t[2*i  ]; q >>= 26; // q = 0 or -1
		q += t[2*i+1]; q >>= 25; // q = 0 or -1
	}
	// q =  0 iff h >= 0
	// q = -1 iff h <  0
	// Adding q * 19 to h reduces h to its proper range.
	q *= 19;  // Shift carry back to the beginning
	FOR (i, 0, 5) {
		t[i*2  ] += q;  q = t[i*2  ] >> 26;  t[i*2  ] -= q * ((i32)1 << 26);
		t[i*2+1] += q;  q = t[i*2+1] >> 25;  t[i*2+1] -= q * ((i32)1 << 25);
	}
	// h is now fully reduced, and q represents the excess bit.

	store32_le(s +  0, ((u32)t[0] >>  0) | ((u32)t[1] << 26));
	store32_le(s +  4, ((u32)t[1] >>  6) | ((u32)t[2] << 19));
	store32_le(s +  8, ((u32)t[2] >> 13) | ((u32)t[3] << 13));
	store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] <<  6));
	store32_le(s + 16, ((u32)t[5] >>  0) | ((u32)t[6] << 25));
	store32_le(s + 20, ((u32)t[6] >>  7) | ((u32)t[7] << 19));
	store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12));
	store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] <<  6));

	WIPE_BUFFER(t);
}

// Precondition
// -------------
//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
//
//   |g0|, |g2|, |g4|, |g6|, |g8|  <  1.65 * 2^26
//   |g1|, |g3|, |g5|, |g7|, |g9|  <  1.65 * 2^25
static void fe_mul_small(fe h, const fe f, i32 g)
{
	i64 t0 = f[0] * (i64) g;  i64 t1 = f[1] * (i64) g;
	i64 t2 = f[2] * (i64) g;  i64 t3 = f[3] * (i64) g;
	i64 t4 = f[4] * (i64) g;  i64 t5 = f[5] * (i64) g;
	i64 t6 = f[6] * (i64) g;  i64 t7 = f[7] * (i64) g;
	i64 t8 = f[8] * (i64) g;  i64 t9 = f[9] * (i64) g;
	// |t0|, |t2|, |t4|, |t6|, |t8|  <  1.65 * 2^26 * 2^31  < 2^58
	// |t1|, |t3|, |t5|, |t7|, |t9|  <  1.65 * 2^25 * 2^31  < 2^57

	FE_CARRY; // Carry precondition OK
}

// Precondition
// -------------
//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
//
//   |g0|, |g2|, |g4|, |g6|, |g8|  <  1.65 * 2^26
//   |g1|, |g3|, |g5|, |g7|, |g9|  <  1.65 * 2^25
static void fe_mul(fe h, const fe f, const fe g)
{
	// Everything is unrolled and put in temporary variables.
	// We could roll the loop, but that would make curve25519 twice as slow.
	i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
	i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
	i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4];
	i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9];
	i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2;
	i32 G1 = g1*19;  i32 G2 = g2*19;  i32 G3 = g3*19;
	i32 G4 = g4*19;  i32 G5 = g5*19;  i32 G6 = g6*19;
	i32 G7 = g7*19;  i32 G8 = g8*19;  i32 G9 = g9*19;
	// |F1|, |F3|, |F5|, |F7|, |F9|  <  1.65 * 2^26
	// |G0|, |G2|, |G4|, |G6|, |G8|  <  2^31
	// |G1|, |G3|, |G5|, |G7|, |G9|  <  2^30

	i64 t0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6
	       + F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1;
	i64 t1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7
	       + f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2;
	i64 t2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8
	       + F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3;
	i64 t3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9
	       + f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4;
	i64 t4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0
	       + F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5;
	i64 t5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1
	       + f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6;
	i64 t6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2
	       + F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7;
	i64 t7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3
	       + f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8;
	i64 t8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4
	       + F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9;
	i64 t9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5
	       + f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0;
	// t0 < 0.67 * 2^61
	// t1 < 0.41 * 2^61
	// t2 < 0.52 * 2^61
	// t3 < 0.32 * 2^61
	// t4 < 0.38 * 2^61
	// t5 < 0.22 * 2^61
	// t6 < 0.23 * 2^61
	// t7 < 0.13 * 2^61
	// t8 < 0.09 * 2^61
	// t9 < 0.03 * 2^61

	FE_CARRY; // Everything below 2^62, Carry precondition OK
}

// Precondition
// -------------
//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
//
// Note: we could use fe_mul() for this, but this is significantly faster
static void fe_sq(fe h, const fe f)
{
	i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
	i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
	i32 f0_2  = f0*2;   i32 f1_2  = f1*2;   i32 f2_2  = f2*2;   i32 f3_2 = f3*2;
	i32 f4_2  = f4*2;   i32 f5_2  = f5*2;   i32 f6_2  = f6*2;   i32 f7_2 = f7*2;
	i32 f5_38 = f5*38;  i32 f6_19 = f6*19;  i32 f7_38 = f7*38;
	i32 f8_19 = f8*19;  i32 f9_38 = f9*38;
	// |f0_2| , |f2_2| , |f4_2| , |f6_2| , |f8_2|  <  1.65 * 2^27
	// |f1_2| , |f3_2| , |f5_2| , |f7_2| , |f9_2|  <  1.65 * 2^26
	// |f5_38|, |f6_19|, |f7_38|, |f8_19|, |f9_38| <  2^31

	i64 t0 = f0  *(i64)f0    + f1_2*(i64)f9_38 + f2_2*(i64)f8_19
	       + f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5  *(i64)f5_38;
	i64 t1 = f0_2*(i64)f1    + f2  *(i64)f9_38 + f3_2*(i64)f8_19
	       + f4  *(i64)f7_38 + f5_2*(i64)f6_19;
	i64 t2 = f0_2*(i64)f2    + f1_2*(i64)f1    + f3_2*(i64)f9_38
	       + f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6  *(i64)f6_19;
	i64 t3 = f0_2*(i64)f3    + f1_2*(i64)f2    + f4  *(i64)f9_38
	       + f5_2*(i64)f8_19 + f6  *(i64)f7_38;
	i64 t4 = f0_2*(i64)f4    + f1_2*(i64)f3_2  + f2  *(i64)f2
	       + f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7  *(i64)f7_38;
	i64 t5 = f0_2*(i64)f5    + f1_2*(i64)f4    + f2_2*(i64)f3
	       + f6  *(i64)f9_38 + f7_2*(i64)f8_19;
	i64 t6 = f0_2*(i64)f6    + f1_2*(i64)f5_2  + f2_2*(i64)f4
	       + f3_2*(i64)f3    + f7_2*(i64)f9_38 + f8  *(i64)f8_19;
	i64 t7 = f0_2*(i64)f7    + f1_2*(i64)f6    + f2_2*(i64)f5
	       + f3_2*(i64)f4    + f8  *(i64)f9_38;
	i64 t8 = f0_2*(i64)f8    + f1_2*(i64)f7_2  + f2_2*(i64)f6
	       + f3_2*(i64)f5_2  + f4  *(i64)f4    + f9  *(i64)f9_38;
	i64 t9 = f0_2*(i64)f9    + f1_2*(i64)f8    + f2_2*(i64)f7
	       + f3_2*(i64)f6    + f4  *(i64)f5_2;
	// t0 < 0.67 * 2^61
	// t1 < 0.41 * 2^61
	// t2 < 0.52 * 2^61
	// t3 < 0.32 * 2^61
	// t4 < 0.38 * 2^61
	// t5 < 0.22 * 2^61
	// t6 < 0.23 * 2^61
	// t7 < 0.13 * 2^61
	// t8 < 0.09 * 2^61
	// t9 < 0.03 * 2^61

	FE_CARRY;
}

//  Parity check.  Returns 0 if even, 1 if odd
static int fe_isodd(const fe f)
{
	u8 s[32];
	fe_tobytes(s, f);
	u8 isodd = s[0] & 1;
	WIPE_BUFFER(s);
	return isodd;
}

// Returns 1 if equal, 0 if not equal
static int fe_isequal(const fe f, const fe g)
{
	u8 fs[32];
	u8 gs[32];
	fe_tobytes(fs, f);
	fe_tobytes(gs, g);
	int isdifferent = crypto_verify32(fs, gs);
	WIPE_BUFFER(fs);
	WIPE_BUFFER(gs);
	return 1 + isdifferent;
}

// Inverse square root.
// Returns true if x is a square, false otherwise.
// After the call:
//   isr = sqrt(1/x)        if x is a non-zero square.
//   isr = sqrt(sqrt(-1)/x) if x is not a square.
//   isr = 0                if x is zero.
// We do not guarantee the sign of the square root.
//
// Notes:
// Let quartic = x^((p-1)/4)
//
// x^((p-1)/2) = chi(x)
// quartic^2   = chi(x)
// quartic     = sqrt(chi(x))
// quartic     = 1 or -1 or sqrt(-1) or -sqrt(-1)
//
// Note that x is a square if quartic is 1 or -1
// There are 4 cases to consider:
//
// if   quartic         = 1  (x is a square)
// then x^((p-1)/4)     = 1
//      x^((p-5)/4) * x = 1
//      x^((p-5)/4)     = 1/x
//      x^((p-5)/8)     = sqrt(1/x) or -sqrt(1/x)
//
// if   quartic                = -1  (x is a square)
// then x^((p-1)/4)            = -1
//      x^((p-5)/4) * x        = -1
//      x^((p-5)/4)            = -1/x
//      x^((p-5)/8)            = sqrt(-1)   / sqrt(x)
//      x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x)
//      x^((p-5)/8) * sqrt(-1) = -1/sqrt(x)
//      x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x)
//
// if   quartic         = sqrt(-1)  (x is not a square)
// then x^((p-1)/4)     = sqrt(-1)
//      x^((p-5)/4) * x = sqrt(-1)
//      x^((p-5)/4)     = sqrt(-1)/x
//      x^((p-5)/8)     = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x)
//
// Note that the product of two non-squares is always a square:
//   For any non-squares a and b, chi(a) = -1 and chi(b) = -1.
//   Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1.
//   Therefore a*b is a square.
//
//   Since sqrt(-1) and x are both non-squares, their product is a
//   square, and we can compute their square root.
//
// if   quartic                = -sqrt(-1)  (x is not a square)
// then x^((p-1)/4)            = -sqrt(-1)
//      x^((p-5)/4) * x        = -sqrt(-1)
//      x^((p-5)/4)            = -sqrt(-1)/x
//      x^((p-5)/8)            = sqrt(-sqrt(-1)/x)
//      x^((p-5)/8)            = sqrt( sqrt(-1)/x) * sqrt(-1)
//      x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2
//      x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1
//      x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x)
static int invsqrt(fe isr, const fe x)
{
	fe t0, t1, t2;

	// t0 = x^((p-5)/8)
	// Can be achieved with a simple double & add ladder,
	// but it would be slower.
	fe_sq(t0, x);
	fe_sq(t1,t0);                     fe_sq(t1, t1);    fe_mul(t1, x, t1);
	fe_mul(t0, t0, t1);
	fe_sq(t0, t0);                                      fe_mul(t0, t1, t0);
	fe_sq(t1, t0);  FOR (i, 1,   5) { fe_sq(t1, t1); }  fe_mul(t0, t1, t0);
	fe_sq(t1, t0);  FOR (i, 1,  10) { fe_sq(t1, t1); }  fe_mul(t1, t1, t0);
	fe_sq(t2, t1);  FOR (i, 1,  20) { fe_sq(t2, t2); }  fe_mul(t1, t2, t1);
	fe_sq(t1, t1);  FOR (i, 1,  10) { fe_sq(t1, t1); }  fe_mul(t0, t1, t0);
	fe_sq(t1, t0);  FOR (i, 1,  50) { fe_sq(t1, t1); }  fe_mul(t1, t1, t0);
	fe_sq(t2, t1);  FOR (i, 1, 100) { fe_sq(t2, t2); }  fe_mul(t1, t2, t1);
	fe_sq(t1, t1);  FOR (i, 1,  50) { fe_sq(t1, t1); }  fe_mul(t0, t1, t0);
	fe_sq(t0, t0);  FOR (i, 1,   2) { fe_sq(t0, t0); }  fe_mul(t0, t0, x);

	// quartic = x^((p-1)/4)
	i32 *quartic = t1;
	fe_sq (quartic, t0);
	fe_mul(quartic, quartic, x);

	i32 *check = t2;
	fe_0  (check);          int z0 = fe_isequal(x      , check);
	fe_1  (check);          int p1 = fe_isequal(quartic, check);
	fe_neg(check, check );  int m1 = fe_isequal(quartic, check);
	fe_neg(check, sqrtm1);  int ms = fe_isequal(quartic, check);

	// if quartic == -1 or sqrt(-1)
	// then  isr = x^((p-1)/4) * sqrt(-1)
	// else  isr = x^((p-1)/4)
	fe_mul(isr, t0, sqrtm1);
	fe_ccopy(isr, t0, 1 - (m1 | ms));

	WIPE_BUFFER(t0);
	WIPE_BUFFER(t1);
	WIPE_BUFFER(t2);
	return p1 | m1 | z0;
}

// Inverse in terms of inverse square root.
// Requires two additional squarings to get rid of the sign.
//
//   1/x = x * (+invsqrt(x^2))^2
//       = x * (-invsqrt(x^2))^2
//
// A fully optimised exponentiation by p-1 would save 6 field
// multiplications, but it would require more code.
static void fe_invert(fe out, const fe x)
{
	fe tmp;
	fe_sq(tmp, x);
	invsqrt(tmp, tmp);
	fe_sq(tmp, tmp);
	fe_mul(out, tmp, x);
	WIPE_BUFFER(tmp);
}

// trim a scalar for scalar multiplication
void crypto_eddsa_trim_scalar(u8 out[32], const u8 in[32])
{
	COPY(out, in, 32);
	out[ 0] &= 248;
	out[31] &= 127;
	out[31] |= 64;
}

// get bit from scalar at position i
static int scalar_bit(const u8 s[32], int i)
{
	if (i < 0) { return 0; } // handle -1 for sliding windows
	return (s[i>>3] >> (i&7)) & 1;
}

///////////////
/// X-25519 /// Taken from SUPERCOP's ref10 implementation.
///////////////
static void scalarmult(u8 q[32], const u8 scalar[32], const u8 p[32],
                       int nb_bits)
{
	// computes the scalar product
	fe x1;
	fe_frombytes(x1, p);

	// computes the actual scalar product (the result is in x2 and z2)
	fe x2, z2, x3, z3, t0, t1;
	// Montgomery ladder
	// In projective coordinates, to avoid divisions: x = X / Z
	// We don't care about the y coordinate, it's only 1 bit of information
	fe_1(x2);        fe_0(z2); // "zero" point
	fe_copy(x3, x1); fe_1(z3); // "one"  point
	int swap = 0;
	for (int pos = nb_bits-1; pos >= 0; --pos) {
		// constant time conditional swap before ladder step
		int b = scalar_bit(scalar, pos);
		swap ^= b; // xor trick avoids swapping at the end of the loop
		fe_cswap(x2, x3, swap);
		fe_cswap(z2, z3, swap);
		swap = b;  // anticipates one last swap after the loop

		// Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3)
		// with differential addition
		fe_sub(t0, x3, z3);
		fe_sub(t1, x2, z2);
		fe_add(x2, x2, z2);
		fe_add(z2, x3, z3);
		fe_mul(z3, t0, x2);
		fe_mul(z2, z2, t1);
		fe_sq (t0, t1    );
		fe_sq (t1, x2    );
		fe_add(x3, z3, z2);
		fe_sub(z2, z3, z2);
		fe_mul(x2, t1, t0);
		fe_sub(t1, t1, t0);
		fe_sq (z2, z2    );
		fe_mul_small(z3, t1, 121666);
		fe_sq (x3, x3    );
		fe_add(t0, t0, z3);
		fe_mul(z3, x1, z2);
		fe_mul(z2, t1, t0);
	}
	// last swap is necessary to compensate for the xor trick
	// Note: after this swap, P3 == P2 + P1.
	fe_cswap(x2, x3, swap);
	fe_cswap(z2, z3, swap);

	// normalises the coordinates: x == X / Z
	fe_invert(z2, z2);
	fe_mul(x2, x2, z2);
	fe_tobytes(q, x2);

	WIPE_BUFFER(x1);
	WIPE_BUFFER(x2);  WIPE_BUFFER(z2);  WIPE_BUFFER(t0);
	WIPE_BUFFER(x3);  WIPE_BUFFER(z3);  WIPE_BUFFER(t1);
}

void crypto_x25519(u8       raw_shared_secret[32],
                   const u8 your_secret_key  [32],
                   const u8 their_public_key [32])
{
	// restrict the possible scalar values
	u8 e[32];
	crypto_eddsa_trim_scalar(e, your_secret_key);
	scalarmult(raw_shared_secret, e, their_public_key, 255);
	WIPE_BUFFER(e);
}

void crypto_x25519_public_key(u8       public_key[32],
                              const u8 secret_key[32])
{
	static const u8 base_point[32] = {9};
	crypto_x25519(public_key, secret_key, base_point);
}

///////////////////////////
/// Arithmetic modulo L ///
///////////////////////////
static const u32 L[8] = {
	0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de,
	0x00000000, 0x00000000, 0x00000000, 0x10000000,
};

//  p = a*b + p
static void multiply(u32 p[16], const u32 a[8], const u32 b[8])
{
	FOR (i, 0, 8) {
		u64 carry = 0;
		FOR (j, 0, 8) {
			carry  += p[i+j] + (u64)a[i] * b[j];
			p[i+j]  = (u32)carry;
			carry >>= 32;
		}
		p[i+8] = (u32)carry;
	}
}

static int is_above_l(const u32 x[8])
{
	// We work with L directly, in a 2's complement encoding
	// (-L == ~L + 1)
	u64 carry = 1;
	FOR (i, 0, 8) {
		carry  += (u64)x[i] + (~L[i] & 0xffffffff);
		carry >>= 32;
	}
	return (int)carry; // carry is either 0 or 1
}

// Final reduction modulo L, by conditionally removing L.
// if x < l     , then r = x
// if l <= x 2*l, then r = x-l
// otherwise the result will be wrong
static void remove_l(u32 r[8], const u32 x[8])
{
	u64 carry = (u64)is_above_l(x);
	u32 mask  = ~(u32)carry + 1; // carry == 0 or 1
	FOR (i, 0, 8) {
		carry += (u64)x[i] + (~L[i] & mask);
		r[i]   = (u32)carry;
		carry >>= 32;
	}
}

// Full reduction modulo L (Barrett reduction)
static void mod_l(u8 reduced[32], const u32 x[16])
{
	static const u32 r[9] = {
		0x0a2c131b,0xed9ce5a3,0x086329a7,0x2106215d,
		0xffffffeb,0xffffffff,0xffffffff,0xffffffff,0xf,
	};
	// xr = x * r
	u32 xr[25] = {0};
	FOR (i, 0, 9) {
		u64 carry = 0;
		FOR (j, 0, 16) {
			carry  += xr[i+j] + (u64)r[i] * x[j];
			xr[i+j] = (u32)carry;
			carry >>= 32;
		}
		xr[i+16] = (u32)carry;
	}
	// xr = floor(xr / 2^512) * L
	// Since the result is guaranteed to be below 2*L,
	// it is enough to only compute the first 256 bits.
	// The division is performed by saying xr[i+16]. (16 * 32 = 512)
	ZERO(xr, 8);
	FOR (i, 0, 8) {
		u64 carry = 0;
		FOR (j, 0, 8-i) {
			carry   += xr[i+j] + (u64)xr[i+16] * L[j];
			xr[i+j] = (u32)carry;
			carry >>= 32;
		}
	}
	// xr = x - xr
	u64 carry = 1;
	FOR (i, 0, 8) {
		carry  += (u64)x[i] + (~xr[i] & 0xffffffff);
		xr[i]   = (u32)carry;
		carry >>= 32;
	}
	// Final reduction modulo L (conditional subtraction)
	remove_l(xr, xr);
	store32_le_buf(reduced, xr, 8);

	WIPE_BUFFER(xr);
}

void crypto_eddsa_reduce(u8 reduced[32], const u8 expanded[64])
{
	u32 x[16];
	load32_le_buf(x, expanded, 16);
	mod_l(reduced, x);
	WIPE_BUFFER(x);
}

// r = (a * b) + c
void crypto_eddsa_mul_add(u8 r[32],
                          const u8 a[32], const u8 b[32], const u8 c[32])
{
	u32 A[8];  load32_le_buf(A, a, 8);
	u32 B[8];  load32_le_buf(B, b, 8);
	u32 p[16]; load32_le_buf(p, c, 8);  ZERO(p + 8, 8);
	multiply(p, A, B);
	mod_l(r, p);
	WIPE_BUFFER(p);
	WIPE_BUFFER(A);
	WIPE_BUFFER(B);
}

///////////////
/// Ed25519 ///
///////////////

// Point (group element, ge) in a twisted Edwards curve,
// in extended projective coordinates.
// ge        : x  = X/Z, y  = Y/Z, T  = XY/Z
// ge_cached : Yp = X+Y, Ym = X-Y, T2 = T*D2
// ge_precomp: Z  = 1
typedef struct { fe X;  fe Y;  fe Z; fe T;  } ge;
typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached;
typedef struct { fe Yp; fe Ym;       fe T2; } ge_precomp;

static void ge_zero(ge *p)
{
	fe_0(p->X);
	fe_1(p->Y);
	fe_1(p->Z);
	fe_0(p->T);
}

static void ge_tobytes(u8 s[32], const ge *h)
{
	fe recip, x, y;
	fe_invert(recip, h->Z);
	fe_mul(x, h->X, recip);
	fe_mul(y, h->Y, recip);
	fe_tobytes(s, y);
	s[31] ^= fe_isodd(x) << 7;

	WIPE_BUFFER(recip);
	WIPE_BUFFER(x);
	WIPE_BUFFER(y);
}

// h = -s, where s is a point encoded in 32 bytes
//
// Variable time!  Inputs must not be secret!
// => Use only to *check* signatures.
//
// From the specifications:
//   The encoding of s contains y and the sign of x
//   x = sqrt((y^2 - 1) / (d*y^2 + 1))
// In extended coordinates:
//   X = x, Y = y, Z = 1, T = x*y
//
//    Note that num * den is a square iff num / den is a square
//    If num * den is not a square, the point was not on the curve.
// From the above:
//   Let num =   y^2 - 1
//   Let den = d*y^2 + 1
//   x = sqrt((y^2 - 1) / (d*y^2 + 1))
//   x = sqrt(num / den)
//   x = sqrt(num^2 / (num * den))
//   x = num * sqrt(1 / (num * den))
//
// Therefore, we can just compute:
//   num =   y^2 - 1
//   den = d*y^2 + 1
//   isr = invsqrt(num * den)  // abort if not square
//   x   = num * isr
// Finally, negate x if its sign is not as specified.
static int ge_frombytes_neg_vartime(ge *h, const u8 s[32])
{
	fe_frombytes(h->Y, s);
	fe_1(h->Z);
	fe_sq (h->T, h->Y);        // t =   y^2
	fe_mul(h->X, h->T, d   );  // x = d*y^2
	fe_sub(h->T, h->T, h->Z);  // t =   y^2 - 1
	fe_add(h->X, h->X, h->Z);  // x = d*y^2 + 1
	fe_mul(h->X, h->T, h->X);  // x = (y^2 - 1) * (d*y^2 + 1)
	int is_square = invsqrt(h->X, h->X);
	if (!is_square) {
		return -1;             // Not on the curve, abort
	}
	fe_mul(h->X, h->T, h->X);  // x = sqrt((y^2 - 1) / (d*y^2 + 1))
	if (fe_isodd(h->X) == (s[31] >> 7)) {
		fe_neg(h->X, h->X);
	}
	fe_mul(h->T, h->X, h->Y);
	return 0;
}

static void ge_cache(ge_cached *c, const ge *p)
{
	fe_add (c->Yp, p->Y, p->X);
	fe_sub (c->Ym, p->Y, p->X);
	fe_copy(c->Z , p->Z      );
	fe_mul (c->T2, p->T, D2  );
}

// Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_add(ge *s, const ge *p, const ge_cached *q)
{
	fe a, b;
	fe_add(a   , p->Y, p->X );
	fe_sub(b   , p->Y, p->X );
	fe_mul(a   , a   , q->Yp);
	fe_mul(b   , b   , q->Ym);
	fe_add(s->Y, a   , b    );
	fe_sub(s->X, a   , b    );

	fe_add(s->Z, p->Z, p->Z );
	fe_mul(s->Z, s->Z, q->Z );
	fe_mul(s->T, p->T, q->T2);
	fe_add(a   , s->Z, s->T );
	fe_sub(b   , s->Z, s->T );

	fe_mul(s->T, s->X, s->Y);
	fe_mul(s->X, s->X, b   );
	fe_mul(s->Y, s->Y, a   );
	fe_mul(s->Z, a   , b   );
}

// Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_sub(ge *s, const ge *p, const ge_cached *q)
{
	ge_cached neg;
	fe_copy(neg.Ym, q->Yp);
	fe_copy(neg.Yp, q->Ym);
	fe_copy(neg.Z , q->Z );
	fe_neg (neg.T2, q->T2);
	ge_add(s, p, &neg);
}

static void ge_madd(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
{
	fe_add(a   , p->Y, p->X );
	fe_sub(b   , p->Y, p->X );
	fe_mul(a   , a   , q->Yp);
	fe_mul(b   , b   , q->Ym);
	fe_add(s->Y, a   , b    );
	fe_sub(s->X, a   , b    );

	fe_add(s->Z, p->Z, p->Z );
	fe_mul(s->T, p->T, q->T2);
	fe_add(a   , s->Z, s->T );
	fe_sub(b   , s->Z, s->T );

	fe_mul(s->T, s->X, s->Y);
	fe_mul(s->X, s->X, b   );
	fe_mul(s->Y, s->Y, a   );
	fe_mul(s->Z, a   , b   );
}

// Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_msub(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
{
	ge_precomp neg;
	fe_copy(neg.Ym, q->Yp);
	fe_copy(neg.Yp, q->Ym);
	fe_neg (neg.T2, q->T2);
	ge_madd(s, p, &neg, a, b);
}

static void ge_double(ge *s, const ge *p, ge *q)
{
	fe_sq (q->X, p->X);
	fe_sq (q->Y, p->Y);
	fe_sq (q->Z, p->Z);          // qZ = pZ^2
	fe_mul_small(q->Z, q->Z, 2); // qZ = pZ^2 * 2
	fe_add(q->T, p->X, p->Y);
	fe_sq (s->T, q->T);
	fe_add(q->T, q->Y, q->X);
	fe_sub(q->Y, q->Y, q->X);
	fe_sub(q->X, s->T, q->T);
	fe_sub(q->Z, q->Z, q->Y);

	fe_mul(s->X, q->X , q->Z);
	fe_mul(s->Y, q->T , q->Y);
	fe_mul(s->Z, q->Y , q->Z);
	fe_mul(s->T, q->X , q->T);
}

// 5-bit signed window in cached format (Niels coordinates, Z=1)
static const ge_precomp b_window[8] = {
	{{25967493,-14356035,29566456,3660896,-12694345,
	  4014787,27544626,-11754271,-6079156,2047605,},
	 {-12545711,934262,-2722910,3049990,-727428,
	  9406986,12720692,5043384,19500929,-15469378,},
	 {-8738181,4489570,9688441,-14785194,10184609,
	  -12363380,29287919,11864899,-24514362,-4438546,},},
	{{15636291,-9688557,24204773,-7912398,616977,
	  -16685262,27787600,-14772189,28944400,-1550024,},
	 {16568933,4717097,-11556148,-1102322,15682896,
	  -11807043,16354577,-11775962,7689662,11199574,},
	 {30464156,-5976125,-11779434,-15670865,23220365,
	  15915852,7512774,10017326,-17749093,-9920357,},},
	{{10861363,11473154,27284546,1981175,-30064349,
	  12577861,32867885,14515107,-15438304,10819380,},
	 {4708026,6336745,20377586,9066809,-11272109,
	  6594696,-25653668,12483688,-12668491,5581306,},
	 {19563160,16186464,-29386857,4097519,10237984,
	  -4348115,28542350,13850243,-23678021,-15815942,},},
	{{5153746,9909285,1723747,-2777874,30523605,
	  5516873,19480852,5230134,-23952439,-15175766,},
	 {-30269007,-3463509,7665486,10083793,28475525,
	  1649722,20654025,16520125,30598449,7715701,},
	 {28881845,14381568,9657904,3680757,-20181635,
	  7843316,-31400660,1370708,29794553,-1409300,},},
	{{-22518993,-6692182,14201702,-8745502,-23510406,
	  8844726,18474211,-1361450,-13062696,13821877,},
	 {-6455177,-7839871,3374702,-4740862,-27098617,
	  -10571707,31655028,-7212327,18853322,-14220951,},
	 {4566830,-12963868,-28974889,-12240689,-7602672,
	  -2830569,-8514358,-10431137,2207753,-3209784,},},
	{{-25154831,-4185821,29681144,7868801,-6854661,
	  -9423865,-12437364,-663000,-31111463,-16132436,},
	 {25576264,-2703214,7349804,-11814844,16472782,
	  9300885,3844789,15725684,171356,6466918,},
	 {23103977,13316479,9739013,-16149481,817875,
	  -15038942,8965339,-14088058,-30714912,16193877,},},
	{{-33521811,3180713,-2394130,14003687,-16903474,
	  -16270840,17238398,4729455,-18074513,9256800,},
	 {-25182317,-4174131,32336398,5036987,-21236817,
	  11360617,22616405,9761698,-19827198,630305,},
	 {-13720693,2639453,-24237460,-7406481,9494427,
	  -5774029,-6554551,-15960994,-2449256,-14291300,},},
	{{-3151181,-5046075,9282714,6866145,-31907062,
	  -863023,-18940575,15033784,25105118,-7894876,},
	 {-24326370,15950226,-31801215,-14592823,-11662737,
	  -5090925,1573892,-2625887,2198790,-15804619,},
	 {-3099351,10324967,-2241613,7453183,-5446979,
	  -2735503,-13812022,-16236442,-32461234,-12290683,},},
};

// Incremental sliding windows (left to right)
// Based on Roberto Maria Avanzi[2005]
typedef struct {
	i16 next_index; // position of the next signed digit
	i8  next_digit; // next signed digit (odd number below 2^window_width)
	u8  next_check; // point at which we must check for a new window
} slide_ctx;

static void slide_init(slide_ctx *ctx, const u8 scalar[32])
{
	// scalar is guaranteed to be below L, either because we checked (s),
	// or because we reduced it modulo L (h_ram). L is under 2^253, so
	// so bits 253 to 255 are guaranteed to be zero. No need to test them.
	//
	// Note however that L is very close to 2^252, so bit 252 is almost
	// always zero.  If we were to start at bit 251, the tests wouldn't
	// catch the off-by-one error (constructing one that does would be
	// prohibitively expensive).
	//
	// We should still check bit 252, though.
	int i = 252;
	while (i > 0 && scalar_bit(scalar, i) == 0) {
		i--;
	}
	ctx->next_check = (u8)(i + 1);
	ctx->next_index = -1;
	ctx->next_digit = -1;
}

static int slide_step(slide_ctx *ctx, int width, int i, const u8 scalar[32])
{
	if (i == ctx->next_check) {
		if (scalar_bit(scalar, i) == scalar_bit(scalar, i - 1)) {
			ctx->next_check--;
		} else {
			// compute digit of next window
			int w = MC_MIN(width, i + 1);
			int v = -(scalar_bit(scalar, i) << (w-1));
			FOR_T (int, j, 0, w-1) {
				v += scalar_bit(scalar, i-(w-1)+j) << j;
			}
			v += scalar_bit(scalar, i-w);
			int lsb = v & (~v + 1); // smallest bit of v
			int s   =               // log2(lsb)
				(((lsb & 0xAA) != 0) << 0) |
				(((lsb & 0xCC) != 0) << 1) |
				(((lsb & 0xF0) != 0) << 2);
			ctx->next_index  = (i16)(i-(w-1)+s);
			ctx->next_digit  = (i8) (v >> s   );
			ctx->next_check -= (u8) w;
		}
	}
	return i == ctx->next_index ? ctx->next_digit: 0;
}

#define P_W_WIDTH 3 // Affects the size of the stack
#define B_W_WIDTH 5 // Affects the size of the binary
#define P_W_SIZE  (1<<(P_W_WIDTH-2))

int crypto_eddsa_check_equation(const u8 signature[64], const u8 public_key[32],
                                const u8 h[32])
{
	ge minus_A; // -public_key
	ge minus_R; // -first_half_of_signature
	const u8 *s = signature + 32;

	// Check that A and R are on the curve
	// Check that 0 <= S < L (prevents malleability)
	// *Allow* non-cannonical encoding for A and R
	{
		u32 s32[8];
		load32_le_buf(s32, s, 8);
		if (ge_frombytes_neg_vartime(&minus_A, public_key) ||
		    ge_frombytes_neg_vartime(&minus_R, signature)  ||
		    is_above_l(s32)) {
			return -1;
		}
	}

	// look-up table for minus_A
	ge_cached lutA[P_W_SIZE];
	{
		ge minus_A2, tmp;
		ge_double(&minus_A2, &minus_A, &tmp);
		ge_cache(&lutA[0], &minus_A);
		FOR (i, 1, P_W_SIZE) {
			ge_add(&tmp, &minus_A2, &lutA[i-1]);
			ge_cache(&lutA[i], &tmp);
		}
	}

	// sum = [s]B - [h]A
	// Merged double and add ladder, fused with sliding
	slide_ctx h_slide;  slide_init(&h_slide, h);
	slide_ctx s_slide;  slide_init(&s_slide, s);
	int i = MC_MAX(h_slide.next_check, s_slide.next_check);
	ge *sum = &minus_A; // reuse minus_A for the sum
	ge_zero(sum);
	while (i >= 0) {
		ge tmp;
		ge_double(sum, sum, &tmp);
		int h_digit = slide_step(&h_slide, P_W_WIDTH, i, h);
		int s_digit = slide_step(&s_slide, B_W_WIDTH, i, s);
		if (h_digit > 0) { ge_add(sum, sum, &lutA[ h_digit / 2]); }
		if (h_digit < 0) { ge_sub(sum, sum, &lutA[-h_digit / 2]); }
		fe t1, t2;
		if (s_digit > 0) { ge_madd(sum, sum, b_window +  s_digit/2, t1, t2); }
		if (s_digit < 0) { ge_msub(sum, sum, b_window + -s_digit/2, t1, t2); }
		i--;
	}

	// Compare [8](sum-R) and the zero point
	// The multiplication by 8 eliminates any low-order component
	// and ensures consistency with batched verification.
	ge_cached cached;
	u8 check[32];
	static const u8 zero_point[32] = {1}; // Point of order 1
	ge_cache(&cached, &minus_R);
	ge_add(sum, sum, &cached);
	ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
	ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
	ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
	ge_tobytes(check, sum);
	return crypto_verify32(check, zero_point);
}

// 5-bit signed comb in cached format (Niels coordinates, Z=1)
static const ge_precomp b_comb_low[8] = {
	{{-6816601,-2324159,-22559413,124364,18015490,
	  8373481,19993724,1979872,-18549925,9085059,},
	 {10306321,403248,14839893,9633706,8463310,
	  -8354981,-14305673,14668847,26301366,2818560,},
	 {-22701500,-3210264,-13831292,-2927732,-16326337,
	  -14016360,12940910,177905,12165515,-2397893,},},
	{{-12282262,-7022066,9920413,-3064358,-32147467,
	  2927790,22392436,-14852487,2719975,16402117,},
	 {-7236961,-4729776,2685954,-6525055,-24242706,
	  -15940211,-6238521,14082855,10047669,12228189,},
	 {-30495588,-12893761,-11161261,3539405,-11502464,
	  16491580,-27286798,-15030530,-7272871,-15934455,},},
	{{17650926,582297,-860412,-187745,-12072900,
	  -10683391,-20352381,15557840,-31072141,-5019061,},
	 {-6283632,-2259834,-4674247,-4598977,-4089240,
	  12435688,-31278303,1060251,6256175,10480726,},
	 {-13871026,2026300,-21928428,-2741605,-2406664,
	  -8034988,7355518,15733500,-23379862,7489131,},},
	{{6883359,695140,23196907,9644202,-33430614,
	  11354760,-20134606,6388313,-8263585,-8491918,},
	 {-7716174,-13605463,-13646110,14757414,-19430591,
	  -14967316,10359532,-11059670,-21935259,12082603,},
	 {-11253345,-15943946,10046784,5414629,24840771,
	  8086951,-6694742,9868723,15842692,-16224787,},},
	{{9639399,11810955,-24007778,-9320054,3912937,
	  -9856959,996125,-8727907,-8919186,-14097242,},
	 {7248867,14468564,25228636,-8795035,14346339,
	  8224790,6388427,-7181107,6468218,-8720783,},
	 {15513115,15439095,7342322,-10157390,18005294,
	  -7265713,2186239,4884640,10826567,7135781,},},
	{{-14204238,5297536,-5862318,-6004934,28095835,
	  4236101,-14203318,1958636,-16816875,3837147,},
	 {-5511166,-13176782,-29588215,12339465,15325758,
	  -15945770,-8813185,11075932,-19608050,-3776283,},
	 {11728032,9603156,-4637821,-5304487,-7827751,
	  2724948,31236191,-16760175,-7268616,14799772,},},
	{{-28842672,4840636,-12047946,-9101456,-1445464,
	  381905,-30977094,-16523389,1290540,12798615,},
	 {27246947,-10320914,14792098,-14518944,5302070,
	  -8746152,-3403974,-4149637,-27061213,10749585,},
	 {25572375,-6270368,-15353037,16037944,1146292,
	  32198,23487090,9585613,24714571,-1418265,},},
	{{19844825,282124,-17583147,11004019,-32004269,
	  -2716035,6105106,-1711007,-21010044,14338445,},
	 {8027505,8191102,-18504907,-12335737,25173494,
	  -5923905,15446145,7483684,-30440441,10009108,},
	 {-14134701,-4174411,10246585,-14677495,33553567,
	  -14012935,23366126,15080531,-7969992,7663473,},},
};

static const ge_precomp b_comb_high[8] = {
	{{33055887,-4431773,-521787,6654165,951411,
	  -6266464,-5158124,6995613,-5397442,-6985227,},
	 {4014062,6967095,-11977872,3960002,8001989,
	  5130302,-2154812,-1899602,-31954493,-16173976,},
	 {16271757,-9212948,23792794,731486,-25808309,
	  -3546396,6964344,-4767590,10976593,10050757,},},
	{{2533007,-4288439,-24467768,-12387405,-13450051,
	  14542280,12876301,13893535,15067764,8594792,},
	 {20073501,-11623621,3165391,-13119866,13188608,
	  -11540496,-10751437,-13482671,29588810,2197295,},
	 {-1084082,11831693,6031797,14062724,14748428,
	  -8159962,-20721760,11742548,31368706,13161200,},},
	{{2050412,-6457589,15321215,5273360,25484180,
	  124590,-18187548,-7097255,-6691621,-14604792,},
	 {9938196,2162889,-6158074,-1711248,4278932,
	  -2598531,-22865792,-7168500,-24323168,11746309,},
	 {-22691768,-14268164,5965485,9383325,20443693,
	  5854192,28250679,-1381811,-10837134,13717818,},},
	{{-8495530,16382250,9548884,-4971523,-4491811,
	  -3902147,6182256,-12832479,26628081,10395408,},
	 {27329048,-15853735,7715764,8717446,-9215518,
	  -14633480,28982250,-5668414,4227628,242148,},
	 {-13279943,-7986904,-7100016,8764468,-27276630,
	  3096719,29678419,-9141299,3906709,11265498,},},
	{{11918285,15686328,-17757323,-11217300,-27548967,
	  4853165,-27168827,6807359,6871949,-1075745,},
	 {-29002610,13984323,-27111812,-2713442,28107359,
	  -13266203,6155126,15104658,3538727,-7513788,},
	 {14103158,11233913,-33165269,9279850,31014152,
	  4335090,-1827936,4590951,13960841,12787712,},},
	{{1469134,-16738009,33411928,13942824,8092558,
	  -8778224,-11165065,1437842,22521552,-2792954,},
	 {31352705,-4807352,-25327300,3962447,12541566,
	  -9399651,-27425693,7964818,-23829869,5541287,},
	 {-25732021,-6864887,23848984,3039395,-9147354,
	  6022816,-27421653,10590137,25309915,-1584678,},},
	{{-22951376,5048948,31139401,-190316,-19542447,
	  -626310,-17486305,-16511925,-18851313,-12985140,},
	 {-9684890,14681754,30487568,7717771,-10829709,
	  9630497,30290549,-10531496,-27798994,-13812825,},
	 {5827835,16097107,-24501327,12094619,7413972,
	  11447087,28057551,-1793987,-14056981,4359312,},},
	{{26323183,2342588,-21887793,-1623758,-6062284,
	  2107090,-28724907,9036464,-19618351,-13055189,},
	 {-29697200,14829398,-4596333,14220089,-30022969,
	  2955645,12094100,-13693652,-5941445,7047569,},
	 {-3201977,14413268,-12058324,-16417589,-9035655,
	  -7224648,9258160,1399236,30397584,-5684634,},},
};

static void lookup_add(ge *p, ge_precomp *tmp_c, fe tmp_a, fe tmp_b,
                       const ge_precomp comb[8], const u8 scalar[32], int i)
{
	u8 teeth = (u8)((scalar_bit(scalar, i)          ) +
	                (scalar_bit(scalar, i + 32) << 1) +
	                (scalar_bit(scalar, i + 64) << 2) +
	                (scalar_bit(scalar, i + 96) << 3));
	u8 high  = teeth >> 3;
	u8 index = (teeth ^ (high - 1)) & 7;
	FOR (j, 0, 8) {
		i32 select = 1 & (((j ^ index) - 1) >> 8);
		fe_ccopy(tmp_c->Yp, comb[j].Yp, select);
		fe_ccopy(tmp_c->Ym, comb[j].Ym, select);
		fe_ccopy(tmp_c->T2, comb[j].T2, select);
	}
	fe_neg(tmp_a, tmp_c->T2);
	fe_cswap(tmp_c->T2, tmp_a    , high ^ 1);
	fe_cswap(tmp_c->Yp, tmp_c->Ym, high ^ 1);
	ge_madd(p, p, tmp_c, tmp_a, tmp_b);
}

// p = [scalar]B, where B is the base point
static void ge_scalarmult_base(ge *p, const u8 scalar[32])
{
	// twin 4-bits signed combs, from Mike Hamburg's
	// Fast and compact elliptic-curve cryptography (2012)
	// 1 / 2 modulo L
	static const u8 half_mod_L[32] = {
		247,233,122,46,141,49,9,44,107,206,123,81,239,124,111,10,
		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,
	};
	// (2^256 - 1) / 2 modulo L
	static const u8 half_ones[32] = {
		142,74,204,70,186,24,118,107,184,231,190,57,250,173,119,99,
		255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,7,
	};

	// All bits set form: 1 means 1, 0 means -1
	u8 s_scalar[32];
	crypto_eddsa_mul_add(s_scalar, scalar, half_mod_L, half_ones);

	// Double and add ladder
	fe tmp_a, tmp_b;  // temporaries for addition
	ge_precomp tmp_c; // temporary for comb lookup
	ge tmp_d;         // temporary for doubling
	fe_1(tmp_c.Yp);
	fe_1(tmp_c.Ym);
	fe_0(tmp_c.T2);

	// Save a double on the first iteration
	ge_zero(p);
	lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, 31);
	lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, 31+128);
	// Regular double & add for the rest
	for (int i = 30; i >= 0; i--) {
		ge_double(p, p, &tmp_d);
		lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, i);
		lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, i+128);
	}
	// Note: we could save one addition at the end if we assumed the
	// scalar fit in 252 bits.  Which it does in practice if it is
	// selected at random.  However, non-random, non-hashed scalars
	// *can* overflow 252 bits in practice.  Better account for that
	// than leaving that kind of subtle corner case.

	WIPE_BUFFER(tmp_a);  WIPE_CTX(&tmp_d);
	WIPE_BUFFER(tmp_b);  WIPE_CTX(&tmp_c);
	WIPE_BUFFER(s_scalar);
}

void crypto_eddsa_scalarbase(u8 point[32], const u8 scalar[32])
{
	ge P;
	ge_scalarmult_base(&P, scalar);
	ge_tobytes(point, &P);
	WIPE_CTX(&P);
}

void crypto_eddsa_key_pair(u8 secret_key[64], u8 public_key[32], u8 seed[32])
{
	// To allow overlaps, observable writes happen in this order:
	// 1. seed
	// 2. secret_key
	// 3. public_key
	u8 a[64];
	COPY(a, seed, 32);
	crypto_wipe(seed, 32);
	COPY(secret_key, a, 32);
	crypto_blake2b(a, 64, a, 32);
	crypto_eddsa_trim_scalar(a, a);
	crypto_eddsa_scalarbase(secret_key + 32, a);
	COPY(public_key, secret_key + 32, 32);
	WIPE_BUFFER(a);
}

static void hash_reduce(u8 h[32],
                        const u8 *a, size_t a_size,
                        const u8 *b, size_t b_size,
                        const u8 *c, size_t c_size)
{
	u8 hash[64];
	crypto_blake2b_ctx ctx;
	crypto_blake2b_init  (&ctx, 64);
	crypto_blake2b_update(&ctx, a, a_size);
	crypto_blake2b_update(&ctx, b, b_size);
	crypto_blake2b_update(&ctx, c, c_size);
	crypto_blake2b_final (&ctx, hash);
	crypto_eddsa_reduce(h, hash);
}

// Digital signature of a message with from a secret key.
//
// The secret key comprises two parts:
// - The seed that generates the key (secret_key[ 0..31])
// - The public key                  (secret_key[32..63])
//
// The seed and the public key are bundled together to make sure users
// don't use mismatched seeds and public keys, which would instantly
// leak the secret scalar and allow forgeries (allowing this to happen
// has resulted in critical vulnerabilities in the wild).
//
// The seed is hashed to derive the secret scalar and a secret prefix.
// The sole purpose of the prefix is to generate a secret random nonce.
// The properties of that nonce must be as follows:
// - Unique: we need a different one for each message.
// - Secret: third parties must not be able to predict it.
// - Random: any detectable bias would break all security.
//
// There are two ways to achieve these properties.  The obvious one is
// to simply generate a random number.  Here that would be a parameter
// (Monocypher doesn't have an RNG).  It works, but then users may reuse
// the nonce by accident, which _also_ leaks the secret scalar and
// allows forgeries.  This has happened in the wild too.
//
// This is no good, so instead we generate that nonce deterministically
// by reducing modulo L a hash of the secret prefix and the message.
// The secret prefix makes the nonce unpredictable, the message makes it
// unique, and the hash/reduce removes all bias.
//
// The cost of that safety is hashing the message twice.  If that cost
// is unacceptable, there are two alternatives:
//
// - Signing a hash of the message instead of the message itself.  This
//   is fine as long as the hash is collision resistant. It is not
//   compatible with existing "pure" signatures, but at least it's safe.
//
// - Using a random nonce.  Please exercise **EXTREME CAUTION** if you
//   ever do that.  It is absolutely **critical** that the nonce is
//   really an unbiased random number between 0 and L-1, never reused,
//   and wiped immediately.
//
//   To lower the likelihood of complete catastrophe if the RNG is
//   either flawed or misused, you can hash the RNG output together with
//   the secret prefix and the beginning of the message, and use the
//   reduction of that hash instead of the RNG output itself.  It's not
//   foolproof (you'd need to hash the whole message) but it helps.
//
// Signing a message involves the following operations:
//
//   scalar, prefix = HASH(secret_key)
//   r              = HASH(prefix || message) % L
//   R              = [r]B
//   h              = HASH(R || public_key || message) % L
//   S              = ((h * a) + r) % L
//   signature      = R || S
void crypto_eddsa_sign(u8 signature [64], const u8 secret_key[64],
                       const u8 *message, size_t message_size)
{
	u8 a[64];  // secret scalar and prefix
	u8 r[32];  // secret deterministic "random" nonce
	u8 h[32];  // publically verifiable hash of the message (not wiped)
	u8 R[32];  // first half of the signature (allows overlapping inputs)

	crypto_blake2b(a, 64, secret_key, 32);
	crypto_eddsa_trim_scalar(a, a);
	hash_reduce(r, a + 32, 32, message, message_size, 0, 0);
	crypto_eddsa_scalarbase(R, r);
	hash_reduce(h, R, 32, secret_key + 32, 32, message, message_size);
	COPY(signature, R, 32);
	crypto_eddsa_mul_add(signature + 32, h, a, r);

	WIPE_BUFFER(a);
	WIPE_BUFFER(r);
}

// To check the signature R, S of the message M with the public key A,
// there are 3 steps:
//
//   compute h = HASH(R || A || message) % L
//   check that A is on the curve.
//   check that R == [s]B - [h]A
//
// The last two steps are done in crypto_eddsa_check_equation()
int crypto_eddsa_check(const u8  signature[64], const u8 public_key[32],
                       const u8 *message, size_t message_size)
{
	u8 h[32];
	hash_reduce(h, signature, 32, public_key, 32, message, message_size);
	return crypto_eddsa_check_equation(signature, public_key, h);
}

/////////////////////////
/// EdDSA <--> X25519 ///
/////////////////////////
void crypto_eddsa_to_x25519(u8 x25519[32], const u8 eddsa[32])
{
	// (u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)
	// Only converting y to u, the sign of x is ignored.
	fe t1, t2;
	fe_frombytes(t2, eddsa);
	fe_add(t1, fe_one, t2);
	fe_sub(t2, fe_one, t2);
	fe_invert(t2, t2);
	fe_mul(t1, t1, t2);
	fe_tobytes(x25519, t1);
	WIPE_BUFFER(t1);
	WIPE_BUFFER(t2);
}

void crypto_x25519_to_eddsa(u8 eddsa[32], const u8 x25519[32])
{
	// (x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))
	// Only converting u to y, x is assumed positive.
	fe t1, t2;
	fe_frombytes(t2, x25519);
	fe_sub(t1, t2, fe_one);
	fe_add(t2, t2, fe_one);
	fe_invert(t2, t2);
	fe_mul(t1, t1, t2);
	fe_tobytes(eddsa, t1);
	WIPE_BUFFER(t1);
	WIPE_BUFFER(t2);
}

/////////////////////////////////////////////
/// Dirty ephemeral public key generation ///
/////////////////////////////////////////////

// Those functions generates a public key, *without* clearing the
// cofactor.  Sending that key over the network leaks 3 bits of the
// private key.  Use only to generate ephemeral keys that will be hidden
// with crypto_curve_to_hidden().
//
// The public key is otherwise compatible with crypto_x25519(), which
// properly clears the cofactor.
//
// Note that the distribution of the resulting public keys is almost
// uniform.  Flipping the sign of the v coordinate (not provided by this
// function), covers the entire key space almost perfectly, where
// "almost" means a 2^-128 bias (undetectable).  This uniformity is
// needed to ensure the proper randomness of the resulting
// representatives (once we apply crypto_curve_to_hidden()).
//
// Recall that Curve25519 has order C = 2^255 + e, with e < 2^128 (not
// to be confused with the prime order of the main subgroup, L, which is
// 8 times less than that).
//
// Generating all points would require us to multiply a point of order C
// (the base point plus any point of order 8) by all scalars from 0 to
// C-1.  Clamping limits us to scalars between 2^254 and 2^255 - 1. But
// by negating the resulting point at random, we also cover scalars from
// -2^255 + 1 to -2^254 (which modulo C is congruent to e+1 to 2^254 + e).
//
// In practice:
// - Scalars from 0         to e + 1     are never generated
// - Scalars from 2^255     to 2^255 + e are never generated
// - Scalars from 2^254 + 1 to 2^254 + e are generated twice
//
// Since e < 2^128, detecting this bias requires observing over 2^100
// representatives from a given source (this will never happen), *and*
// recovering enough of the private key to determine that they do, or do
// not, belong to the biased set (this practically requires solving
// discrete logarithm, which is conjecturally intractable).
//
// In practice, this means the bias is impossible to detect.

// s + (x*L) % 8*L
// Guaranteed to fit in 256 bits iff s fits in 255 bits.
//   L             < 2^253
//   x%8           < 2^3
//   L * (x%8)     < 2^255
//   s             < 2^255
//   s + L * (x%8) < 2^256
static void add_xl(u8 s[32], u8 x)
{
	u64 mod8  = x & 7;
	u64 carry = 0;
	FOR (i , 0, 8) {
		carry = carry + load32_le(s + 4*i) + L[i] * mod8;
		store32_le(s + 4*i, (u32)carry);
		carry >>= 32;
	}
}

// "Small" dirty ephemeral key.
// Use if you need to shrink the size of the binary, and can afford to
// slow down by a factor of two (compared to the fast version)
//
// This version works by decoupling the cofactor from the main factor.
//
// - The trimmed scalar determines the main factor
// - The clamped bits of the scalar determine the cofactor.
//
// Cofactor and main factor are combined into a single scalar, which is
// then multiplied by a point of order 8*L (unlike the base point, which
// has prime order).  That "dirty" base point is the addition of the
// regular base point (9), and a point of order 8.
void crypto_x25519_dirty_small(u8 public_key[32], const u8 secret_key[32])
{
	// Base point of order 8*L
	// Raw scalar multiplication with it does not clear the cofactor,
	// and the resulting public key will reveal 3 bits of the scalar.
	//
	// The low order component of this base point  has been chosen
	// to yield the same results as crypto_x25519_dirty_fast().
	static const u8 dirty_base_point[32] = {
		0xd8, 0x86, 0x1a, 0xa2, 0x78, 0x7a, 0xd9, 0x26,
		0x8b, 0x74, 0x74, 0xb6, 0x82, 0xe3, 0xbe, 0xc3,
		0xce, 0x36, 0x9a, 0x1e, 0x5e, 0x31, 0x47, 0xa2,
		0x6d, 0x37, 0x7c, 0xfd, 0x20, 0xb5, 0xdf, 0x75,
	};
	// separate the main factor & the cofactor of the scalar
	u8 scalar[32];
	crypto_eddsa_trim_scalar(scalar, secret_key);

	// Separate the main factor and the cofactor
	//
	// The scalar is trimmed, so its cofactor is cleared.  The three
	// least significant bits however still have a main factor.  We must
	// remove it for X25519 compatibility.
	//
	//   cofactor = lsb * L            (modulo 8*L)
	//   combined = scalar + cofactor  (modulo 8*L)
	add_xl(scalar, secret_key[0]);
	scalarmult(public_key, scalar, dirty_base_point, 256);
	WIPE_BUFFER(scalar);
}

// Select low order point
// We're computing the [cofactor]lop scalar multiplication, where:
//
//   cofactor = tweak & 7.
//   lop      = (lop_x, lop_y)
//   lop_x    = sqrt((sqrt(d + 1) + 1) / d)
//   lop_y    = -lop_x * sqrtm1
//
// The low order point has order 8. There are 4 such points.  We've
// chosen the one whose both coordinates are positive (below p/2).
// The 8 low order points are as follows:
//
// [0]lop = ( 0       ,  1    )
// [1]lop = ( lop_x   ,  lop_y)
// [2]lop = ( sqrt(-1), -0    )
// [3]lop = ( lop_x   , -lop_y)
// [4]lop = (-0       , -1    )
// [5]lop = (-lop_x   , -lop_y)
// [6]lop = (-sqrt(-1),  0    )
// [7]lop = (-lop_x   ,  lop_y)
//
// The x coordinate is either 0, sqrt(-1), lop_x, or their opposite.
// The y coordinate is either 0,      -1 , lop_y, or their opposite.
// The pattern for both is the same, except for a rotation of 2 (modulo 8)
//
// This helper function captures the pattern, and we can use it thus:
//
//    select_lop(x, lop_x, sqrtm1, cofactor);
//    select_lop(y, lop_y, fe_one, cofactor + 2);
//
// This is faster than an actual scalar multiplication,
// and requires less code than naive constant time look up.
static void select_lop(fe out, const fe x, const fe k, u8 cofactor)
{
	fe tmp;
	fe_0(out);
	fe_ccopy(out, k  , (cofactor >> 1) & 1); // bit 1
	fe_ccopy(out, x  , (cofactor >> 0) & 1); // bit 0
	fe_neg  (tmp, out);
	fe_ccopy(out, tmp, (cofactor >> 2) & 1); // bit 2
	WIPE_BUFFER(tmp);
}

// "Fast" dirty ephemeral key
// We use this one by default.
//
// This version works by performing a regular scalar multiplication,
// then add a low order point.  The scalar multiplication is done in
// Edwards space for more speed (*2 compared to the "small" version).
// The cost is a bigger binary for programs that don't also sign messages.
void crypto_x25519_dirty_fast(u8 public_key[32], const u8 secret_key[32])
{
	// Compute clean scalar multiplication
	u8 scalar[32];
	ge pk;
	crypto_eddsa_trim_scalar(scalar, secret_key);
	ge_scalarmult_base(&pk, scalar);

	// Compute low order point
	fe t1, t2;
	select_lop(t1, lop_x, sqrtm1, secret_key[0]);
	select_lop(t2, lop_y, fe_one, secret_key[0] + 2);
	ge_precomp low_order_point;
	fe_add(low_order_point.Yp, t2, t1);
	fe_sub(low_order_point.Ym, t2, t1);
	fe_mul(low_order_point.T2, t2, t1);
	fe_mul(low_order_point.T2, low_order_point.T2, D2);

	// Add low order point to the public key
	ge_madd(&pk, &pk, &low_order_point, t1, t2);

	// Convert to Montgomery u coordinate (we ignore the sign)
	fe_add(t1, pk.Z, pk.Y);
	fe_sub(t2, pk.Z, pk.Y);
	fe_invert(t2, t2);
	fe_mul(t1, t1, t2);

	fe_tobytes(public_key, t1);

	WIPE_BUFFER(t1);    WIPE_CTX(&pk);
	WIPE_BUFFER(t2);    WIPE_CTX(&low_order_point);
	WIPE_BUFFER(scalar);
}

///////////////////
/// Elligator 2 ///
///////////////////
static const fe A = {486662};

// Elligator direct map
//
// Computes the point corresponding to a representative, encoded in 32
// bytes (little Endian).  Since positive representatives fits in 254
// bits, The two most significant bits are ignored.
//
// From the paper:
// w = -A / (fe(1) + non_square * r^2)
// e = chi(w^3 + A*w^2 + w)
// u = e*w - (fe(1)-e)*(A//2)
// v = -e * sqrt(u^3 + A*u^2 + u)
//
// We ignore v because we don't need it for X25519 (the Montgomery
// ladder only uses u).
//
// Note that e is either 0, 1 or -1
// if e = 0    u = 0  and v = 0
// if e = 1    u = w
// if e = -1   u = -w - A = w * non_square * r^2
//
// Let r1 = non_square * r^2
// Let r2 = 1 + r1
// Note that r2 cannot be zero, -1/non_square is not a square.
// We can (tediously) verify that:
//   w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3
// Therefore:
//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3))
//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1
//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6)
//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)  *     r2^6)
//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) *  A * r2^3)
// Corollary:
//   e =  1 if (A^2*r1 - r2^2) *  A * r2^3) is a non-zero square
//   e = -1 if (A^2*r1 - r2^2) *  A * r2^3) is not a square
//   Note that w^3 + A*w^2 + w (and therefore e) can never be zero:
//     w^3 + A*w^2 + w = w * (w^2 + A*w + 1)
//     w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1)
//     w^3 + A*w^2 + w = w * (w + A/2)^2        - A^2/4 + 1)
//     which is zero only if:
//       w = 0                   (impossible)
//       (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square)
//
// Let isr   = invsqrt((A^2*r1 - r2^2) *  A * r2^3)
//     isr   = sqrt(1        / ((A^2*r1 - r2^2) *  A * r2^3)) if e =  1
//     isr   = sqrt(sqrt(-1) / ((A^2*r1 - r2^2) *  A * r2^3)) if e = -1
//
// if e = 1
//   let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2
//       u1 = w
//       u1 = u
//
// if e = -1
//   let ufactor = -non_square * sqrt(-1) * r^2
//   let vfactor = sqrt(ufactor)
//   let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor
//       u2 = w * -1 * -non_square * r^2
//       u2 = w * non_square * r^2
//       u2 = u
void crypto_elligator_map(u8 curve[32], const u8 hidden[32])
{
	fe r, u, t1, t2, t3;
	fe_frombytes_mask(r, hidden, 2); // r is encoded in 254 bits.
	fe_sq(r, r);
	fe_add(t1, r, r);
	fe_add(u, t1, fe_one);
	fe_sq (t2, u);
	fe_mul(t3, A2, t1);
	fe_sub(t3, t3, t2);
	fe_mul(t3, t3, A);
	fe_mul(t1, t2, u);
	fe_mul(t1, t3, t1);
	int is_square = invsqrt(t1, t1);
	fe_mul(u, r, ufactor);
	fe_ccopy(u, fe_one, is_square);
	fe_sq (t1, t1);
	fe_mul(u, u, A);
	fe_mul(u, u, t3);
	fe_mul(u, u, t2);
	fe_mul(u, u, t1);
	fe_neg(u, u);
	fe_tobytes(curve, u);

	WIPE_BUFFER(t1);  WIPE_BUFFER(r);
	WIPE_BUFFER(t2);  WIPE_BUFFER(u);
	WIPE_BUFFER(t3);
}

// Elligator inverse map
//
// Computes the representative of a point, if possible.  If not, it does
// nothing and returns -1.  Note that the success of the operation
// depends only on the point (more precisely its u coordinate).  The
// tweak parameter is used only upon success
//
// The tweak should be a random byte.  Beyond that, its contents are an
// implementation detail. Currently, the tweak comprises:
// - Bit  1  : sign of the v coordinate (0 if positive, 1 if negative)
// - Bit  2-5: not used
// - Bits 6-7: random padding
//
// From the paper:
// Let sq = -non_square * u * (u+A)
// if sq is not a square, or u = -A, there is no mapping
// Assuming there is a mapping:
//    if v is positive: r = sqrt(-u     / (non_square * (u+A)))
//    if v is negative: r = sqrt(-(u+A) / (non_square * u    ))
//
// We compute isr = invsqrt(-non_square * u * (u+A))
// if it wasn't a square, abort.
// else, isr = sqrt(-1 / (non_square * u * (u+A))
//
// If v is positive, we return isr * u:
//   isr * u = sqrt(-1 / (non_square * u * (u+A)) * u
//   isr * u = sqrt(-u / (non_square * (u+A))
//
// If v is negative, we return isr * (u+A):
//   isr * (u+A) = sqrt(-1     / (non_square * u * (u+A)) * (u+A)
//   isr * (u+A) = sqrt(-(u+A) / (non_square * u)
int crypto_elligator_rev(u8 hidden[32], const u8 public_key[32], u8 tweak)
{
	fe t1, t2, t3;
	fe_frombytes(t1, public_key);    // t1 = u

	fe_add(t2, t1, A);               // t2 = u + A
	fe_mul(t3, t1, t2);
	fe_mul_small(t3, t3, -2);
	int is_square = invsqrt(t3, t3); // t3 = sqrt(-1 / non_square * u * (u+A))
	if (is_square) {
		// The only variable time bit.  This ultimately reveals how many
		// tries it took us to find a representable key.
		// This does not affect security as long as we try keys at random.

		fe_ccopy    (t1, t2, tweak & 1); // multiply by u if v is positive,
		fe_mul      (t3, t1, t3);        // multiply by u+A otherwise
		fe_mul_small(t1, t3, 2);
		fe_neg      (t2, t3);
		fe_ccopy    (t3, t2, fe_isodd(t1));
		fe_tobytes(hidden, t3);

		// Pad with two random bits
		hidden[31] |= tweak & 0xc0;
	}

	WIPE_BUFFER(t1);
	WIPE_BUFFER(t2);
	WIPE_BUFFER(t3);
	return is_square - 1;
}

void crypto_elligator_key_pair(u8 hidden[32], u8 secret_key[32], u8 seed[32])
{
	u8 pk [32]; // public key
	u8 buf[64]; // seed + representative
	COPY(buf + 32, seed, 32);
	do {
		crypto_chacha20_djb(buf, 0, 64, buf+32, zero, 0);
		crypto_x25519_dirty_fast(pk, buf); // or the "small" version
	} while(crypto_elligator_rev(buf+32, pk, buf[32]));
	// Note that the return value of crypto_elligator_rev() is
	// independent from its tweak parameter.
	// Therefore, buf[32] is not actually reused.  Either we loop one
	// more time and buf[32] is used for the new seed, or we succeeded,
	// and buf[32] becomes the tweak parameter.

	crypto_wipe(seed, 32);
	COPY(hidden    , buf + 32, 32);
	COPY(secret_key, buf     , 32);
	WIPE_BUFFER(buf);
	WIPE_BUFFER(pk);
}

///////////////////////
/// Scalar division ///
///////////////////////

// Montgomery reduction.
// Divides x by (2^256), and reduces the result modulo L
//
// Precondition:
//   x < L * 2^256
// Constants:
//   r = 2^256                 (makes division by r trivial)
//   k = (r * (1/r) - 1) // L  (1/r is computed modulo L   )
// Algorithm:
//   s = (x * k) % r
//   t = x + s*L      (t is always a multiple of r)
//   u = (t/r) % L    (u is always below 2*L, conditional subtraction is enough)
static void redc(u32 u[8], u32 x[16])
{
	static const u32 k[8] = {
		0x12547e1b, 0xd2b51da3, 0xfdba84ff, 0xb1a206f2,
		0xffa36bea, 0x14e75438, 0x6fe91836, 0x9db6c6f2,
	};

	// s = x * k (modulo 2^256)
	// This is cheaper than the full multiplication.
	u32 s[8] = {0};
	FOR (i, 0, 8) {
		u64 carry = 0;
		FOR (j, 0, 8-i) {
			carry  += s[i+j] + (u64)x[i] * k[j];
			s[i+j]  = (u32)carry;
			carry >>= 32;
		}
	}
	u32 t[16] = {0};
	multiply(t, s, L);

	// t = t + x
	u64 carry = 0;
	FOR (i, 0, 16) {
		carry  += (u64)t[i] + x[i];
		t[i]    = (u32)carry;
		carry >>= 32;
	}

	// u = (t / 2^256) % L
	// Note that t / 2^256 is always below 2*L,
	// So a constant time conditional subtraction is enough
	remove_l(u, t+8);

	WIPE_BUFFER(s);
	WIPE_BUFFER(t);
}

void crypto_x25519_inverse(u8 blind_salt [32], const u8 private_key[32],
                           const u8 curve_point[32])
{
	static const  u8 Lm2[32] = { // L - 2
		0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
		0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
	};
	// 1 in Montgomery form
	u32 m_inv [8] = {
		0x8d98951d, 0xd6ec3174, 0x737dcf70, 0xc6ef5bf4,
		0xfffffffe, 0xffffffff, 0xffffffff, 0x0fffffff,
	};

	u8 scalar[32];
	crypto_eddsa_trim_scalar(scalar, private_key);

	// Convert the scalar in Montgomery form
	// m_scl = scalar * 2^256 (modulo L)
	u32 m_scl[8];
	{
		u32 tmp[16];
		ZERO(tmp, 8);
		load32_le_buf(tmp+8, scalar, 8);
		mod_l(scalar, tmp);
		load32_le_buf(m_scl, scalar, 8);
		WIPE_BUFFER(tmp); // Wipe ASAP to save stack space
	}

	// Compute the inverse
	u32 product[16];
	for (int i = 252; i >= 0; i--) {
		ZERO(product, 16);
		multiply(product, m_inv, m_inv);
		redc(m_inv, product);
		if (scalar_bit(Lm2, i)) {
			ZERO(product, 16);
			multiply(product, m_inv, m_scl);
			redc(m_inv, product);
		}
	}
	// Convert the inverse *out* of Montgomery form
	// scalar = m_inv / 2^256 (modulo L)
	COPY(product, m_inv, 8);
	ZERO(product + 8, 8);
	redc(m_inv, product);
	store32_le_buf(scalar, m_inv, 8); // the *inverse* of the scalar

	// Clear the cofactor of scalar:
	//   cleared = scalar * (3*L + 1)      (modulo 8*L)
	//   cleared = scalar + scalar * 3 * L (modulo 8*L)
	// Note that (scalar * 3) is reduced modulo 8, so we only need the
	// first byte.
	add_xl(scalar, scalar[0] * 3);

	// Recall that 8*L < 2^256. However it is also very close to
	// 2^255. If we spanned the ladder over 255 bits, random tests
	// wouldn't catch the off-by-one error.
	scalarmult(blind_salt, scalar, curve_point, 256);

	WIPE_BUFFER(scalar);   WIPE_BUFFER(m_scl);
	WIPE_BUFFER(product);  WIPE_BUFFER(m_inv);
}

////////////////////////////////
/// Authenticated encryption ///
////////////////////////////////
static void lock_auth(u8 mac[16], const u8  auth_key[32],
                      const u8 *ad         , size_t ad_size,
                      const u8 *cipher_text, size_t text_size)
{
	u8 sizes[16]; // Not secret, not wiped
	store64_le(sizes + 0, ad_size);
	store64_le(sizes + 8, text_size);
	crypto_poly1305_ctx poly_ctx;           // auto wiped...
	crypto_poly1305_init  (&poly_ctx, auth_key);
	crypto_poly1305_update(&poly_ctx, ad         , ad_size);
	crypto_poly1305_update(&poly_ctx, zero       , gap(ad_size, 16));
	crypto_poly1305_update(&poly_ctx, cipher_text, text_size);
	crypto_poly1305_update(&poly_ctx, zero       , gap(text_size, 16));
	crypto_poly1305_update(&poly_ctx, sizes      , 16);
	crypto_poly1305_final (&poly_ctx, mac); // ...here
}

void crypto_aead_init_x(crypto_aead_ctx *ctx,
                        u8 const key[32], const u8 nonce[24])
{
	crypto_chacha20_h(ctx->key, key, nonce);
	COPY(ctx->nonce, nonce + 16, 8);
	ctx->counter = 0;
}

void crypto_aead_init_djb(crypto_aead_ctx *ctx,
                          const u8 key[32], const u8 nonce[8])
{
	COPY(ctx->key  , key  , 32);
	COPY(ctx->nonce, nonce,  8);
	ctx->counter = 0;
}

void crypto_aead_init_ietf(crypto_aead_ctx *ctx,
                           const u8 key[32], const u8 nonce[12])
{
	COPY(ctx->key  , key      , 32);
	COPY(ctx->nonce, nonce + 4,  8);
	ctx->counter = (u64)load32_le(nonce) << 32;
}

void crypto_aead_write(crypto_aead_ctx *ctx, u8 *cipher_text, u8 mac[16],
                       const u8 *ad,         size_t ad_size,
                       const u8 *plain_text, size_t text_size)
{
	u8 auth_key[64]; // the last 32 bytes are used for rekeying.
	crypto_chacha20_djb(auth_key, 0, 64, ctx->key, ctx->nonce, ctx->counter);
	crypto_chacha20_djb(cipher_text, plain_text, text_size,
	                    ctx->key, ctx->nonce, ctx->counter + 1);
	lock_auth(mac, auth_key, ad, ad_size, cipher_text, text_size);
	COPY(ctx->key, auth_key + 32, 32);
	WIPE_BUFFER(auth_key);
}

int crypto_aead_read(crypto_aead_ctx *ctx, u8 *plain_text, const u8 mac[16],
                     const u8 *ad,          size_t ad_size,
                     const u8 *cipher_text, size_t text_size)
{
	u8 auth_key[64]; // the last 32 bytes are used for rekeying.
	u8 real_mac[16];
	crypto_chacha20_djb(auth_key, 0, 64, ctx->key, ctx->nonce, ctx->counter);
	lock_auth(real_mac, auth_key, ad, ad_size, cipher_text, text_size);
	int mismatch = crypto_verify16(mac, real_mac);
	if (!mismatch) {
		crypto_chacha20_djb(plain_text, cipher_text, text_size,
		                    ctx->key, ctx->nonce, ctx->counter + 1);
		COPY(ctx->key, auth_key + 32, 32);
	}
	WIPE_BUFFER(auth_key);
	WIPE_BUFFER(real_mac);
	return mismatch;
}

void crypto_aead_lock(u8 *cipher_text, u8 mac[16], const u8 key[32],
                      const u8  nonce[24], const u8 *ad, size_t ad_size,
                      const u8 *plain_text, size_t text_size)
{
	crypto_aead_ctx ctx;
	crypto_aead_init_x(&ctx, key, nonce);
	crypto_aead_write(&ctx, cipher_text, mac, ad, ad_size,
	                  plain_text, text_size);
	crypto_wipe(&ctx, sizeof(ctx));
}

int crypto_aead_unlock(u8 *plain_text, const u8  mac[16], const u8 key[32],
                       const u8 nonce[24], const u8 *ad, size_t ad_size,
                       const u8 *cipher_text, size_t text_size)
{
	crypto_aead_ctx ctx;
	crypto_aead_init_x(&ctx, key, nonce);
	int mismatch = crypto_aead_read(&ctx, plain_text, mac, ad, ad_size,
	                                cipher_text, text_size);
	crypto_wipe(&ctx, sizeof(ctx));
	return mismatch;
}

#ifdef MONOCYPHER_CPP_NAMESPACE
}
#endif